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Analogy: game theory not about “games” (baseball, chess, . . . ) but
about a particular setup (players choose actions separately, get payoffs)
which is useful in other contexts (Google ad pricing).

Analogously, my nominal topic is “flow of information through networks”,
but I’m going to specify a particular setup. Thousands of papers over the
last ten years, in fields such as statistical physics; epidemic theory;
broadcast algorithms on graphs; ad hoc networks; social learning theory,
can be fitted into this setup. But it doesn’t have a standard name –
there exist names like “interacting particle systems” or “social dynamics”
but these have rather fuzzy boundaries. The best name I can invent is
Finite Markov Information-Exchange (FMIE) Processes.



A nice popular book on game theory (Len Fisher: Rock, Paper, Scissors:
Game Theory in Everyday Life) illustrates the breadth of that subject by
discussing 7 prototypical models with memorable names.

Prisoner’s Dilemma; Tragedy of the Commons; Free Rider; Chicken;
Volunteer’s Dilemma; Battle of the Sexes; Stag Hunt.

So let me describe the subject of FMIE processes via 8 prototypical and
simple models with memorable names, invented for this talk because the
standard names are uninformative.

Hot Potato, Pandemic, Leveller, Pothead, Deference, Fashionista, Gordon
Gekko, and Preserving Principia.

On my web page are slides from a 2012 summer school lecture
course, and a 30-page overview paper, which contains references.

Nothing is essentially new . . . . . .

Model at a high level of abstraction (= unreality!), not intended for
real data.



What (mathematically) is a social network?

Usually formalized as a graph, whose vertices are individual people and
where an edge indicates presence of a specified kind of relationship.



In many contexts it would be more natural to allow different strengths of
relationship (close friends, friends, acquaintances) and formalize as a
weighted graph. The interpretation of weight is context-dependent. In
some contexts (scientific collaboration; corporate directorships) there is a
natural quantitative measure, but not so in “friendship”-like contexts.

Our particular viewpoint is to identify “strength of relationship” with
“frequency of meeting”, where “meeting” carries the implication of
“opportunity to exchange information”.



Because we don’t want to consider only social networks, we will use the
neutral word agents for the n people/vertices. Write νij for the weight
on edge ij , the “strength of relationship” between agents i and j .

Here is the model for agents meeting (i.e. opportunities to exchange
information).

Each pair i , j of agents with νij > 0 meets at random times, more
precisely at the times of a rate-νij Poisson process.

Call this the meeting model. It is parametrized by the rates (νij); could
regard as a symmetric non-negative matrix N = (νij) without diagonal
entries, but better regarded as a weighted graph.

Regard a meeting model as a “geometric substructure”. One could use
any geometry, but most existing literature uses variants of 4 basic
geometries for which explicit calculations are comparatively easy.



The 4 popular basic geometries.

Most analytic work implicitly takes N as the (normalized) adjacency
matrix of an unweighted graph, such as the following,

Complete graph or mean-field.

νij = 1/(n − 1), j 6= i .

d-dimensional grid (discrete torus) Zd
m; n = md .

νij = 1/(2d) for i ∼ j .

Small worlds. The grid with extra long edges, e.g. chosen at random
with chance ∝ (length)−α.

Random graph with prescribed degree distribution. A popular way to
make a random graph model to “fit” observed data is to take the
observed degree distribution (di ) and then define a model interpretable as
“an n-vertex graph whose edges are random subject to having degree
distribution (di )”. This produces a locally tree-like network – unrealistic
but analytically helpful.



In this talk we’ll assume as a default normalized rates

νi :=
∑
j

νij = 1 for all i .

A natural “geometric” model is to visualize agents having positions in
2-dimensional space, and take νij as a decreasing function of Euclidean
distance. This model (different from “small worlds”) is curiously
little-studied, except for recent FPP work by Sh. Chatterjee - Dey.



What is a FMIE process?
Such a process has two levels.

1. Start with a meeting model as above, specified by the rates (νij)
( = irreducible symmetric non-negative matrix without diagonal entries =
connected edge-weighted graph).

2. Each agent i has some “information” (or “state”) Xi (t) at time t.
When two agents i , j meet at time t, they update their information
according to some update rule (deterministic or random). That is, the
updated information Xi (t+),Xj(t+) depends only on the pre-meeting
information Xi (t−),Xj(t−) and (perhaps) added randomness.

The update rule is chosen based on the real-world phenomenon we are
studying. A particular FMIE model is just a particular update rule. Most
recent literature has focused on studying more complicated models (“57
varieties of the voter model”) over the basic geometries. Our focus is on
studying how the behavior of some particular (simple) model depends on
the “geometry” in the general meeting model.

Can’t expect any substantial “general theorem” but there are five useful
“general principles” we’ll mention later.

Two models seem basic, both conceptually and mathematically.



Model: Hot Potato.

There is one token. When the agent i holding the token

meets another agent j, the token is passed to j.

The natural aspect to study is Z (t) = the agent holding the token at
time t. This Z (t) is the continuous-time Markov chain with transition
rates (νij).

As we shall see, for some FMIE models the interesting aspects of their
behavior can be related fairly directly to behavior of this associated
Markov chain, while for others any relation is not so visible.

I’ll try to give one result for each model, so here is an (undergraduate
homework exericise) result for Hot Potato. For the geometry take the
n = m ×m discrete torus. Take two adjacent agents. Starting from the
first, what is the mean time for the Potato to reach the second?

Answer: n − 1.



Take two adjacent agents on Z2
m. Starting from the first, what is the

mean time for the Potato to reach the second?

Answer: n − 1. Because
(i) Just assuming normalized rates, the symmetry νij = νji implies mean
return time to any agent = n, regardless of geometry.
(ii) Takes mean time one to leave initial agent; by symmetry of this
particular graph it doesn’t matter which neighbor is first visited.



Model: Pandemic.
Initially one agent is infected. Whenever an infected

agent meets another agent, the other agent becomes

infected.

Pandemic has been studied in many specific geometries, but (in contrast
to the Markov chain model) there are no general theorems. I will give
one specific result and one general conjecture.

The “deterministic, continuous” analog of our “stochastic, discrete”
model of an epidemic is the logistic equation

F ′(t) = F (t)(1− F (t))

for the proportion F (t) of a population infected at time t. A solution is a
shift of the basic solution

F (t) =
et

1 + et
, −∞ < t <∞. logistic function



Distinguish initial phase when the proportion infected is o(1), followed by
the pandemic phase. Write Xn(t) for the proportion infected. On the
complete n-vertex graph geometry,

(a) During the pandemic phase, Xn(t) behaves as F (t) to first order.
(b) The time until a proportion q is infected is

log n + F−1(q) + Gn ± o(1),

where Gn is a random time-shift (“founder effect”).

Theorem (The randomly-shifted logistic limit)

For Pandemic on the complete n-vertex graph, there exist random Gn

such that

sup
t
|Xn(t)− F (t − log n − Gn)| → 0 in probability

where F is the logistic function and Gn
d→ G with Gumbel distribution

P(G ≤ x) = exp(−e−x).



Pandemic can be viewed as a “dynamical” version of first passage
percolation. Assign to edges (a, b) random lengths with Exponential
(rate νab) distribution and consider

Tij = length of shortest path πij between i and j .

Then Tij is the time for Pandemic started at i to reach j .

First passage percolation (with general IID distribution of edge-lengths)
on the lattice Zd has been well-studied. The shape theorem gives the
first order behavior of the infected region in Pandemic: linear growth of a
deterministic shape. Rigorous understanding of second order behavior is a
famous hard problem.

The essence of the shape theorem is that Tij is close (first-order) to its
expectation. Here is a conjecture for arbitrary geometries.



ξab = length of edge (a, b) has Exponential (rate νab) distribution

Tij = length of shortest path πij between i and j .

Conjecture

With arbitrary rates (νij), if (in a sequence of geometries)

max{ξab : (a, b) edge in πij}
ETij

→p 0 (1)

then
Tij

ETij
→p 1

Easy to show (1) is necessary.



Model: Leveller (averaging process)
Here ‘‘information" is most naturally interpreted as

money. When agents i and j meet, they split their combined

money equally, so the values (Xi (t) and Xj(t)) are replaced

by the average (Xi (t) + Xj(t))/2.

The overall average is conserved, and obviously each agent’s fortune
Xi (t) will converge to the overall average. Note a simple relation with
the associated Markov chain. Write 1i for the initial configuration
Xj(0) = 1(i=j) and pij(t) for transition probabilities for the Markov chain.

Lemma

In the averaging model started from 1i we have EXj(t) = pij(t/2).
More generally, from any deterministic initial configuration x(0), the
expectations x(t) := EX(t) evolves exactly as the dynamical system

d
dt x(t) = 1

2x(t)N .

So if x(0) is a probability distribution, then the means evolve as the
distribution of the MC started with x(0) and slowed down by factor 1/2.



It turns out to be easy to quantify global convergence to the average.

Proposition (Global convergence in Leveller)

From an initial configuration x = (xi ) with average zero and L2 size
||x||2 :=

√
n−1

∑
i x2

i , the time-t configuration X(t) satisfies

E||X(t)||2 ≤ ||x||2 exp(−λt/4), 0 ≤ t <∞ (2)

where λ is the spectral gap of the associated MC.

Results like this have appeared in several contexts, e.g. gossip algorithms.
Here is a more subtle result. Suppose normalized meeting rates. Because
an agent interacts with nearby agents, guess that some sort of “local
averaging” occurs independent of the geometry.



For a “test function” g : Agents→ R write

ḡ = n−1
∑
i

gi

||g ||22 = n−1
∑
i

g2
i

E(g , g) = n−1 1
2

∑
i

∑
j 6=i

νij(gj − gi )
2 (the Dirichlet form).

When ḡ = 0 then ||g ||2 measures “global” variability of g whereas
E(g , g) measures “local” variability relative to the underlying geometry.

Proposition (Local smoothness in Leveller)

For normalized meeting rates associated with a r-regular graph; and
initial x̄ = 0,

E
∫ ∞
0

E(X(t),X(t)) dt = 2||x||22. (3)



Model: Pothead.
Initially each agent has a different ‘‘opinion" -- agent i
has opinion i. When i and j meet at time t with direction

i → j, then agent j adopts the current opinion of agent i.

Officially called the voter model (VM). Very well studied. View as
“paradigm example” of a FMIE; can be used to illustrate all 5 of the
“general principles”.

We study

Vi (t) := the set of j who have opinion i at time t.

Note that Vi (t) may be empty, or may be non-empty but not contain i .
The number of different remaining opinions can only decrease with time.



General principle 1. If an agent has only a finite number of states, the
the total number of configurations is finite, so elementary Markov chain
theory tells us qualitative asymptotics.

Here “all agents have opinion i” are the absorbing configurations – the
process must eventually be absorbed in one. A natural quantity of
interest is the consensus time

T voter := min{t : Vi (t) = Agents for some i}.

General principle 2. Time-reversal duality.



Coalescing MC model. Initially each agent has a token – agent i has
token i . At time t each agent i has a (maybe empty) collection Ci (t) of
tokens. When i and j meet at time t with direction i → j , then agent i
gives his tokens to agent j ; that is,

Cj(t+) = Cj(t−) ∪ Ci (t−), Ci (t+) = ∅.

Now {Ci (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the coalescence time

T coal := min{t : Ci (t) = Agents for some i}.

Minor comments. Regarding each non-empty cluster as a particle, each

particle moves as the MC at half-speed (rates νij/2), moving independently

until two particles meet and thereby coalesce.



The duality relationship.
For fixed t,

{Vi (t), i ∈ Agents} d
= {Ci (t), i ∈ Agents}.

In particular T voter d
= T coal.

They are different as processes. For fixed i , note that |Vi (t)| can only
change by ±1, but |Ci (t)| jumps to and from 0.

In figures, time “left-to-right” gives CMC,
time “right-to-left” with reversed arrows gives VM.

Note the time-reversal argument depends on the symmetry assumption
νij = νji of the meeting process.



Schematic – the meeting model on the 8-cycle.
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Random walk (RW) on Zd is a classic topic in mathematical probability.
Can analyze CRW model to deduce, on Zd

m as m→∞ in fixed d ≥ 3

ET voter = ET coal ∼ cdmd = cdn.

Very easy to show directly in the CRW model on complete graph that

ET coal ∼ 2n (Kingman coalescent)

and so
ET voter = ET coal ∼ 2n.

Moral of general principle 2: Sometimes the dual process is easier to
analyze.



There is a different analysis of VM on complete graph, by first
considering only two initial opinions. The process

N(t) = number with first opinion

evolves as the continuous-time MC on states {0, 1, 2, . . . , n} with rates

λk,k+1 = λk,k−1 = k(n−k)
2(n−1) .

Leads to an upper bound on complete graph

ET voter ≤ (4 log 2)n.



General principle 3. One can often get (maybe crude) bounds on the
behavior of a given model on a general geometry in terms of bottleneck
statistics for the rates (νij).
Define κ as the largest constant such that

ν(A,Ac) :=
∑

i∈A,j∈Ac

n−1νij ≥ κ|A|(n − |A|)/(n − 1).

On the complete graph this holds with κ = 1. We can repeat the analysis
above – the process N(t) now moves at least κ times as fast as on the
complete graph, and so

ET voter
n ≤ (4 log 2 + o(1)) n/κ.



General principle 4. For many simple models there is some specific
aspect which is “invariant” in the sense of depending only on n, not on
the geometry.

Already noted for Hot Potato and for Leveller. For Pothead,

mean number opinion changes per agent = n − 1.



Model: Deference

(i) The agents are labelled 1 through n. Agent i initially has opinion i .
(ii) When two agents meet, they adopt the same opinion, the smaller of
the two labels.

Clearly opinion 1 spreads as Pandemic, so the “ultimate”: behavior of
Deference is not a new question. A challenging open problem is what one
can deduce about the geometry (meeting process) from the short term
behavior of Deference.

Easy to give analysis in complete graph model, as a consequence of the
“randomly-shifted logisic” result for Pandemic. Study (X n

1 (t), . . . ,X n
k (t)),

where X n
k (t) is the proportion of the population with opinion k at time t.

Key insight: opinions 1 and 2 combined behave as one infection in
Pandemic, hence as a random time-shift of the logistic curve F .
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So we expect n→∞ limit behavior of the form

((X n
1 (log n+s),X n

2 (log n+s), . . . ,X n
k (log n+s)), −∞ < s <∞)→ (4)

((F (C1+s),F (C2+s)−F (C1+s), , . . . ,F (Ck+s)−F (Ck−1+s)), −∞ < s <∞)

for some random C1 < C2 < . . . < Ck .

We can determine the Cj by the fact that in the initial phase the different
opinions spread independently. It turns out

Cj = log(ξ1 + . . .+ ξj), j ≥ 1 (5)

where (ξi , i ≥ 1) are IID Exponential(1).



The Deference model envisages agents as “slaves to authority”. Here is a
conceptually opposite “slaves to fashion” model, whose analysis is
mathematically surprisingly similar.

Model: Fashionista.
Take a general meeting model. At the times of a rate-λ Poisson process,
a new fashion originates with a uniform random agent, and is
time-stamped. When two agents meet, they each adopt the latest (most
recent time-stamp) fashion.

There must be some equilibrium distribution, for the random partition of
agents into “same fashion”.

For the complete graph geometry, we can copy the analysis of
Deference. Combining all the fashions apparing after a given time, these
behave (essentially) as one infection in Pandemic (over the pandemic
window), hence as a random time-shift of the logistic curve F . So when
we study the vector (X n

k (t),−∞ < k <∞) of proportions of agents
adopting different fashions k , we expect n→∞ limit behavior of the
form
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(X n
k (log n + s), −∞ < k <∞)→ (6)

(F (Ck + s)− F (Ck−1 + s), −∞ < k <∞)

where (Ck , −∞ < k <∞) are the points of some stationary process on
(−∞,∞).

Knowing this form for the n→∞ asymptotics, we can again determine
the distribution of (Ci ) by considering the initial stage of spread of a new
fashion. It turns out that

Ci = log

∑
j≤i

exp(γj)

 = γi + log

∑
k≥1

exp(γi−k − γi )

 . (7)

where γj are the times of a rate-λ Poisson process.



The FMIE models I’ve shown were chosen as representative of the
“mathematical fundamental” ones, but hundreds of others have been
studied, and it’s easy to invent your own model (my student Dan Lanoue
is studying the iPod model). Here’s another direction.

Game-theoretic aspects of FMIE processes

Our FMIE setup rests upon a given matrix (νij) of meeting rates. We
can add an extra layer to the model by taking as basic a given matrix
(cij) of meeting costs. This means that for i and j to meet at rate νij
incurs a cost of cijνij per unit time. Now we can allow agents to choose
meeting rates, either
[reciprocal] i and j agree on a rate νij and share the cost
[unilateral] i can choose a “directed” rate νij but pays all the cost.

One can now consider models of the following kind. Information is spread
at meetings, and there are benefits associated with receiving information.
Agents seek to maximize their payoff = benefit - cost.



Our setup is rather different from what you see in a Game Theory course.

n→∞ agents; rules are symmetric.

allowed strategies parametrized by real θ.

Distinguish one agent ego.

payoff(φ, θ) is payoff to ego when ego chooses φ and all other
agents choose θ.

payoff is “per unit time” in ongoing process.

The Nash equilibrium value θNash is the value of θ for which ego cannot
do better by choosing a different value of φ, and hence is the solution of

d

dφ
payoff(φ, θ)

∣∣∣∣
φ=θ

= 0. (8)

So we don’t use any Game Theory – we just need a formula for
payoff(φ, θ).



Model: Gordon Gecko game
The model’s key feature is rank based rewards – toy model for gossip or
insider trading.

New items of information arrive at times of a rate-1 Poisson process;
each item comes to one random agent.

Information spreads between agents in ways to be described later [there
are many variants], which involve communication costs paid by the
receiver of information, but the common assumption is

The j ’th person to learn an item of information gets reward R( j
n ).

Here R(u), 0 < u ≤ 1 is a decreasing function with

R(1) = 0; 0 < R̄ :=

∫ 1

0

R(u)du <∞.

Note the total reward from each item is
∑n

j=1 R( j
n ) ∼ nR̄. That is, the

average reward per agent per unit time is R̄.



Because average reward per unit time does not depend on the agents’
strategy, the “social optimum” protocol is for agents to communicate
slowly, giving payoff arbitrarily close to R̄. But if agents behave selfishly
then one agent may gain an advantage by paying to obtain information
more quickly, and so we seek to study Nash equilibria for selfish agents.

Instead of taking the geometry as the complete graph or discrete torus
Z2
m, let’s jump to the more interesting “Ma Bell” geometry. That is

The m ×m torus with short and long range interactions



Geometry model. The agents are at the vertices of the m ×m torus.
Each agent i may, at any time, call any of the 4 neighboring agents j (at
cost 1), or call any other agent j at cost cm ≥ 1, and learn all items that
j knows.

Poisson strategy. An agent’s strategy is described by a pair of numbers
(θnear, θfar) = θ:

at rate θnear the agent calls a random neighbor
at rate θfar the agent calls a random non-neighbor.

This model obviously interpolates between the complete graph model
(cm = 1) and the nearest-neighbor model (cm =∞). It turns out the
interesting case is

1� cm � m2.

We have to analyze Pandemic on this geometry, to get a formula for
payoff(φ, θ); then doing the calculus it turns out

θNash
near is order c

−1/2
m and θNash

far is order c−2m .

In particular the Nash cost � c
−1/2
m and the Nash equilibrium is efficient.


