Table 1
Some max-type RDEs. Functions $g(\cdot)$ for which the $R D E X \stackrel{d}{=} g\left(\left(\xi_{i}, X_{i}\right), i \geq 1\right)$ are discussed*

Section	$g(\cdot)$	Underlying model	Endog?	Comments
	$S=\mathbb{R}^{+}$			
4.2	$\max _{i}\left(X_{i}+\xi_{i}\right)^{+}$	Range of BRW	Yes	
4.3	$\min _{i}\left(X_{i}+\xi_{i}\right)^{+}$	Algorithm for BRW range	Yes	
4.6	$\max _{i}\left(\xi_{i}-X_{i}\right)^{+}$	Matching on GW tree	Yes	
4.4	$\xi_{0}+\max _{i}\left(\xi_{i} X_{i}\right)$	Discounted tree sums	Yes	$\xi_{0}=0$ reduces to BRW extremes
4.4	$\xi_{0}+\min _{i}\left(\xi_{i} X_{i}\right)$	Discounted tree sums	Yes	See (49)
4.6	$\left(\xi_{0}-\sum_{i} X_{i}\right)^{+}$	Independent subset GW tree	Yes	
7.2	$\sum_{i}\left(c-\xi_{i}+X_{i}\right)^{+}$	Percolation of MSTs	Yes	Determines critical c
7.6	See (98)	First passage percolation	Conj. Y	Mean-field scaling analysis
	$S=\mathbb{R}$			
5	$c+\max _{i}\left(X_{i}+\xi_{i}\right)$	Extremes in BRW	No	c specified by $\operatorname{dist}\left(\xi_{i}\right)$
7.3	$\min _{i}\left(\xi_{i}-X_{i}\right)$	Mean-field minimal matching	Yes	
7.4	$\min _{i}^{[2]}\left(\xi_{i}-X_{i}\right)$	Mean-field TSP	Conj. Y	$\min ^{[2]}$ denotes second smallest
	Other S			
6	$\Phi\left(\min \left(X_{1}, X_{2}\right), \xi_{0}\right)$	Frozen percolation on tree	Yes	Φ defined in Section 6
7.6	See (96), (97), (98)	Mean-field scaling	Conj. Y	$S=\mathbb{R}^{2}$ or \mathbb{R}^{3}

*Note $x^{+}=\max (x, 0)$. For $S=\mathbb{R}$ a "max" problem is equivalent to a "min" problem by transforming X to $-X$, but for $S=\mathbb{R}^{+}$this does not work: the problems in Sections 4.2 and 4.3 are different. Typically the $\left(\xi_{i}\right)$ are either i.i.d. or are the successive points of a Poisson process on $(0, \infty)$. "Endogenous" refers to fundamental solution. Key to acronyms: BRW, branching random walk; GW, Galton-Watson; MST, minimal spanning tree; TSP, traveling salesman problem.
1.1.1. Direct use. Here is the prototype example of direct use, where the original question asks about a random variable X and the distribution of X itself satisfies an RDE.

Example 1. Let X be the total population in a Galton-Watson branching process where the number of offspring is distributed as ξ. In the case $\mathbb{E} \xi \leq 1$ [and $\mathbb{P}(\xi=1) \neq 1]$ it is well known that $X<\infty$ a.s., and then easy to check that dist (X) is the unique solution of the RDE

$$
X \stackrel{d}{=} 1+\sum_{i=1}^{\xi} X_{i} \quad\left(S=\mathbb{Z}^{+}\right)
$$

We will see other direct uses in Proposition 25 and in the examples in Section 4.4.
1.1.2. Indirect use. The simplest kind of indirect use is where the quantity of interest can be written in terms of known quantities and some other quantity

