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Off topic of workshop – not “models for wireless communication”.
Instead: toy models inspired by road networks.

Part 1 (15-20 minutes): compressed version of talks from 2007-9;
written up on arXiv (Aldous-Shun). Visualize inter-city road networks.

Part 2: Work in progress with Wilf Kendall and . . . . . . . “Scale-invariant
random spatial networks”. Visualize Google maps/your car GPS:
networks resolved down to individual street addresses.
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L = 1.25 d̄ = 2.5
Punctured lattice

L = 1.32 d̄ = 3 L = 1.50 d̄ = 3

L = 1.61 d̄ = 3 L = 2.00 d̄ = 4
Square lattice

L = 2.71 d̄ = 5

L = 2.83 d̄ = 4
Diagonal lattice

L = 3.22 d̄ = 6
Triangular lattice

L = 3.41 d̄ = 6

Figure 4. Variant square, triangular and hexagonal lattices.
Drawn so that the density of cities is the same in each diagram, and ordered by
value of L.
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Relative neighborhood network on 500 cities.
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Instead of vertices and edges let me say cities and roads.

The left figure shows the relative neighborhood network on 500 random
cities. This network is defined by: (d denotes Euclidean distance)

there is a road between two cities x , y if and only if there is no other
city z with max(d(z , x), d(z , y)) < d(x , y).

This particular network is interesting because (loosely speaking) it is the
sparsest connected graph that can be defined by a simple local rule. It is
connected because it contains the MST. There is a family of denser
proximity graphs defined by similar “exclusion rules”.
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The aspect of spatial networks that interests me is network distance
(minimum route-length) `(ξ, ξ′) between cities at Euclidean distance
d(ξ, ξ′). For any translation- and rotation-invariant spatial network we
can define

ρ(d) =
E(network distance between cities at distance d)

d
− 1.

Suppose we want to design a network where having short network
distances is a major goal. Obviously there’s a tradeoff between this and
the (normalized) network length L.

Here are (simulation) results.
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This Figure is the central theme of the first part of the talk . . . . . .

The same characteristic shape appears in all “reasonable” theoretical
networks we have studied.

Here’s some real data: the road network linking the 20 largest cities in a
State.
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We want one statistic R, usable in both PP and finite-n models, to
measure how effective the network is in providing short routes. This will
enable us to study networks giving optimal tradeoff between R and
normalized total network length L.
Goal: optimal networks should be realistic and mathematically
interesting . . . . . .

First attempt to define R:

use limd→∞ ρ(d) in the PP model

use the average over all city-pairs (x , y) of `(x,y)
d(x,y) − 1 in the finite-n

model.

Central “paradox”: this doesn’t achieve the goal. Because one can
design the following kind of network [Aldous - Kendall 2008]

David Aldous Connected spatial random networks



Networks on discrete points
Continuum spatial random networks

Proximity graphs
Network distance

2/1/08 2:00 PMEdges

Page 1 of 2http://www.spss.com/research/wilkinson/Applets/edges.html

Home

Edges of Graphs

N=1000N=100N=10TileLink

MSTHullVoronoiDelaunaySample

 

A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a
set of n edges that link (associate) pairs of vertices to each other. A graph
may be embedded in a space, in which case the set V is associated with a
set of m points, one for each vertex, and the set E is represented by lines
connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m
data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation
partitions a set of data points such that every point within a polygon is
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So we really want our network to provide short routes on all
distance-scales. This prompts us to use the statistic

R := max
0≤d<∞

ρ(d).

In words, R = 0.2 means that on every scale of distance, route-lengths
are on average at most 20% longer than straight line distance.

Next figure compares values of R and L for different networks over a PP.
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The ◦ show the beta-skeleton family of proximity graphs, with RN the
relative neighborhood network and G the Gabriel network. The • are
special models: 4 shows the Delaunay triangulation, � shows the
network G2 and ♦ shows the Hammersley network.
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Economics prediction: In a real-world network perceived as efficient,

length ≈ 2
√

area × number of key cities
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Part 2.

Take two addresses in U.S. and ask e.g. Google maps

for a route between them.
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Want to model “this sort of thing” – deliberately fuzzy (for a while)
about what sort of mathematical object we’re modeling. The key
property we will assume is scale-invariance.

Scale-invariance means, intuitively, the distribution we see doesn’t
depend on scale of map – could be 20 miles across or 200 miles across.

This certainly cannot be exactly true. But is it totally unreasonable?
What are some testable predictions?

1. Scale-invariance implies, for instance, that
(average route-length between addresses at distance r)/r is constant in r
which is empirically roughly correct.

2. Kalapala - Sanwalani - Clauset - Moore (2006) give data on
average proportion of total route-length in the five largest segments

0 - 750 mi 0.46 0.21 0.12 0.07 0.04
750 - 1250 mi 0.40 0.21 0.13 0.08 0.05

1250 + mi 0.38 0.20 0.13 0.08 0.05
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3. Jump to the most interesting point of Part 2. There is a (slight)
connection between

toy models for road networks

real-world algorithms (Google maps; car GPS system) for finding
routes.

I’m working on the former but let me show 2 slides of other people’s work
on the latter.
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You type street address (≈ 100 million in U.S.)
Recognized as between two street intersections.
U.S road network represented as a graph on about 15 million street
intersections (vertices).

Want to compute the shortest route between two vertices. Neither of the
following two extremes is practical.

pre-compute and store the routes for all possible pairs;

or use a classical Dijkstra-style algorithm for a given pair without
any preprocessing.

Key idea: there is a set of about 10,000 intersections (transit nodes)
with the property that, unless the start and destination points are close,
the shortest route goes via some transit node near the start and some
transit node near the destination.
[ Bast - Funke - Sanders - Schultes (2007); Science paper and patent]
Given such a set, one can pre-compute shortest routes and route-lengths
between each pair of transit nodes; then answer a query by using the
classical algorithm to calculate the route lengths from starting (and from
destination) point to each nearby transit node, and finally minimizing
over pairs of such transit nodes. Takes 0.1 sec.
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Could regard this key fact (10,000 transit nodes such that . . . . . . ) as
merely an empirical property of real network. And in some qualitative
sense it’s obvious – there’s a hierarchy of roads from freeways to dirt
tracks, and “transit nodes” are intersections of major roads.

Is there some Theory? How do transit nodes arise in a math model?
Why 10,000 instead of 1,000 or 100,000?

Abraham - Fiat - Goldberg - Werneck (SODA 2010) define highway
dimension as the smallest integer h such that for every r and every ball
of radius 4r , there exists a set of h vertices such that every shortest route
of length > r within the ball passes through some vertex in the set.

They analyse algorithms exploiting transit nodes and other structure,
giving performance bounds involving h and number of vertices and
network diameter.
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Highway dimension: the smallest integer h such that for every r and
every ball of radius 4r , there exists a set of h vertices such that every
shortest route of length > r within the ball passes through some vertex in
the set.

[To me] this is an inelegant way to set up theory:

assuming something similar to what you’re trying to prove

aimed at worst-case rather than probability model.

I will suggest different theory setup.

But note the assumption that h(r) is bounded as r varies is somewhat
similar to assuming scale-invariance.
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Crazy (?) idea: draw a map showing all 26 million road segments in the
U.S.

Would mimic a “grey scale” map of population density?
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Ben Fry
http://benfry.com/allstreets/

David Aldous Connected spatial random networks



Networks on discrete points
Continuum spatial random networks

Less crazy (?) idea:

Fix r , say 25 miles. Draw map of all road segments which are on the
shortest route between some two points, each at least distance r from
the segment itself.

This gives some “mathematical” definition of “major roads” (logically
distinct from but much overlapping the highway numbering system) and
with an adjustable parameter r .

Define p(r) as “length per unit area” of this subnetwork.
Scale-invariance would imply p(r) = c/r .

This is third testable prediction. Data?

Note another “paradox”. Intuitively, to make an efficient network we
need p(r) large, but to have efficient algorithms for computing shortest
routes we want p(r) small.
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Diagram shows why p(r) is relevant. The number of crossings of the line
(by all routes from one square to the other) is O(rp(r)). By
scale-invariance, O(p(1)).

rr

To make a crude argument under minimal assumptions; fix r and define
transit nodes as places where routes (between places at distance r away)
cross the r -spaced grid. (This is inefficient relative to real-world, where
we use intersections of major highways).

Next slide show what we get from such constructions.
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A: area of country
η: ave number road segments per unit area.
p(r): “length per unit area” of subnetwork . . . . . .
Assume scale-invariant (over distances r � 1 mile), translation-invariant.

Choose any r we like; then can find a set of transit nodes (depend on r)
such that
(i) Number of local (distance < r) transit nodes is O(p(1)).
(ii) regarding time-cost of single Dijkstra search as O( number edges),
the time-cost of local search is O

(
(ηr2)p(1)

)
(iii) space-cost of a k × k inter-transit-node matrix is O(k2); so this
space-cost is O

(
(p(1)A/r2)2

)
.

After combining costs and optimizing over r , the total cost scales as
(Aη)2/3 p(1) = M2/3 p(1) for
M = number of road segments in country (say 20 million).
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[Work in progress] Thinking about a mathematical setup for a general
class of probability models

Scale-invariant random spatial networks.

Precise axiomatics not yet settled, but we want a setup in which

The quantity p(r) makes sense in a given model

We can discuss “optimal networks” in a way analogous to Part 1:
tradeoff between statistics like L and R.
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Model; for each pair of points (z , z ′) in the plane, there is a random
route R(z , z ′) = R(z ′, z) between z and z ′.

The process distribution (FDDs only) has
(i) translation and rotation invariance
(ii) scale invariance .

Scale invariance implies that the route-length Dr between points at

distance r apart must scale as Dr
d
= rD1, where of course 1 ≤ D1 ≤ ∞.

We are interested in the case

1 < ED1 <∞

in which case we can use ED1 as a statistic analogous to R (from part 1).

Question: How can we study “normalized length” and p(r) for such a
network?
Answer: We explore the network via the subnetwork on a Poisson
process of points.
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Write S(λ) for the subnetwork on a Poisson (rate λ per unit area) point
process. Then scale-invariance gives a distributional relationship
between S(λ) and S(1).

Define normalized length L as length-per-unit-area of S(1). This is the
same as in Part 1; though now the possible networks S(1) are greatly
constrained by being part of a scale-invariant process. Here we are
exploring a network, not constructing one.

Define p(λ, r) as length-per-unit-area of segments in S(λ) which are on
route between some two points at distance r from the segment.

Set p(r) := limλ↑∞ p(λ, r).

Question: do there exist networks with

1 < ED1 <∞; L <∞; p(1) <∞.

Answer: Yes, but we don’t know any that is tractable enough to do
concrete calculations. I’ll outline one construction and mention a second.
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0

0

Start with square grid of roads, but impose “binary hierarchy of speeds”:
a road meeting an axis at (2i + 1)2s has speed limit γs for a parameter
1 < γ < 2. Use “shortest-time” routes.

(weird – axes have infinite speed limits! )
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“Soft” arguments extend this construction to a scale-invariant network
on the plane.

Consistent under binary refinement of lattice, so defines routes
between points in R2.

Force translation invariance by large-spread random translation.

Force rotation invariance by randomization.

Invariant under scaling by 2; scaling randomization gives full scaling
invariance.

Need calculations (bounds) to show finiteness of the parameters.

Topic interesting as “symmetry-breaking”; Euclidean-invariant problem
on R2 but any feasible solution must break symmetry to have freeways.
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