1. Local weak convergence of graphs/networks

e Stuff that’'s obvious when you think about it

e 4 non-obvious examples/results

2. The core idea in our probabilistic refor-
mulation oOf special cases of the cavity method is:
do exact calculation on some infinite random
graph (tree-like, in practice). LWC provides
link with the finite-n problem. Illustrate with

e mean-field TSP

e flow through a disordered network.

Aldous-Steele survey “The objective method
" on my home page.



Some math infrastructure

Consider an abstract space S (complete separable
metric space) With a notion of convergence x,, — .
There is automatically a notion of convergence
of probability measures on S (all reasonable
definitions are equivalent).

Un — Moo Iff there exist S-valued random vari-
ables X, such that

This is called weak convergence.

Conceptual point: When you consider some

new abstract space S, you don’t need to think

about what convergence of distributions means.
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Most concrete case is S = Rl, where we have
e.g. the central limit theorem

n
n—1/2 > & 4, Normal(0, 1)
i=1
for i.i.d. (&) with F£ =0 and var £ = 1.

Best known abstract case is

S = {continuous functions [0, 1] — R}

which allows one to formalize ‘rescaled ran-
dom walk converges to Brownian motion".




Another abstract case is

S = {locally finite point sets in R?}

which allows one to formalize “n uniform ran-
dom points in square of area n converges to
the Poisson point process on R2"




A graph has vertices and edges

A network is a graph whose edges have postive
real lengths (default length = 1) and maybe extra
structure indicated by numbers/labels on vertices/edges. Write
G for a network.

Consider the abstract space

S = {locally finite rooted networks}.

What should convergence G, — Go Mean?
Note: interesting case is where Gy, is finite and
G0 is infinite.

Window of radius r in G defines subgraph GJr]
of vertices within distance r from root, with
edges both of whose endpoints are within win-

dow (a convention which turns out convenient).

Definition: G, — G mMmeans that for each
fixed generic 0 < r < oo, for large n there is
graph-isomorphism between Gp[r] and Goolr]
such that edge-lengths of isomorphic edges con-
verge as n — oo (and also other labels converge).



Given n-vertex network (deterministic or ran-
dom) let U, be uniform random vertex. Write
Gn|Uy] for Gy rooted at U,,.

Definition. If G,[Uy] 4 some Goo, call this
local weak convergence (LWC) of G, to
Goo.

Formalizes the idea: for large n the local struc-
ture of G, near a typical vertex is approxi-
mately the local structure of G near the root.

Intuition: in models where degree distribution
IS bounded in probability as n — oo we expect
LWC to some |limit infinite network.



Obvious examples

1a Gyn: geometric graph (all edges of length
< ¢) on n random points in square of area n

Goo: geometric graph on Poisson point pro-
cess (rate 1) on R? with point at origin.

1b As above with complete graphs.

2 Gp: discrete cube C% c Z% with i.i.d. (inde-
pendent random) edge-lengths.
Goo; all Z% with i.i.d. edge-lengths.

3a Gpn: Erdos-Renyi random graph G(n,c/n)
Goo: tree of Galton-Watson branching pro-
cess with Poisson(c) offspring.

3b Gy: random r-regular graph
Goo: infinite degree-r tree.

3c Gp: random graph model designed as ‘“‘ran-
dom subject to degree distribution approximately
a prescribed distribution (p(7),7 > 0)

Goo: Galton-Watson tree with offspring dis-
tribution (7)) oc (4 4+ 1)p(s + 1)



4 GG,. de Bruijn graph on n = 2b binary strings
Goo: infinite tree with in-degree 2 and out-
degree 2.

100100
001100 110010
100101
011001
100110
101100 110011
100111

5 G, Simple random walk with n steps
Goo: 2-sided infinite simple RW.
(represent as linear graph with edge-marks £+1).



6a-z: For many models of random n-vertex
trees one can explicitly describe Go. FoOr in-
stance

Grn. uniform random tree on n labeled vertices
Goo:. infinite path from root; i.i.d. “bushes”
are Galton-Watson trees with Poisson(1) off-
spring.

7
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Remark: qualitative behavior similar in most models:
semi-infinite path with i.i.d. finite bushes, whose mean
size is infinite. Bush at root gives limit of subtree de-

fined by random vertex in original rooted tree.



{ G, complete graph on n vertices; edge-lengths ran-
dom, independent Exponential(mean n) distribution.
Goo: the PWIT (Poisson weighted infinite tree)

be o

Distances 0 < &1 < &2 < &3 < ... from a vertex to its near
neighbors (indicated by lines) are successive points of
a Poisson (rate 1) process on (0,00). Continue recur-

sively.
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Q: So what’s the use of knowing LWC ...7?
A: not much, but it's a start .......

Let’'s mention 4 results/examples not related
to cavity method.

Result A: According to the graph-theoretic
definition of planar graph, the infinite binary
tree is a planar graph. but this seems silly to a
probabilist, because probabilistic models (ran-
dom walk, percolation, interacting particles)
behave quite differently on trees than on Z2.
The class of random networks defined as

(x)LWC limits of finite random planar graphs

provides a more natural formalization of “ran-

dom infinite planar graphs’ . Benjamini-Schramm

(2001) show that on graphs (*) with bounded
degree, RW is recurrent. Suggests many other
questions .......
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Result B: Particular models of random planar
n-vertex graphs include

e uniform random triangulations (Angel-Schramm
2003)

e uniform random quadrangulations (Chassaing-
Schaeffer 2004).

In each case there is a LWC Ilimit which may
be called the uniform infinite planar trian-
gulation/quadrangulation.

XXX pictures
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Result C: Because of the ‘uniform random
rooting” in the definition

Definition. If Gu[Un] % some Geo, call this
local weak convergence (LWC) of Gy, to G

a random infinite network G~ which is a LWC
limit is not entirely arbitrary, but has a property
interpretable as “each vertex is equally likely to
be the root” (stationary or involution invari-
ant or unimodular).

Not obvious (but true: Aldous-Lyons, in prepa-
ration) that any random infinite network with
this property really is some LWC limit.

(This is technically useful in extending obvious
results in finite setting to the infinite setting)
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Result D: A tractable complex network model
(Aldous 2003/4) designed to have a LWC limit
within which explicit formulas can be calcu-
lated (giving n — oo asymptotics for finite-n
models).
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Q: So what’s the use of knowing LWC ...7

One goal is to prove that solution of CO problem on
G, converges to solution of CO problem on G&. Not
always true, of course!

Example E: Suppose edge-lengths are distinct. Then
G, has a unique MST (minimum spanning tree). Also
we can define the (wired) minimum spanning forest
(MSF) on an infinite network G.

Lemma: If G,, — G (LWCQ), if (technical condition on G),
then

(Gn,MST(Gr)) — (Goo, MSF(Gx)) (LWC) .

In particular, on the PWIT one can calculate

E(length of MSF per vertex)

= LE(length of MSF-edges at root)

— 2
=¢(3)=) j?
j=1

and re-derive result of Frieze (1985) that in complete
graph with random edge lengths model

n'E(length of MST) — ((3).
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XXX java picture
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Example F: (in Aldous-Steele survey). Uni-
form random tree on n vertices. Put i.i.d. pos-
itive weights on edges.

M, = weight of max-weight partial matching
Then n~1EM, — EMs where
Moo = 3(weight of edge at root)

in Mmax-weight matching on limit infinite tree

O
00
O O O 0O
\ / \ /]
o O 00 O 0O O O
| \ /] \ /] \

O—0—0—0—0—0—0—0—0—0~0 -------

Explicitly, for Exponential(1) edge-weights we
get EMs ~ 0.2396 where the limit equals

o0 S
/O se_sds/O c(e_y—be_s)exp(—ce_y—ce_(s_y)) dy

where ¢ = 0.7146 is the strictly positive solu-

tion of c2+e =1 and b= 02+6226_1 ~ 0.5433.
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LWC and the cavity method

Recall model

G,: complete graph on n vertices; edge-lengths random,

independent Exponential(mean n) distribution.

Write L, for length of TSP tour under this

model. Mezard-Parisi (1980s) used replica/cavity
methods to argue

n1EL, — ¢~ 2.04.

We have explicit program to make rigorous —
but can’t carry through two of the technical
steps.
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Here are two relaxations of TSP for n-vertex
network.

(M2F): minimum 2-factor. Minimize total
length of a 2-factor, that is an edge-set in
which each vertex has degree 2. That is, a
union of cycles which spans all vertices.

(MA2F): minimum almost 2-factor. Mini-
mize total length over edge-sets £, such that

n~1{v: degree(v) # 2} — 0.
Proposition (Frieze 2004) In this model,
n Y (EL,— EL]) — 0
where L, is TSP length and L], is M2F length.

Missing Proposition Want to know
n~Y(ELp — ELPT¢) — 0

where L, is TSP length and LP"¢ is MA2F
length.
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XXX java slide; hand write Zs
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Central part of method — which I'll explain only
superficially — is to do analysis of TSP on the
(infinite) PWIT. each edge e of PWIT splits
it into two subtrees. There are random vari-
ables Z1(e), Z2(e), measurable functions of the
subtrees, such that

e € TSP-path iff length(e) < Z1(e) + Z2(e)

(another “missing proposition” in proving this)
from which one can calculate mean length of
TSP-path edges.

Q: How do we go back from the PWIT to the
finite-n model?
More math infrastructure

A measurable function f(Y71,Y5,...) of some in-

finite collection of r.v.'s can be approximated
arbitrary closely by continuous functions fi.(Y7,...,Y%)
of finitely many of the r.v.’s.
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So on the PWIT we can define an edge-set &,
such that

(i) the edges of &£, at a vertex v are determined
by the restriction of the PWIT to the window
of radius r around v; (ii) §r := P( some edge
at v e £A{) — 0 as r — .

Using LWC of the finite-n model to the PWIT,
we can apply the same rule to a window of
radius r around a vertex v, and define edge-
sets &rn such that

limsup P(degree(v) in Erp 7%= 2) < 26,
mn
XXX and similarly the edge-lengths xxx.
T his constructs an almost-2-factor of G,, whose

cost-per-vertex converges to the ¢ given in the
PWIT analysis.
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