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Talk is somewhat “off-topic” for this meeting. I don’t try to engage
today’s mainstream math probability. Most of my research nowadays
involves toy models only a few steps away from data, with some plausible
story. But for this audience I’m mostly going Old School with just
“intellectual curiosity” problems. And I’m hoping to attract some young
people to engage them.

Random Eulerian circuits

The Nearest Unvisited Vertex walk, and 4X games.

Covering a compact space by growing random balls.

A Markov chain-derived mapping of distributions on compact spaces
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1. Random Eulerian circuits

A rather obvious observation in introductory graph theory is

Lemma

A finite connected undirected graph has at least one spanning tree, that
is a connected edge-subgraph which is a tree.

Euler proved what’s often regarded as “the first theorem in graph theory”.

Theorem

A finite, strongly connected, directed graph which is balanced (each
vertex has in-degree = out-degree) has at least one Eulerian circuit,
that is a tour using each edge exactly once.

.

David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



Within probability theory, there is a large literature on uniform random
spanning trees, because they relate to many other discrete structures –
see Lyons - Peres monograph Probability on Trees and Networks.

In contrast, there is very little literature on uniform random Eulerian
circuits. This is curious because there’s a surprising connection
between the two topics.

In a balanced directed graph, take any spanning tree, with directed edges
toward an arbitrary root. From the root do a walk, at each stage
arbitrarily choosing an unused edge but saving the spanning-tree-edge
until last. This always gives an Eulerian circuit [easy].

True (but not obvious) that with a uniform random spanning tree and
uniform random walk-step choices we get a uniform random Eulerian
circuit.
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Fact: It is quite easy to simulate a uniform random spanning tree (of an
arbitrary finite connected graph). So we can then simulate a uniform
Eulerian circuit on a balanced graph.

Now as a simple example let us consider the discrete torus Zd
N . Replace

each edge by 2 directed edges. So in-degree = out-degree = 2d. Any
Eulerian circuit consists of 2d excursions from the origin.

For d ≥ 3 simple random walk on Zd is transient, which strongly
suggests the following, which is supported by simulation.
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Open problem. Prove (in fixed d ≥ 3) that of the 2d excursions at the
origin, each has length O(1) or Ω(Nd), not of intermediate order (as
N →∞).

I have no idea how one might prove this – can’t do theoretical analysis of
algorithm output.

Take-away message. There is an unexpected connection between
random Eulerian tours and random spanning trees. Known for a long
time, but apparently never exploited.

David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



2a: The Nearest Unvisited Vertex walk on Random Graphs

Consider a connected undirected graph G on n vertices, where the edges
e have positive real lengths `(e). Imagine a robot that can move at
speed 1 along edges. We need a rule for how the robot chooses which
edge to take after reaching a vertex. Most familiar is the “random walk”
rule, choose edge e with probability proportional to `(e) or 1/`(e). One
well-studied aspect of the random walk is the cover time, the time until
every vertex has been visited.

Instead of the usual random walk model, let us consider the nearest
unvisited vertex (NUV) walk

after arriving at a vertex, next move at speed 1 along the path
to the closest unvisited vertex

and continue until every vertex has been visited. Note this is deterministic
and has some length (= time) LNUV (G , v0) where v0 is the initial vertex.

David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



Of course distance d(v , v ′) is shortest path length. In informal discussion
we imagine lengths are scaled so that distance to closest neighbor is order
1, so LNUV must be at least order n.

Natural first question: when is it O(n) rather than larger order?

There is scattered old “algorithms” literature discussing the NUV walk as
heuristics for TSP or as an algorithm for a robot exploring an unknown
environment, but that literature quickly moved on to better algorithms.

I will say some results from my preprint The Nearest Unvisited Vertex
Walk on Random Graphs. Part 2b will explain one motivation.

There is a key starting math observation – implicit but rather obscured in
the old literature. For now, we stay with non-random graphs.
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Consider ball-covering: for r > 0 define N(r) = N(G , r) to be the
minimal size of a set S of vertices such that every vertex is within
distance r from some element of S . In other words, such that the union
over s ∈ S of Ball(s, r) covers the entire graph.

Proposition

(i) N(r) ≤ 1 + LNUV /r , 0 < r <∞.

(ii) LNUV ≤ 2
∫ ∆/2

0
N(r) dr where ∆ = maxv ,w d(v ,w) is the diameter of

the graph.

Note that for continuous spaces, metric entropy implies a notion of
dimension via N(r) ≈ r−dim as r ↓ 0. In our discrete context, if we have
dimension in the sense

N(r) ≈ nr−dim, 1� r � ∆

then the Proposition has informal interpretation that LNUV is always
O(n) when dim > 1.
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Isolating that Proposition as the starting point, we can easily recover the
two classical (1970s) results for non-random graphs.

Corollary

There is a constant A such that, for the complete graph on n arbitrary
points in the area-n square, with Euclidean lengths,

LNUV ≤ An.

Note this implies the well known corresponding result LTSP ≤ An .

Corollary

Let a(n) be the maximum, over all connected n-vertex graphs with edge
lengths and all initial vertices, of the ratio LNUV /LTSP . Then
a(n) = Θ(log n).
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The ball-covering relation is not helpful from the algorithms viewpoint.
But it is useful for some random graph models. In particular, in a model
where we take a unweighted graph and then assign random edge-lengths,
understanding “balls” is precisely the basic issue in first passage
percolation (FPP).

Consider the random graph Gm that is the m ×m grid, that is the
subgraph of the Euclidean lattice Z2, assigned i.i.d. edge-lengths
`(e) > 0. with E`(e) <∞. Because the shortest edge-length at a given
vertex is Ω(1), clearly LNUV is Ω(m2). Using the shape theorem for FPP
on Z2 one can show

Corollary

For the 2-dimensional grid model Gm above, the sequence
(m−2LNUV (Gm), m ≥ 2) is tight.

The same techniques would give O(n) upper bounds in other simple
models of n-vertex random graphs.
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Open problems

Are there general methods (subadditivity or local weak limits don’t
seem to work) to prove existence of a limit c = limn n−1LNUV (Gn)
for simple models?

Evaluate c?

Order of magnitude of var(LNUV ) not clear from our small-scale
simulations – seems n1±ε.

Take-away message. There is an unexpected connection between the
NUV walk and FPP. Does this suggest that the variance problem is
difficult?
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2b: Games people play

I’m interested in probability and graphs; and also games.
Search MathSciNet for “graph and game” in title: get 654.
None are games people actually play.

Are there “graph” games that millions of people do play?

Yes: Go, for instance.

But such traditional board games are closely tied to a fixed graph; I want
games that can be played on a random graph, different every time you
play. Are there any?

Well . . . . . . yes and no.
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4X games

4X (abbreviation of Explore, Expand, Exploit, Exterminate) is a subgenre
of strategy-based computer and board games, and include both
turn-based and real-time strategy titles. The gameplay involves building
an empire. Emphasis is placed upon economic and technological
development, as well as a range of non-military routes to supremacy.
(Wikipedia).

A representative game is Stellaris.

show https://steamdb.info/app/281990/graphs/

show https://stellaris.paradoxwikis.com/Category:Game concepts
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4X games are very complicated in detail. Much over-simplifying, let me
invent a simple game which abstracts the common elements of the initial
“Explore, Expand” phases, as follows.

My simple game. Copy the background setting of the NUV walk. There
is a connected undirected graph G on n vertices, where the edges e have
positive real lengths `(e). You have a unit that you can move at speed 1
along edges. But you only see a neighborhood of the vertices that you
have already visited. The “neighborhood” is defined so that you could (if
you choose) implement the NUV walk. Make a game with k players,
each with a unit moving simultaneously. A vertex you visit becomes part
of your empire; other players cannot visit.

Easy fact: if at least one player is not completely stupid, this simple
game will end with the vertices partitioned into the connected empires of
the different players.

Goal: form the largest empire.
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The graph is different every time you play, a realization of some unknown
probability distribution on graphs.

(very vague) Open Problem: What is a good strategy?

aggressive: move away from starting vertex in some direction until
meeting an opponent, then attempt to block.

defensive: colonize a growing ball around your starting vertex.

NUV: seems somewhat between.

Intuitively, the best strategy depends on connectivity – for a locally
tree-like graph with large visible neighborhood, “aggressive” is clearly
better. Fun student project, in progress.

Take-away message? Clearly not do-able as theorem-proof
mathematics, but good to “search away from the streetlight” and engage
actual 21st century activity.
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Topics 3 and 4

Write (S , d) for a compact metric space and P(S) for the space of
probability measures on S , with the weak topology. I want to study
processes that can be defined on any S and be parametrized by any
θ ∈ P(S). One standard example is the i.i.d. empirical process (usually
studied in greater generality). Are there other interesting examples?

One reason for studying processes defined on every S is that one can seek
both general results and also sharper results for any given S – providing
much scope for collaboration with students.

I will discuss two unrelated such processes. The first has been studied (a
little) in Rd , the second is apparently novel. Can you think of any others?

David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



3. A random coverage problem

Details in the arXiv preprint

Covering a compact space by fixed-radius or growing random balls .

We have general results (not deep); much scope for more precise analysis
on particular S .
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Consider a compact metric space (S , d), a probability measure θ on S ,
but now introduce two rates 0 < λ <∞ and 0 < v <∞. Write
0 < τ1 < τ2 < . . . for the times of a rate-λ Poisson process, and write
σ1, σ2, . . . for i.i.d. random points of S from distribution θ. The verbal
description

seeds arrive at times of a Poisson process at i.i.d. random posi-
tions, and then create balls whose radius grows at rate v

is formalized as the set-valued growth process

X (t) := ∪i :τi≤t ball (σi , v(t − τi )). (1)

We study the cover time

C := min{t : X (t) = S}

which is finite because Eτ1 = 1/λ and so (for any θ)

1/λ ≤ EC ≤ 1/λ+ ∆/v (2)

where ∆ is the diameter of S .

David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



We can “standardize” the model by choosing time and distance units to
make λ = v = 1. This is “without loss of generality” as regards explicit
inequalities, though does affects asymptotics for a sequence Sn. For the
standardized model we can define

χ(S) = min
θ

EθC

which is just a number associated with S . One open problem would be
to systematically compare with other numbers associated with compact
spaces S . Another open problem is that there is no canonical notion of
uniform distribution on S ; to what extent can the minimizing θ play a
role as proxy for uniform?

So what is done in the preprint? Because S is compact we have
ball-covering numbers

N(r) := minimum number of radius r balls that cover S

which are finite. It’s natural to try to relate the one number χ(S) to the
function r → N(r).
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It is not hard to find some first general upper and lower bounds for χ(S)
in the standardized model.

First, by considering the uniform distribution θr on the set of cov(r)
points, we find (cf. coupon-collector)

χ(S) ≤ min
r>0

[r + N(r) · (1 + log N(r))].

Second, some θ attains χ(S), so consider the seeds of that process as a
set to upper bound cov(r). We find

χ(S) ≥ sup{r : N(3r) > 9r}.
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How good are these general bounds? There is a notion I’ll call rough
dimension: A space like [0, L]d has rough dimension d characterized by

N(r) � (L/r)d for r << L.

Here the general lower and upper bounds, for such a space, are of orders

L
d

d+1 and L
d

d+1 log L .

For the actual torus [0, L]d we know sharp asymptotics as L→∞ as part
of extensive historical “applied probability” work on coverage processes in
Euclidean space.

Open problem: Study infinite-dimensional examples.

Take-away message?. This particular model is perhaps not well
motivated, but “proof of concept” that one can devise non-trivial
processes that make sense on arbitrary compact spaces.
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4. A Markov chain and a mapping P(S)→ P(S)

Take a pair (j , k) with k ≥ 2 and 1 ≤ j ≤ k . For any probability
distribution θ ∈ P(S), define a Markov chain on compact S by:

from state s, take k i.i.d. (θ) samples, and jump to the j ’th closest.

By considering the natural coupling, it is not hard to prove (a good
homework problem in a course discussing coupling?) that

Theorem

Every such chain converges in distribution (and variation distance) to
some unique stationary distribution.

Comment: Model apparently not studied. We mentally envisage S and
θ as continuous, but a metric space might have only finitely many points.
For this and other reasons, we explicitly specify “break ties uniform
randomly”. If ties are possible, the chain may not be Feller.
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Take a pair (j , k) with k ≥ 2 and 1 ≤ j ≤ k . For any probability
distribution θ ∈ P(S), define a Markov chain on S by:

from state s, take k i.i.d. (θ) samples, and jump to the j ’th closest.

—————————————————————————–

Call the stationary distribution πj,k(θ). This defines a mapping
πj,k : P(S)→ P(S). What happens when we iterate this mapping? In
particular, what are the fixed points of this mapping?

Our original motivation: Fixed points would have a kind of
“self-similarity under sampling” property and might provide interesting
examples of specific non-uniform distributions on compact spaces S .
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[2021 work with undergraduates Madelyn Cruz and Shi Feng: seeking
more collaborators – can share extensive working notes]

The coupling proof tells us nothing explicit about the relation between θ
and πj,k(θ). By considering one step of the stationary chain we have, for
π = πj,k(θ)

θk(A) ≤ π(A) ≤ kθ(A), A ⊆ S

and so π and θ are mutually absolutely continuous.

We study the iterative process which iterates the map
πj,k : P(S)→ P(S). This does not have a simple “process”
interpretation. And this project is maybe crazy because we don’t know
explicitly what the map πj,k actually is. However, for any given S and
(j , k) there is an explicit equation determining fixed points θ so (in
principle) one can try to solve to find all the fixed points.

The bottom line is:

Simulations and conjectures reveal very counter-intuitive behavior.

We have only some fragments of rigorous proofs.

Proving anything substantial seems beyond the authors’ capabilities
. . . . . .

so the remainder of this talk is also rather fragmentary.
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First minor observations

Consider φ ∈ P(S) which is invariant (that is, a fixed point) under πj,k
for given (j , k). If the support of φ is smaller than S then it is more
natural to consider φ as an invariant measure on the support. So our
basic question can better be phrased as

Given S and (j , k), what are all the invariant measures with full
support on S?

On every compact metric space S we have an obvious “preservation of
symmetry” result for the action of πj,k .

Lemma

If θ ∈ P(S) is invariant under an isometry ι of S then πj,k(θ) is also
invariant under ι.
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Fragment 1: Fixed points existing by symmetry
In some cases there are distributions φ ∈ P(S) which are invariant (that
is, fixed points) “by symmetry” for all πj,k . In particular
(i) The distribution δs degenerate at one point s;
(ii) The uniform two-point distribution δs1,s2 = 1

2 (δs1 + δs2 );
(iii) The Haar probability measure on a compact group S with a metric
invariant under the group action.
(iv) On a finite space S , a sufficient condition for the uniform distribution
to be invariant is that S is transitive, that is if for each pair s, s ′ there is
an isometry taking s to s ′. This is equivalent to the finite case of Haar
measure. But for finite S a weaker condition suffices, because all that
matters is the rank matrix – see later.

In those cases the distribution is invariant for all πj,k . So the question
becomes:

for a particular S and (j , k), are there invariant distributions with full
support, other than those “forced by symmetry” as above?
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Fragment 2: The case S = {a, b} is not trivial

One might suppose that the case of a 2-element set S = {a, b} would be
trivial, but it is not. Parametrizing a distribution θ on S by p := θ(a), we
view the mapping πj,k : P(S)→ P(S) as a mapping πj,k : [0, 1]→ [0, 1]
defined as follows. In the associated 2-state Markov chain, the transition
probabilities are

prob(a→ b) = P(Bin(k , p) < j); prob(b → a) = P(Bin(k, p) > k − j)

for Binomial random variables. From the stationary distribution we find

πj,k(p) =
P(Bin(k , p) > k − j)

P(Bin(k , p) > k − j) + P(Bin(k , p) < j)
.

So a fixed point is a solution of the equation

πj,k(p) = p. (3)

We know by symmetry that p = 0, p = 1/2, p = 1 are fixed points; are
there others? By symmetry it is enough to consider 0 < p < 1/2.
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We have not tried to find solutions analytically, but we will show results
of numerical calculations of the iterates πn

j,k(p), n = 1, 2, 3, . . .. For a
given (k, j), we observe three possible types of qualitative behavior:

1 πn
j,k(p)→ 0 as n→∞, for all 0 < p < 1/2.

2 πn
j,k(p)→ 1/2 as n→∞, for all 0 < p < 1/2.

3 There exists a critical value pcrit ∈ (0, 1/2) such that
pcrit is invariant : πj,k(pcrit) = pcrit

and πn
j,k(p)→ 0 as n→∞, for all 0 < p < pcrit

and πn
j,k(p)→ 1/2 as n→∞, for all pcrit < p < 1/2.

For us, (3) is the interesting case: there is a non-obvious fixed point, but
it is unstable. It first arises with k = 5, j = 4, as shown in the Figure. We
see the critical value pcrit = 0.17267....
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Figure: S = {a, b}; k = 5, j = 4. Iterates n = 0, 1, 2, . . . , 10. Left panel shows
type (3) behavior, Right panel shows the unstable fixed point at 0.17267.

Maybe excessive to claim 0.17267... is interesting but encouraging that
there exist non-obvious fixed points (for certain (j , k)).
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Table: S = {a, b} and 2 ≤ k ≤ 9. The values of j with each type of behavior,
and (critical values) of critical points.

k (0←) (critical) (→ 1/2)
2 1 2
3 [1, 2] 3
4 [1− 3] 4
5 [1− 3] 4 (0.17267) 5
6 [1− 4] 5 (0.09558) 6
7 [1− 5] 6 (0.06276) 7
8 [1− 5] 6 (0.26405) [7, 8]
9 [1− 6] 7 (0.18884); 8 (0.03364) 9

The Table shows the type of behavior – types (i) or (ii) or (iii) above – for
all pairs (j , k) with k ≤ 9. One take-away message is that for S = {a, b}
there exist some (j , k) for which πj,k has fixed points in addition to those
existing by symmetry, but these fixed points are unstable.

Of course the 2-point space may be very special. What properties extend
to other S? Let’s look at the unit interval.
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Fragment 3: The case S = [0, 1]

We have studied, by simulation, iterates starting from the uniform
distribution U[0, 1]. Because U[0, 1] is symmetric about 1/2, all iterates
must be symmetric about 1/2.
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The Figure above shows the case k = 4 and the first few iterates of
U[0, 1] for j = 1, 2, 3. Note that, here and throughout, the vertical scale
and the numbers of iterations shown may not be the same from one
panel to the next. What we see strongly suggests that the iterates are
converging, quickly for j = 1 but rather slowly for j = 3, toward the
degenerate distribution δ1/2. This is strongly supported by examining the
standard deviations of the iterates, shown on log scale in the Figure
below, and suggesting a scaling limit distribution.

for which the iterates converge to �1/2 (others are similar), a remarkably
precise geometric decrease in the s.d. as a function of the number of iter-
ations, after the first few iterations. This strongly suggests a certain form
of asymptotic self-similarity under scaling: that there exists a mean-zero
distribution, say dist(⇠j,k), on R and a constant 0 < cj,k < 1 such that
⇡j,k[dist(⇠j,k)] = dist(cj,k⇠j,k). And that dist(⇠j,k) is the scaling limit of the
iterates, and cj,k the geometric rate constant. Figure 10 shows renormalized
(by mean and s.d.) iterates approximating dist(⇠2,4).

0.01

0.02

0.05

0.1

0.2

5 10 15 20 25 30

k=4,j=1 k=4,j=2

k=4,j=3

k=6,j=4

Number of iterations

s.d. of iterate
(log scale)

Figure 9: The geometric decrease in s.d. for some U [0, 1] models. The lines
pass through the actual simulated values, without being fitted.

One can imagine analogous scaling limits near 0 and 1 for pairs (j, k) for
which the iterates converge to �0,1.

21
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In contrast, the Figure for j = 4 strongly suggests that the iterates are
converging quickly toward the mixture δ0,1. These two “extreme”
behaviors – convergence to δ1/2 for smaller j or to δ0,1 for larger j –
appear to hold for all k. The Table shows which behavior appears to hold
in simulations for each pair (j , k) with k ≤ 9.

Table: Conjectured limits of iterates from U[0, 1]; the values of j with each
type of behavior.

k → δ1/2 → δ0,1

2 1 2
3 [1, 2] 3
4 [1− 3] 4
5 [1− 4] 5
6 [1− 4] [5, 6]
7 [1− 5] [6, 7]
8 [1− 6] [7, 8]
9 [1− 7(?)] [8, 9]
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As mentioned earlier, one can always write down an equation for a fixed
point. On [0, 1] a density function f (t) is a fixed point for πj,k iff

we use the case where j = 2 and k = 4. Now we calculate the exact standard deviation from
f0(x) = 1. The exact function of f1(x) and f2(x) are shown in (27) and (28).

std(f0(x)) =

sZ 1

0
f0(x) · (x� 1

2
)2 dx = 0.2886751346 (52)

std(f1(x)) = 0.2439750182 (53)

std(f2(x)) = 0.1941148097 (54)

And

std(f1(x))

std(f0(x))
=

0.2439750182

0.2886751346
= 0.8451542546 (55)

std(f2(x))

std(f1(x))
=

0.1941148097

0.2439750182
= 0.7956339593 (56)

10 Continuous invariant distribution for all j and k

Theorem 10.1. There is no invariant distribution if j = k or 1
2 ·

�
k

j�1,1,k�j

�
· (j�1)j�1·(k�j)k�j

(k�1)k�1  1

Proof. According to (26), invariant distribution must satisfies the following equation for all t in
[0, 1]
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= a(t) (57)

We focus on the case where t = 0. When k = j,

a(0) =

✓
k

j � 1, 1, k � j

◆
·
"Z 1

2

0
fn(y) · (

Z 2y

0
fn(x) dx)j�1 · (

Z 1

2y
fn(x) dx)k�j dy +

1

2

#
(58)
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Shi Feng (undergrad) studied this by careful and elaborate calculus,
initially in the case j = 2, k = 2. From the “t = 0” identity one can
argue to a contradiction, and this can be made into a rigorous proof of

Theorem

There are no π2,2-invariant distributions on [0, 1] other than those of the
form δs or δs1,s2 .

The argument extends to some, but not all, pairs (j , k).
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Simulations of the iterative process on [0, 1] starting with a
non-uniform distribution show analogous behavior: either convergence
to δ0,1 or to δs for some s depending on the initial distribution.

At a rigorous level, the key open questions for S = [0, 1] are

Does there exist (for any (j , k)) any invariant distribution with full
support?

Does there exist (for any (j , k)) any distribution other than δs or δ0,1

that occurs as a limit of iterates from some initial distribution with
full support?

We suspect the answer to each is “no”. Of course, “no” to the second
question would imply “no” to the first question.
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Fragment 5: Finite S .

A finite metric space can be represented by the matrix D of distances
d(i , j). By taking all the non-zero distances to be between 1 and 2, the
triangle inequality is automatically satisfied. Consider the example of a
5-element space with distance matrix

D =




0 1.714 1.341 1.656 1.74
1.714 0 1.298 1.794 1.03
1.341 1.298 0 1.715 1.844
1.656 1.794 1.715 0 1.524
1.74 1.03 1.844 1.524 0




What matters for our purposes, assuming as in this example that all
non-zero distances are distinct, is the rank matrix R, where r(i , j) = 4
means that d(i , j) is the 4’th smallest of {d(i , 1), d(i , 2), . . . , d(i , |S |)}.
For the distance matrix D above, the rank matrix is

R =




1 4 2 3 5
4 1 3 5 2
3 2 1 4 5
3 5 4 1 2
4 2 5 3 1




David Aldous From Euler to Stellaris: Some of my favorite open problems in probability



By numerical calculation, for π1,2 on this space there is an invariant
distribution

θ ≈ (0.149 0.188 0.203 0.298 0.162)

for which the transition matrix is

K ≈




0.276 0.097 0.304 0.297 0.026
0.111 0.341 0.222 0.089 0.237
0.159 0.265 0.365 0.185 0.026
0.139 0.036 0.118 0.507 0.201
0.083 0.28 0.041 0.298 0.298




This example was found (by Shi Feng) by simulating random distance
matrices D, obtaining the rank matrix R, and then numerically solving
for invariant distributions θ until finding a solution with full support.
Note this involved non-linear equations: we need to solve θK = θ but
here K depends on θ, for instance for π1,2

k(i , i) = 1− (1− θ(i))2

if r(i , j) = 5 then k(i , j) = θ2(j).

Note also that for |S | = 5 there are only a finite number of possible rank
matrices R, so this counter-example is not like a counter-example
depending on a real parameter taking a specific value.
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State of this project

Disappointing: we have not found interesting distributions on particular
S .

Instead we have a range of open problems about ways in which the
behavior is non-interesting.

For which S and (j , k) are there invariant distributions other than
those “forced by symmetry”?

True or false: For every S and every (j , k), every invariant
distribution except δs and δs1,s2 is unstable (to a generic
perturbation).

True or false: For every S , the iterative process for π1,2 from almost
all initial φ ∈ P(S) converges to some δs (depending on φ).

If not true in general, is it true for S ⊂ Rd?
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