
Take integer parameters (T,N). Take discrete state space {−N,−N +
1, . . . , N−1, N}. We will define a discrete time process (Xs, s = 0, 1, 2, . . . , T )
which is a martingale and a time-inhomogeneous Markov chain. The process
has

X(0) = 0; X(T ) = N or −N. (1)

The process is designed to be the maximum entropy process satisfying (1)
and the martingale property.

We can define the transition probabilities ps(i, j) = P (Xs+1 = j|Xs = i)
by backwards induction. Clearly for s = T − 1 we must have

pT−1(i,N) = i+N
2N , pT−1(i,−N) = N−i

2N .

Define
eT−1(i) = − i+N

2N log i+N
2N −

N−i
2N log N−i

2N

that is the entropy of the distribution pT−1(i, ·).
Now inductively for s = T − 2, T − 3, . . . , 0, for each i we define ps(i, ·)

as the distribution q(·) on [−N,N ] which maximizes

−
∑
j

q(j) log q(j) +
∑
j

q(j)es+1(j) (2)

subject to having mean = i, and let es(i) be the corresponding maximized
value of (2). So this construction inductively specifies the maximum entropy
process, starting at state i at time s, satisfying (1) and the martingale
property.

Rather than try to study this process (Xs, t = 0, 1, 2, . . . , T ) for fixed
(T,N), let us consider the natural rescaling

X∗t = N−1XtT

so that the time interval becomes [0, 1] and the range becomes [−1, 1]. Intu-
titively, if we take limits as T,N → ∞ in some appropriate way we should
get a limit process – or perhaps a one-parameter family of processes – which
will be time-inhomogeneous martingale diffusions, and therefore specified by
the variance rate σ2(t, x).

Can we calculate σ2(t, x) heuristically? Copying the argument above,
there should be some function e(t, x) representing “normalized entropy for
the process started at position x at time t” and we expect some PDE for
the function e = e(t, x) and an expression for the function σ2 in terms of
the function e.
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Below I give a heuristic argument that the PDE is

et = 1
2 log(−exx) (3)

with the obvious boundary conditions

e(t,±1) = 0, 0 ≤ t < 1; e(1, x) = 0,−1 < x < 1;

and that

σ2(t, x) =
−1

exx(t, x)
(4)

Misha: do you believe this is the right PDE? Can you solve it?
have you seen anything similar?

Fix large K and consider N →∞. We expect the entropy function es(i)
to scale, for fixed 0 ≤ s ≤ K − 1, as

es(i) ≈ eK(s, i/N) + (K − s) logN (5)

for some function eK(s, x), −1 ≤ x ≤ 1. And we expect the step distribution
ps(i, ·) to scale as

ps(i, ·) ≈ Normal(i,N2σ2K(s, i/N))

for some function σ2K(s, x), −1 ≤ x ≤ 1. Now (2) says that σ2K(s, x) is the
value of σ2 that maximizes

entropy(NZ) + Ees+1(xN +NZ) (6)

where Z =d Normal(0, σ2). To calculate (6), the Normal(0, σ2) density fσ(u)
has

− log fσ(u) = log(2π) + log σ + x2

2σ2

and therefore has entropy c+ log σ for c = log(2π) + 1
2 . So the first term in

(6) is c+ logN + log σ. Next, use (5) to write the second term of (6) as

(K−s−1) logN+EeK(s+1, x+Z) ≈ (K−s−1) logN+eK(s+1, x)+σ2

2 e
′′
K(s+1, x)

where e′′K is second derivative w.r.t. x. So the quantity (6) is

c+ (K − s) logN + eK(s+ 1, x) + log σ + σ2

2 e
′′
K(s+ 1, x).

This is maximized by

σ2K(s, x) =
−1

e′′K(s+ 1, x)
(7)
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and the maximized value is

c− 1
2 + (K − s) logN + eK(s+ 1, x)− 1

2 log(−e′′K(s+ 1, x)).

This maximized value is, by definition, supposed to equal es(xN), so from
(5)

eK(s, x) ≈ c− 1
2 + eK(s+ 1, x)− 1

2 log(−e′′K(s+ 1, x)).

To study what happens as K →∞, we look for a solution of the form

eK(s, x) ≈ (K − s)(c− 1
2 − aK) +Kf(s/K, x)

for some function f(t, x) and some constants aK . Setting t = s/K this
becomes

K
(
f(t, x)− f(t+ 1

K , x)
)

+ aK = −1
2 log(−Kfxx(t, x)).

So set aK = −1
2 logK to get

K
(
f(t, x)− f(t+ 1

K , x)
)

= −1
2 log(−fxx(t, x)).

This leads to (3), and (7) leads to (4).
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