Take integer parameters (T, N). Take discrete state space $\{-N,-N+$ $1, \ldots, N-1, N\}$. We will define a discrete time process $\left(X_{s}, s=0,1,2, \ldots, T\right)$ which is a martingale and a time-inhomogeneous Markov chain. The process has

$$
\begin{equation*}
X(0)=0 ; \quad X(T)=N \text { or }-N . \tag{1}
\end{equation*}
$$

The process is designed to be the maximum entropy process satisfying (1) and the martingale property.

We can define the transition probabilities $p_{s}(i, j)=P\left(X_{s+1}=j \mid X_{s}=i\right)$ by backwards induction. Clearly for $s=T-1$ we must have

$$
p_{T-1}(i, N)=\frac{i+N}{2 N}, \quad p_{T-1}(i,-N)=\frac{N-i}{2 N} .
$$

Define

$$
e_{T-1}(i)=-\frac{i+N}{2 N} \log \frac{i+N}{2 N}-\frac{N-i}{2 N} \log \frac{N-i}{2 N}
$$

that is the entropy of the distribution $p_{T-1}(i, \cdot)$.
Now inductively for $s=T-2, T-3, \ldots, 0$, for each i we define $p_{s}(i, \cdot)$ as the distribution $q(\cdot)$ on $[-N, N]$ which maximizes

$$
\begin{equation*}
-\sum_{j} q(j) \log q(j)+\sum_{j} q(j) e_{s+1}(j) \tag{2}
\end{equation*}
$$

subject to having mean $=i$, and let $e_{s}(i)$ be the corresponding maximized value of (2). So this construction inductively specifies the maximum entropy process, starting at state i at time s, satisfying (1) and the martingale property.

Rather than try to study this process $\left(X_{s}, t=0,1,2, \ldots, T\right)$ for fixed (T, N), let us consider the natural rescaling

$$
X_{t}^{*}=N^{-1} X_{t T}
$$

so that the time interval becomes $[0,1]$ and the range becomes $[-1,1]$. Intutitively, if we take limits as $T, N \rightarrow \infty$ in some appropriate way we should get a limit process - or perhaps a one-parameter family of processes - which will be time-inhomogeneous martingale diffusions, and therefore specified by the variance rate $\sigma^{2}(t, x)$.

Can we calculate $\sigma^{2}(t, x)$ heuristically? Copying the argument above, there should be some function $e(t, x)$ representing "normalized entropy for the process started at position x at time t " and we expect some PDE for the function $e=e(t, x)$ and an expression for the function σ^{2} in terms of the function e.

Below I give a heuristic argument that the PDE is

$$
\begin{equation*}
e_{t}=\frac{1}{2} \log \left(-e_{x x}\right) \tag{3}
\end{equation*}
$$

with the obvious boundary conditions

$$
e(t, \pm 1)=0,0 \leq t<1 ; \quad e(1, x)=0,-1<x<1 ;
$$

and that

$$
\begin{equation*}
\sigma^{2}(t, x)=\frac{-1}{e_{x x}(t, x)} \tag{4}
\end{equation*}
$$

Misha: do you believe this is the right PDE? Can you solve it? have you seen anything similar?

Fix large K and consider $N \rightarrow \infty$. We expect the entropy function $e_{s}(i)$ to scale, for fixed $0 \leq s \leq K-1$, as

$$
\begin{equation*}
e_{s}(i) \approx e_{K}(s, i / N)+(K-s) \log N \tag{5}
\end{equation*}
$$

for some function $e_{K}(s, x),-1 \leq x \leq 1$. And we expect the step distribution $p_{s}(i, \cdot)$ to scale as

$$
p_{s}(i, \cdot) \approx \operatorname{Normal}\left(i, N^{2} \sigma_{K}^{2}(s, i / N)\right)
$$

for some function $\sigma_{K}^{2}(s, x),-1 \leq x \leq 1$. Now (2) says that $\sigma_{K}^{2}(s, x)$ is the value of σ^{2} that maximizes

$$
\begin{equation*}
\operatorname{entropy}(N Z)+E e_{s+1}(x N+N Z) \tag{6}
\end{equation*}
$$

where $Z={ }_{d} \operatorname{Normal}\left(0, \sigma^{2}\right)$. To calculate (6), the $\operatorname{Normal}\left(0, \sigma^{2}\right)$ density $f_{\sigma}(u)$ has

$$
-\log f_{\sigma}(u)=\log (2 \pi)+\log \sigma+\frac{x^{2}}{2 \sigma^{2}}
$$

and therefore has entropy $c+\log \sigma$ for $c=\log (2 \pi)+\frac{1}{2}$. So the first term in (6) is $c+\log N+\log \sigma$. Next, use (5) to write the second term of (6) as

$$
(K-s-1) \log N+E e_{K}(s+1, x+Z) \approx(K-s-1) \log N+e_{K}(s+1, x)+\frac{\sigma^{2}}{2} e_{K}^{\prime \prime}(s+1, x)
$$

where $e_{K}^{\prime \prime}$ is second derivative w.r.t. x. So the quantity (6) is

$$
c+(K-s) \log N+e_{K}(s+1, x)+\log \sigma+\frac{\sigma^{2}}{2} e_{K}^{\prime \prime}(s+1, x) .
$$

This is maximized by

$$
\begin{equation*}
\sigma_{K}^{2}(s, x)=\frac{-1}{e_{K}^{\prime \prime}(s+1, x)} \tag{7}
\end{equation*}
$$

and the maximized value is

$$
c-\frac{1}{2}+(K-s) \log N+e_{K}(s+1, x)-\frac{1}{2} \log \left(-e_{K}^{\prime \prime}(s+1, x)\right) .
$$

This maximized value is, by definition, supposed to equal $e_{s}(x N)$, so from (5)

$$
e_{K}(s, x) \approx c-\frac{1}{2}+e_{K}(s+1, x)-\frac{1}{2} \log \left(-e_{K}^{\prime \prime}(s+1, x)\right) .
$$

To study what happens as $K \rightarrow \infty$, we look for a solution of the form

$$
e_{K}(s, x) \approx(K-s)\left(c-\frac{1}{2}-a_{K}\right)+K f(s / K, x)
$$

for some function $f(t, x)$ and some constants a_{K}. Setting $t=s / K$ this becomes

$$
K\left(f(t, x)-f\left(t+\frac{1}{K}, x\right)\right)+a_{K}=-\frac{1}{2} \log \left(-K f_{x x}(t, x)\right)
$$

So set $a_{K}=-\frac{1}{2} \log K$ to get

$$
K\left(f(t, x)-f\left(t+\frac{1}{K}, x\right)\right)=-\frac{1}{2} \log \left(-f_{x x}(t, x)\right) .
$$

This leads to (3), and (7) leads to (4).

