
Flows through random networks

David Aldous – April 2006

Title brings to mind many somewhat-related

topics; is there a core theory?

• General setup

• 4 specific models/problems under study
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Graph: has vertices and edges

Network: a graph with some context-dependent

extra structure. We consider toy models of

networks (transportation/communication)

whose purpose is to move stuff/information

from one place to another.

Assume edges have lengths or costs. Could

take the default “edge-length = 1” but taking

generic real lengths is more convenient because

it gives unique shortest paths.

Study deterministic flows (“fluid”, as in the

max-flow min-cut theorem) with simultaneous

flows between different source-destination pairs

(multicommodity flow). Take simplest case:

constant flow between each source-destination

pair.

Given some notion of the cost of a flow (e.g.

route-length) and some constraints (e.g. edge

capacities) we seek the minimum-cost routing.
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Deterministic algorithmic problems like this are

studied as part of network algorithms; as

multicommodity flow problems they are NP-

hard in general. We take statistical physics

viewpoint of modeling the network (topology,

costs, constraints) as random and studying prop-

erties of optimal solution. We take transporta-

tion measure uniform on all (source,destination)

pairs, so there’s one parameter

ρ = normalized traffic demand

normalized with n so that flow volume across

typical edge is order 1.

Seek to study (in different models on n-vertex

networks) the n → ∞ limit curves giving some

quantitative measure of network performance

vs ρ.
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1. Optimal flows through the disordered

lattice. (Preprint).

Order-of-magnitude calculation on N×N grid. Send

volume ρN between each (source,destination)

pair. Average flow volume f̄ across edges is

(N2 ×N2) × ρN ×N ≈ f̄ ×N2

To make f̄ be order 1 we take

ρN = ρN−3

Open Problem. Take i.i.d. capacities (cap(e))

with 0 < c− ≤ cap(e) ≤ c+ < ∞. Obvious: a

feasible flow with normalized demand ρ exists

for ρ < ρ− and doesn’t exist for ρ > ρ+. Prove

there is a constant ρ∗ depending on distribu-

tion of cap(e) such that as N → ∞

P (∃ feasible flow, norm. demand ρ) → 1 , ρ < ρ∗

→ 0 , ρ > ρ∗.
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Instead of focussing on capacities, let’s focus

on congestion. In a network without conges-

tion, the cost (to system; all users combined)

of a flow of volume f(e) scales linearly with

f(e). With congestion, extra users impose ex-

tra costs on other users as well as on them-

selves. So cost scales super-linearly with f(e).
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Model: The cost of a flow f = (f(e)) in an

environment c = (c(e)) is

cost(N)(f , c) =
∑

e
c(e)f2(e).

Theorem 1. N ×N torus (for simplicity)

Large constant bound B on edge-capacity (for

simplicity)

i.i.d. cost-factors c(e) with

0 < c− ≤ c(e) ≤ c+ <∞.

Let ΓN be minimum cost of flow with normal-

ized intensity ρ = 1. Then

N−2EΓN → constant(B,dist(c(e))).

Comments. Methodology is to compare with

flows across (boundary-to-boundary) M × M

squares. Should work to prove existence of

limits in other “optimal flows on N × N grid”

models. But details are surprisingly hard to

prove.
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2. Cost-volume relationships for flows through

a disordered network. (Preprint).

Consider a network with

• M layers

• N vertices per layer

• directed edges upwards from one layer to next

• edges between successive layers are placed

randomly subject to each vertex having

in-degree = out-degree = 2.

Within this model we’ll consider a “special”

and a “general” problem.
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Special problem. Suppose
• edges have capacity = 1.
• retain each edge with probability p, delete with prob-
ability 1 − p.
Study maximum flow from bottom to top layers; same
as maximum number of edge-disjoint paths from bot-
tom to top layers. Clearly for p = 1 the maximum flow
= 2N , so for general p we consider the relative flow

FN,M(p) = 1
2N

× (max flow through network).

We anticipate a limit function

EFN,N(p) → v∗(p) as n→ ∞.

Cavity method tells you how to write down an equation

whose solution determines v∗(p).

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

normalized flow  v (p)*

8



Cavity method from statistical physics pro-

vides a heuristic for obtaining solutions of var-

ious combinatorial optimization problems over

random networks which are locally tree-like.

This work is first explicit application to flow

problems.

General problem. Same underlying random

graph model: in-degree = out-degree = 2.

• On each edge there is a cost-volume func-

tion:

φ(v) = cost-per-unit flow when flow volume = v.

• The functions φ are i.i.d. over edges.

The cavity method lets us calculate (via nu-

merical solution of an equation) the network

cost-volume function ψ(·) = normalized total

cost of flow when normalized total volume = v.
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Here we take a particular form (long curve) for cost-
volume function on an edge. This arises from a road-
traffic model in which speed is decreasing linear function
of density, cost = 1/(speed).

Make maximum volume be i.i.d. Exponential (1) over

edges. Short curve shows the network cost-volume func-

tion, with maximum volume (congestion) around 0.34.
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Models 3 and 4 are based on

The mean-field model of distance

Take complete graph on n vertices. Let each of the
(

n
2

)

edges (i, j) have random length, independently, with

Exponential (mean n) distribution. This model has sev-
eral names:
• Complete graph with random edge weights
• random link model
• stochastic mean-field model of distance.
Within this model one can study classical combinato-
rial optimization problems such as TSP and MST. The
length Ln of optimal solutions will scale as n.

Here is a systematic way to study many problems within
the mean-field model. From a typical vertex, the dis-
tances

0 < ξn,1 < ξn,2 < . . . < ξn,n−1

to other vertices, in increasing order, have a n→ ∞ limit
in distribution

0 < ξ1 < ξ2 < ξ3 < . . .

which is the Poisson process of rate 1 on (0,∞).

In a certain sense (local weak convergence), the model

has a n → ∞ limit which we call the PWIT (Poisson

weighted infinite tree).
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3. Edge-flow distribution uder shortest-

path routing. (Aldous - Bhamidi in progress).

In mean-field model of distance, easy to see

that distance D(i, j) between specified vertices

i, j satisfies

D(i, j) = logn±O(1) in prob.

Send flow of volume 1/n between each pair

(i, j) along shortest path. Each edge e gets

some total flow Fn(e). What is the distribution

of edge-flows (Fn(e) : e an edge)?

Call edges of length O(1) “short”. Easy to see

intuitively that short edges should get flow of

order logn.
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Theorem 1 As n→ ∞ for fixed z > 0,

1
n#{e : Fn(e) > z logn} →L1

G(z) :=
∫ ∞

0
P (W1W2e

−u > z) du

whereW1 andW2 are independent Exponential(1).

In particular

1
nE#{e : Fn(e) > z logn} → G(z).

Proof is intricate “bare-hands” calculations,

exploiting i.i.d. Exponential edge-lengths.

Here is a heuristic argument for why the limit

is this particular function G(z).

Background fact: the process

N(t) = number of vertices within

distance t of a specified vertex

is (exactly) the Yule process in the PWIT, and

(approximately) the Yule process in the finite-n

model.
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Consider a short edge e, and suppose there

are W ′(τ) vertices within a fixed large distance

τ of one end of the edge, and W ′′(τ) ver-

tices within distance τ of the other end. A

shortest-length path between distant vertices

which passes through e must enter and exit

the region above via some pair of vertices in

the sets above, and there are W ′(τ)W ′′(τ) such

pairs. The dependence on the length L is more

subtle. By the Yule process approximation, the

number of vertices within distance r of an ini-

tial vertex grows as er, and it turns out that

the flow through e depends on L as exp(−L)

because of the availability of alternate possi-

ble shortest paths. So flow through e should

be proportional to W ′(τ)W ′′(τ) exp(−L). But

(again by the Yule process approximation) for

large τ the r.v. e−τW ′(τ) has approximately the

Exponential(1) distribution W1. And as n→ ∞

the normalized distribution n−1#{e : Le ∈ ·} of

all edge-lengths converges to the σ-finite dis-

tribution of U∞. This is heuristically how the

limit distribution W1W2 exp(−U∞) arises.
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4. “Price of anarchy” in mean-field model

of distance. (back-of-envelope, last week).

In previous model, suppose each edge e has an

owner who sets a price-per-unit-volume π(e)

for using edge e. So from a customer’s view-

point the cost of using edge e is

length(e) + π(e)

and customers choose minimum-cost routes.

The owners adjust prices to maximize their in-

come

π(e) × (volume of flow across e).

Expect equilibrium prices.
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Recall in previous setting (no prices) the mean

cost of routing (uniform source - destination)

is (1 + o(1)) logn. In the current setting we

heuristically have a striking result in n → ∞

limit

• for each edge e′ we have π(e′) → e =

2.718 . . .

• mean cost = (e+ o(1)) logn.

Key idea: Difference between cost of minimum-

cost route and second-minimum-cost route has

limit distribution which is robust (up to scaling

constants) to imposing random prices.
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