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Abstract

We investigate the widely-used rank-order mechanism for displaying user-generated content, where con-
tributions are displayed on a webpage in decreasing order of their ratings, in a game-theoretic model where 
strategic contributors benefit from attention and have a cost to quality. We show that the lowest quality 
elicited by this rank-order mechanism in any mixed-strategy equilibrium becomes optimal as the avail-
able attention diverges. Additionally, these equilibrium qualities are higher, with probability tending to 1
in the limit of diverging attention, than those elicited by a more equitable proportional mechanism which 
distributes attention in proportion to the positive ratings a contribution receives, but the proportional mech-
anism elicits a greater number of contributions than the rank-order mechanism.
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1. Introduction

There is a proliferation of user-contributed content on the Web, and a multitude of instances 
where user-contributed content adds significant value to websites. The product reviews written 
by users on Amazon, for instance, are a very valuable component of the service that Amazon 
provides, while online question-and-answer sites such as Yahoo! Answers and StackOverflow, 
or sites aggregating service reviews such as Yelp owe almost all their utility to contributions from 
users. But while there is a large amount of user-contributed content online, not all of it is of the 
same quality—some content is excellent, while some is mediocre and some is outright bad.

Many websites attempt to rank content according to its quality, using thumbs-up/thumbs-
down style ratings by viewers—this is the case, for example, with comments on Yahoo! News, 
reviews on Amazon, and posts on Reddit. These websites display higher quality contributions 
more prominently by placing them near the top of the page and pushing lower quality ones to the 
bottom. Since content displayed near the top of the page is more likely to be viewed by a user, 
ranking good content higher leads to a better user experience. But there is also another aspect 
to displaying better content more prominently: it potentially provides an incentive to produce 
high quality content that might appeal to a contributor’s desire for attention. In other words, how 
contributions are displayed as a function of their estimated quality constitutes a mechanism for 
allocating attention, which might affect the incentives of contributors and influence the quality 
of their contributions.

What can we understand, using a game-theoretic approach, about how the mechanism used 
to display content influences the quality of the contributions? In particular, how does the choice 
of mechanism influence quality when the number of potential viewers, and therefore the poten-
tial available attention, grows very large? The diverging attention regime is arguably the most 
important setting for user-generated content. First, these are the situations where delivering high 
quality content matters the most for viewer welfare. Second, the popular sites are the ones that 
draw the most attention-motivated contributors, as well as the ones that tend to attract contribu-
tions of varying quality. Indeed, tremendously large amounts of attention are not uncommon for 
popular content on the web; for instance, the most popular YouTube videos have been viewed 
over a hundred million times and even days-old ‘trending’ videos have hundred of thousands of 
views.

In this paper, we analyze two mechanisms that use viewer ratings to allocate attention to 
content—the widely used rank-order mechanism, where contributions are allocated positions on 
the page in decreasing order of their ratings, and a proportional mechanism [10,14], which dis-
tributes attention in proportion to the number of positive ratings. The rank-order mechanism is 
ubiquitous throughout the Web, while the proportional mechanism is a natural and more ‘fair’ 
alternative: if two contributions receive very similar numbers of votes, it only seems fair that 
they receive similar amounts of attention as well, but this need not hold in the rank-order mecha-
nism. Furthermore, the proportional mechanism is a mechanism whose implementation is widely 
discussed in various online contexts such as online question-and-answer forums [14], resource 
allocation problems [3,25], network-rate control [17,18], online auctions [21], and scheduling 
[26]. What happens to equilibrium quality and participation in the rank-order mechanism as the 
amount of available attention diverges, and how does it compare against the more fair propor-
tional mechanism?

Our contributions We analyze equilibrium behavior in the rank-order mechanism in a game-
theoretic model where contributors are motivated by attention and have a cost of participation 
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that increases with the quality of their content, as in [10]. Contributors are strategic agents who 
choose both whether to contribute, and the quality of their contribution to maximize their payoff.

Analyzing the rank-order mechanism is nontrivial because an agent’s payoff depends on her 
choice of quality and other agents’ choices of quality in a complicated way—the number of 
votes mi a contributor i receives is a random variable in her quality qi . The final payoff to i
depends on the rank of the instantiation of this random variable amongst the m−i , the numbers
of votes received by other contributors, which are also random variables in the other agents’ 
quality choices.

We first show that symmetric mixed strategy equilibria, where all agents of a given type τ par-
ticipate with probability βτ and randomly choose a quality from a common distribution Fτ(q) if 
contributing, always exist for the rank-order mechanism. We then investigate equilibrium behav-
ior as the amount of attention increases, and show that the lowest quality that can arise in a mixed 
strategy equilibrium tends to the highest possible quality as the available attention diverges. We 
also show that if the number of potential contributors grows at a smaller rate than the total amount 
of attention, then it is possible to choose the number of votes used to rank contributions in such a 
way as to guarantee full participation. However, if the number of potential contributors grows at 
the same rate as the total amount of attention, then the participation rate goes to zero in the limit.

Next we consider the proportional mechanism. The proportional mechanism always has an 
equilibrium in which all agents of type τ participate with probability βτ and choose a fixed qual-
ity qτ upon participating. However, unlike the rank-order mechanism, this equilibrium quality 
only converges to the optimal quality if the number of potential contributors grows at the same 
rate as the number of viewers. In this case, the proportional mechanism also elicits full partici-
pation, but unlike the rank-order mechanism, the participation rate remains bounded away from 
zero even if the number of potential contributors grows at the same rate as the total amount of 
attention.

We then compare the equilibrium quality choices in the rank-order mechanism and the propor-
tional mechanism and show that the probability an agent chooses higher quality in the rank-order 
mechanism than in the proportional mechanism tends to 1 as the amount of available attention 
diverges. However, the proportional mechanism leads to greater participation than the rank-order 
mechanism if the number of potential contributors grows at the same rate as the number of view-
ers.

Our results thus suggest that an interesting participation-quality tradeoff arises in compar-
ing the rank-order and proportional mechanisms. The rank-order mechanism consistently elicits 
higher quality contributions, but the proportional mechanism elicits greater participation. This 
suggests that in circumstances under which it is most important to have a few exceptionally high 
quality contributions, the rank-order mechanism should be preferred, while in situations in which 
the goal is to elicit as much participation as possible, the proportional mechanism is better.

Related work There is a large literature in economics on using rank-order tournaments as incen-
tive schemes (e.g. [5,11–13,19,20,22–24]). This literature analyzes the consequences of contests 
used to rank players such as employee compensation schemes which reward employees based 
on how their output compares to that of other employees. While agents in our model are also 
ranked on how their output compares to that of other agents, there are several important differ-
ences between our paper and this work. In our paper, an individual’s observable output is the 
random number of users who vote positively on her contribution, but this type of framework is 
not captured by the assumptions made in existing work on rank-order tournaments. Also, not all 
agents need to participate in our model, but all employees must work in the economics litera-
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ture. In addition, most existing work on rank-order tournaments focuses on equilibria in which 
all agents exert a deterministic level of effort in equilibrium,1 whereas we extensively analyze 
mixed strategy equilibria. The focus on the limiting case we consider as well as the comparison 
between the rank-order and proportional mechanisms is also missing in this literature.2

There is also a growing body of research on human computing systems and user-contributed 
content, but relatively little of this work addresses the analysis and design of these systems from a 
game-theoretic perspective [7,14–16]. Jain et al. [14] study the question of designing incentives 
for online question-and-answer forums, and focus on incentives for participants to contribute 
their answers quickly, but do not address the issue of incentivizing high quality contributions. 
The most relevant paper to our work is [10], which introduces a model to address the quality of 
user-generated content. This paper shows that a simple mechanism which eliminates contribu-
tions that are not rated highly by all voters achieves optimal quality in the limit as the amount of 
available attention diverges. Our model has a few technical differences from that in [10], and is 
also used to instead address the problem of incentives in the widely used rank-order mechanism 
and compare those to incentives in the proportional mechanism. Papers on crowdsourcing on the 
web such as [1,4,6], and [9] have also not compared incentives in the rank-order and proportional 
mechanisms.

2. Model

Content Each unit of content, or contribution, has a quality q , where q ∈ [0, 1) is the probability 
that a viewer will rate a contribution as ‘good’ or ‘useful’.3 The quality q of a contribution is 
not directly observable in our model, but it influences the number of positive votes the content 
receives.

Each contribution is rated by at least T viewers, and the mechanism then decides how much 
attention to reward to each agent on the basis of the results of the first T votes that each agent 
received. The exact number of votes T that is used is a parameter that can be chosen by the 
mechanism. We assume that viewers are not strategic, and simply provide this binary feedback 
non-strategically by truthfully indicating whether they found the contribution to be good or use-
ful.

Given a contribution i with quality qi , the number of positive votes it receives is a random 
variable. We let mi denote the number of positive votes received by this contribution, and note 
that the distribution of mi is binomial with parameters (T , qi). We also let m−i denote the vector 
of the numbers of positive votes received by other contributions.

Contributors There is a pool of potential contributors, or agents, of size K . Each agent can 
choose both whether she will contribute, as well as the quality of her contribution should she 

1 One very rare exception is [24], which briefly mentions that agents may have an incentive to exert random levels of 
effort, but does not conduct an extensive analysis of such equilibria.

2 Work on Tullock functions such as [8] presents comparisons of proportional mechanisms and all-pay auctions. How-
ever, this work does not consider the more general rank-order tournaments in our paper, does not capture settings in 
which an individual’s observable output is the random number of users who vote positively on her contribution, and also 
does not consider the limiting case in which the number of potential participants grows large.

3 It is possible that there will be some fraction of the population that always votes down good content because, for 
example, some voters are impossible to please or there are malicious voters who intentionally vote down good content. 
This can be modeled by assuming that the largest possible quality an agent can produce is some γ < 1, and our results 
immediately extend to a model in which each unit of content has a quality q ∈ [0, γ ) for some γ < 1.
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decide to participate. Agent i may use mixed strategies, and we denote the probability that agent 
i decides to contribute by βi and the quality she chooses when she contributes by qi . Since each 
potential contributor may use mixed strategies in deciding whether to contribute, the number of 
actual contributors is a random variable. We denote the instantiation of this random variable by 
k, and note that the distribution of k depends on K as well as β1, . . . , βK .

Contributors are strategic: they choose both whether to contribute as well as the quality of 
their contribution strategically to maximize their expected payoffs given the potential costs and 
benefits from contributing. If an agent chooses not to contribute, then she incurs no cost but also 
receives no benefit, so her payoff is 0. Otherwise, the agent pays a cost reflecting the effort she 
expended to produce content, and obtains a benefit reflecting the attention she was able to get as 
a result.

The cost incurred by a contributor depends on the quality of her content and her type. We 
assume that each agent has some type τ ∈ {1, . . . , t}, where the realization of agent i’s type, τi , 
is an independent random variable that takes on the value τ ∈ {1, . . . , t} with probability πτ . 
The cost of producing content of quality q for an agent of type τ is then cτ (q), which is a 
convex, continuously differentiable, and increasing function of q for all τ . We also assume that 
c′
τ (0) = 0, cτ (0) > 0, and limq→1 cτ (q) = ∞ for all τ . These last two conditions indicate that 

making a contribution takes more effort than not participating and producing perfect content is 
nearly impossible.4

The benefit derived by a contributor depends on the amount of attention she receives, 
which can depend both on the rating of her contribution and the number and ratings of other 
contributions. Let A denote the total amount of attention available. If contributor i is al-
located a fraction αi(mi, m−i ) ≥ 0 of this attention, then her benefit from receiving this is 
V (mi, m−i ) = v(αi(mi, m−i )A), where v(a) is some continuously differentiable, strictly in-
creasing, and (weakly) concave function satisfying v(0) = 0 such that v′(a) remains bounded 
away from 0 for all a.5

A contributor i’s payoff from generating content of quality qi is the difference between 
her expected benefit and cost, π(qi, q−i , β−i ) = E[V (mi, m−i )|(qi, q−i , β−i )] − cτi

(qi), where 
q−i = (q1, . . . , qi−1, qi+1, . . . , qk) denotes the quality choices of the other contributors, and β−i

denotes the participation probabilities of the remaining contributors. Note that the expectation in 
this payoff is taken over the random number of contributors k as well as the random variables mi .

Solution concept Since agents’ payoffs are symmetric, we focus throughout on symmetric equi-
libria. In a symmetric equilibrium, each agent follows a mixed strategy such that all agents of the 
same type participate with the same probability and follow the same strategy of quality choices 
conditional on participating. Formally, a symmetric mixed strategy equilibrium is a set of prob-
abilities {βτ } and a set of distributions {Fτ } over qualities q such that when every agent of type 

4 It is worth noting that while in our model, all qualities chosen will be in the interval [0, 1), this model is math-
ematically equivalent to a model in which agents may choose any quality level q in the non-negative reals and the 
probability that an agent receives a positive vote is some strictly increasing function f (q) that satisfies f (0) = 0, 
limq−>∞ f (q) = 1, and the cost to an agent of type τ of contributing with quality q is the function Cτ (q) = cτ (f (q)), 
where cτ (.) is the original cost function for agents of type τ in our model. Thus the assumption that there is a maximum 
possible quality level is not needed for any of the results in our paper.

5 If the agents did not know the exact value of A, but instead only knew its distribution, then the equilibrium analysis 
would stay the same except that v(a) would be replaced with E[v(a)].
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τ contributes with probability βτ , and chooses a quality drawn from the CDF Fτ(q) conditional 
on contributing, no agent can increase her expected payoff by deviating from this strategy.

Asymptotics First note that if v(A) ≤ cτ (0) for all τ , i.e., the total value of attention is smaller 
than the cost of producing zero quality content for all types, then no agents would want to partici-
pate. The case where no agents participate is not interesting, so we will assume that v(A) > cτ (0)

for at least one type τ for the remainder of this paper. This assumption guarantees that there is at 
least one type τ for which βτ > 0 in any symmetric equilibrium.

We will be particularly interested in the qualities and participation levels in equilibrium in 
the limiting case as A → ∞. Since this diverging amount of attention comes from a diverging 
number of viewers, the number of potential contributors, K , as well as the number of viewers 
available to vote on contributions, T , can increase with A as well. We also assume throughout 
that K ≤ A.

We will sometimes write K(A) and T (A) to make explicit the possible dependence of K and 
T on A, and assume that as A diverges, K(A) diverges and T (A) can be chosen to diverge as well. 
This corresponds to the observation that as sites grow more popular (A increases), they attract 
more potential contributors (K(A) increases), and more voters (T (A) increases). We emphasize, 
though, that T = T (A) is a parameter chosen by the mechanism, and may entail only using a 
subset of the available ratings (for instance, the first T votes) to rank contributions. Thus our 
formulation does not require that all agents receive the same numbers of votes. The number of 
votes T in our model is to be interpreted as some minimum number of votes that is received by 
all contributions.6

3. Rank-order mechanisms

We first consider rank-order mechanisms. A rank-order mechanism arranges contributions in 
decreasing order of the number of positive votes they receive and allocates more attention to 
contributions which are ranked higher. We formally define rank-order mechanisms below.

Definition 3.1 (Rank-Order Mechanism Mr(T , α)). Let αj (k) ≥ 0 be a sequence of numbers 
that is nonincreasing in j for all k and satisfies 

∑k
j=1 αj (k) = 1, where the values of αj do not 

depend on the qualities q for any j , although they can depend on the number of contributors k. 
Suppose there are k contributors and each contribution is voted on by T viewers. The rank-order 
mechanism ranks contributions in decreasing order of the number of positive votes received (with 
ties broken randomly) and awards the j th ranked contribution attention αjA.

Note that both α, which specifies the distribution of attention amongst the ranks, as well as T , 
the number of votes used to determine the rankings, are parameters of the mechanism that can 
be chosen to achieve desirable properties. We first state the following simple proposition.

Proposition 3.1. Suppose qi > qj , and let the number of votes received by i and j be mi and mj

respectively. Then limT →∞ Pr(mi > mj ) = 1.

6 It is worth noting that all the substantive conclusions of the paper can be extended to an alternative model in which 
mechanisms use votes from all of the voters rather than just the first T votes; we use the current model because it allows 
for a cleaner presentation.
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All proofs are in Appendix A. Thus a higher quality contribution receives a larger number of 
positive votes, and is therefore ranked higher, than a lower quality contribution in the limit as the 
number of votes T goes to infinity. We next show that the rank-order mechanism always has a 
symmetric mixed strategy equilibrium in which all agents of the same type participate with the 
same probability, and choose a quality from the same distribution if they decide to contribute.

Theorem 3.1. For any values of A, K , T , and α, there exists a symmetric mixed strategy equi-
librium in which all contributors of type τ participate with probability βτ and choose a quality 
drawn from the same cumulative distribution function Fτ(q) conditional on contributing.

In general, a mechanism can have multiple equilibria. A natural question to ask is whether any 
of these equilibria is ‘bad’, in the sense of inducing low-quality equilibrium contributions. Our 
next result illustrates that as long as there is at least a small difference between the amount of 
attention allocated to contributions that are ranked differently, such bad Nash equilibria cannot 
exist. Specifically, if the number of votes used to rank the contributions becomes large as the 
amount of attention grows, contributors will choose quality arbitrarily close to 1 in the limit.

Theorem 3.2. Suppose that αj (k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1, αk(k) = 0 for suffi-
ciently large k, and limA→∞ T (A) = ∞. Then, for any q∗ < 1, the probability an agent who 
contributes chooses quality q > q∗ goes to 1 as A goes to infinity.

In a mixed strategy equilibrium, a contributor can draw any quality in the support of the 
equilibrium distribution: the theorem says that the lowest quality in this equilibrium distribution 
tends to the optimal quality as the amount of attention diverges.

It is worth noting that this result holds even in the case where liminfA→∞ K(A)
A

> 0 and 
the average amount of attention that will be given to any of the K(A) agents is bounded away 
from infinity, meaning each agent, on average, only obtains a finite benefit from the mechanism. 
When each agent can, on average, only obtain a finite award from the mechanism, it might seem 
implausible that the mechanism could induce agents to choose quality arbitrarily close to 1 and 
thereby exert an infinite amount of effort. Nonetheless, this theorem shows that the rank-order 
mechanism is so powerful that it can induce agents to still produce arbitrarily high quality content 
in this case.7

This theorem uses the condition that αj(k) − αj+1(k) = Θ(k−2). It is worth noting that the 
result that contributors produce arbitrarily high quality content does not depend crucially on this 
assumption. If we instead replaced this assumption with the weaker assumption that αj(k) −
αj+1(k) = Ω(k−2) for all j ≤ k − 1, then the result would go through with a very similar proof. 
That is, there is no problem inducing high quality content as long there is at least some minimum 
difference between the attention allocated to content ranked differently.

Since the precise equilibrium strategies that agents use may vary with A, we will henceforth 
use βτ (A) to denote the dependence of the equilibrium participation probability for agents of type 
τ , and Fτ,A(q) to denote the dependence of the equilibrium distribution from which contributors 
of type τ choose their quality, on the available attention A. To understand the intuition behind this 
result, first note that in any equilibrium a large fraction of participating contributors must produce 
content with quality close to qA, where qA is the minimum quality in the union of the supports 

7 This results in part from the fact that not all agents will participate in equilibrium.
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of Fτ,A(q) for all participating types τ : if only a small fraction of agents produce content with 
quality close to qA, then a contributor who produces quality qA will achieve a lower ranking than 
almost all other contributors, and will obtain almost no attention. Such an agent could achieve a 
higher expected payoff by not contributing, meaning this would not be an equilibrium.

But if a large fraction of participating contributors are producing content with quality close to 
qA, then for large T , an agent can ensure that she will achieve a higher ranking than a significant 
number of additional contributors by producing content with quality q = qA + ε for some small 
ε > 0 (in contrast with choosing quality q = qA). Thus if qA is bounded away from 1, an agent 
could profitably deviate by producing content with quality q = qA + ε instead of content with 
quality q = qA for some small ε > 0. From this it follows that qA must be close to 1 for large A.

Next we show that one can choose the number of individuals who vote on the content, T , in 
such a way to induce all contributors to participate in the limit, as long as the pool of potential 
contributors does not grow too quickly with the number of viewers.

Theorem 3.3. Suppose that limA→∞ K(A)
A

= 0 and αj (k) −αj+1(k) = Θ(k−2) for all j ≤ k −1. 
Then there exists a sequence {T (A)}∞A=1 such that limA→∞ T (A) = ∞ and βτ = 1 in equilib-
rium for all τ for sufficiently large A.

This result indicates that if T (A) does not grow too quickly with A, then all contributors will 
participate for sufficiently large A. While this result makes use of a technical assumption that 
limA→∞ K(A)

A
= 0, we believe this is the most critical case to ensure large participation, as this 

is the case where there is only a relatively small number of agents who may contribute.
While full participation can be achieved if the number of potential contributors becomes van-

ishingly small compared to the amount of attention, this is no longer the case if limA→∞ K(A)
A

= r

for some r > 0 and the number of potential contributors grows at the same rate as the amount of 
attention. Nonetheless it is still possible to ensure that a large number of agents will participate 
in equilibrium when limA→∞ K(A)

A
= r for some r > 0. This is shown in the following theorem:

Theorem 3.4. Suppose that limA→∞ K(A)
A

= r for some r > 0 and αj (k) − αj+1(k) = Θ(k−2)

for all j ≤ k − 1. Then limA→∞ βτ (A) = 0 for all τ . Furthermore, if αj (k) > αj+1(k) for all k
and all j ≤ k − 1, then there exists a sequence {T (A)}∞A=1 such that limA→∞ T (A) = ∞ and 
limA→∞

∑t
τ=1 πτβτ (A)K(A) = ∞.

This result indicates that if the number of potential contributors grows at the same rate as the 
amount of available attention, then only a vanishingly small fraction of agents will participate in 
equilibrium. Nonetheless, if T (A) does not grow too quickly with A, it is still possible to ensure 
that a diverging number of agents will participate in equilibrium in expectation, as the result that 
limA→∞

∑t
τ=1 πτβτ (A)K(A) = ∞ guarantees this.

Implementing ranking mechanisms Theorem 3.2 requires a mechanism designer to choose the 
values of α to satisfy αj (k) − αj+1(k) = Θ(k−2) and αk(k) = 0 to induce high quality. The 
needed difference in attention between two contributions can be achieved as follows: To increase 
the difference in attention between two contributions, one can show one contribution prominently 
more often than the other, and to decrease the difference one can show the two contributions in 
prominent positions roughly equally often. One can also easily ensure that αk(k) = 0 by simply 
never showing a contribution that is ranked last by the initial voting.
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The analysis in Theorems 3.3 and 3.4 suggests that a mechanism designer can achieve di-
verging participation by choosing T so that T (A) does not grow too quickly with A. This can 
also be achieved in practice by simply ignoring votes beyond the first T votes. Thus the type of 
restrictions on T and α used in these results should be easily implementable in practice.

Robustness of results While the types of restrictions on T and α that were used to obtain the 
results in Theorems 3.2 to 3.4 should be easily implementable in practice, it is also interest-
ing to address the question of whether high quality contributions can be elicited without these 
assumptions. In particular, there are some online settings in which only the l best contribu-
tions receive attention because there is only room on the page to display l contributions. In 
this setting, we would have αj (k) = 0 for all j > l and for all k, meaning the condition that 
αj (k) − αj+1(k) = Θ(k−2) that was used in Theorem 3.2 would not be satisfied. The question 
of whether the rank-order mechanism can elicit contributions of optimal quality in this setting is 
addressed in the following theorem.

Theorem 3.5. Suppose there is some l < limA→∞ K(A) such that αj (k) = 0 for all j > l and 
for all k and αj (k) > 0 for all j ≤ l and all k. Then for any q∗ < 1, the probability that at least 
l agents make a contribution of quality q ≥ q∗ goes to 1 in the limit as A → ∞.

Theorem 3.5 gives a slightly different type of result than that considered in Theorem 3.2, as 
this theorem does not illustrate that all agents who participate will make high-quality contribu-
tions. Instead the theorem illustrates that the probability that at least l agents make arbitrarily 
high quality contributions goes to 1. However, since only the l most highly-ranked contributions 
will ever receive attention in the setting considered in Theorem 3.5, this result ensures that users 
will only experience arbitrarily high-quality content in the setting considered in Theorem 3.5.

4. Proportional mechanism

Since all contributors produce similar qualities in equilibrium in the rank-order mechanism, it 
might seem unfair to give significantly greater amounts of attention to agents who receive higher 
numbers of positive votes. A natural alternative is to reward contributors in proportion to the 
number of positive votes they receive—in such a mechanism, two agents who both receive very 
similar numbers of positive votes also receive similar amounts of attention. However, while the 
proportional system might allocate attention in a more equitable manner, the mechanism also 
significantly changes incentives for agents to produce high-quality content. In this section, we 
analyze the equilibria of the proportional mechanism. First we formally define the proportional 
mechanism.

Definition 4.1 (Proportional Mechanism Mp(T )). Suppose k agents contribute, each contribu-
tion is voted on by T viewers, and each participating contributor i receives mi positive votes. 
Then the proportional mechanism gives the ith contributor a share mi∑k

j=1 mj

of the available at-

tention if mi > 0 for some i. If mi = 0 for all i, every contributor receives a share 1
k

of the 
available attention.

Note that in the proportional mechanism, only the number of votes used by the mechanism, T , 
is available as a parameter of the mechanism that can be varied to achieve desirable incentives. 
We first prove a result on the nature of the equilibrium in the proportional mechanism.
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Theorem 4.1. For any values of A, K , and T , there exists a symmetric equilibrium to the pro-
portional mechanism in which all agents of type τ participate with probability βτ and choose the 
same quality qτ conditional on contributing.

Theorem 4.1 indicates that there are some differences between the nature of equilibria in the 
proportional and the rank-order mechanisms, as there exists an equilibrium in which agents do 
not randomize amongst their quality choices in the proportional mechanism, but such equilibria 
need not exist in the rank-order mechanism. Our next result further shows that this difference is 
even more stark—in the proportional mechanism, there will not exist any symmetric equilibrium 
in which agents randomize over their quality choices.

Theorem 4.2. For any values of A, K , and T , there does not exist a symmetric mixed strategy 
equilibrium of the form (βτ , Fτ (q)) where Fτ (q) is not a point mass for all τ , i.e., in which 
agents of some type τ randomize over qualities.

Next we investigate asymptotic equilibrium quality choices in the proportional mechanism. In 
contrast to the ranking mechanism, whether equilibrium quality choices converge to the optimal 
quality in the proportional mechanism depends on how quickly the number of potential con-
tributors grows with the number of viewers. If K(A)

A
→ 0 as A → ∞, then equilibrium quality 

converges to one. But if not, equilibrium quality remains strictly less than one in the limit.

Theorem 4.3. If limA→∞ K(A)
A

= 0, then limA→∞ qτ (A) = 1 for all types τ and βτ (A) = 1 for 
all types τ for sufficiently large A. If lim infA→∞ K(A)

A
> 0, then lim supA→∞ qτ (A) < 1 for all 

participating types τ and lim infA→∞
∑t

τ=1 πτβτ (A) > 0.

We note that both regimes in this theorem, K(A)
A

→ 0 and K(A)
A

→ r > 0, are of interest 
in the context of user-generated content. In question-and-answer sites such as Yahoo! Answers 
or StackOverflow, the number of users K(A) who can answer a question is often significantly 
smaller than the number of users who consume the answer, and K(A)

A
→ 0 is likely. On the other 

hand, in settings like posts on discussion forums or comments on blogs where many consumers 
are also producers, the number of contributors may not be negligible compared to the number 
of viewers who consume the content, i.e., K(A)

A
is not vanishingly small. The theorem says that 

the proportional mechanism elicits the optimal quality in the first kind of setting, but not in the 
second.

Theorem 4.3 also guarantees that the participation rate will remain bounded away from zero 
even if the number of potential contributors grows at the same rate as the number of viewers, in 
contrast to the rank-order mechanism. While we can guarantee that the participation rate remains 
bounded away from zero, it is not possible to further pin down the precise participation rate 
beyond this. If K(A) is a sufficiently small fraction of A, then full participation will arise in 
equilibrium because the expected rewards to participating will exceed the costs. However, when 
K(A) = A, there will not generally be full participation since each agent could only expect to 
obtain a small fraction of the available attention by participating. Thus the precise participation 
rates will depend on how quickly K(A) grows with A, even if we restrict attention to cases where 
lim infA→∞ K(A)

A
> 0.

The proportional mechanism can be implemented in a similar way to the rank-order mech-
anism. To achieve any needed difference in attention between two agents, the mechanism can 
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increase this difference by showing one agent’s contribution prominently more often than the 
other’s, and decrease this difference by showing the agents’ contributions in prominent positions 
roughly equally often.

5. Comparing mechanisms

In this section, we compare equilibrium qualities in the rank-order and proportional mecha-
nisms. We already know from Theorems 3.2 and 4.3 that when limA→∞ K(A)

A
> 0, the lowest 

quality in the support of the equilibrium distribution in the ranking mechanism converges to 1, 
but not in the proportional mechanism. For this case, therefore, the rank-order mechanism leads 
to higher quality contributions than the proportional mechanism for diverging attention. We now 
complete this comparison by investigating the case where limA→∞ K(A)

A
= 0. We show that in 

this case, the ranking mechanism also elicits higher quality contributions than the proportional 
mechanism.

Theorem 5.1. Suppose limA→∞ K(A)
A

= 0, limA→∞ T (A) = ∞, and α in the rank-order mecha-
nism satisfies αj (k) −αj+1(k) = Θ(k−2) for all j ≤ k − 1. Let qτ,r (A) denote the (possibly ran-
dom) quality chosen by the contributors of type τ in some equilibrium of the ranking mechanism, 
and let qτ,p(A) be an equilibrium quality for agents of type τ in the proportional mechanism. 
Then limA→∞ Pr(qτ,r (A) > qτ,p(A)) = 1 for all types τ that participate with non-vanishing 
probability in the rank-order mechanism, i.e. for all types τ such that limA→∞ πτ βτ (A)∑t

τ=1 πτ βτ (A)
	= 0.

To understand the intuition behind this result, suppose that agents chose quality in the rank-
order mechanism according to a symmetric pure strategy, qr(A). Then if an agent makes a small 
change in quality from q = qr(A) to q = qr(A) +ε for some ε > 0, the agent goes from obtaining 
an average ranking in expectation to almost certainly being ranked near the very top. Thus such a 
change dramatically increases an agent’s expected payoff. By contrast, in the proportional mech-
anism, increasing one’s quality by ε > 0 does relatively little to improve one’s expected attention. 
Thus incentives to produce higher quality content are greater in the rank-order mechanism than 
in the proportional mechanism. Our proof extends this logic to mixed strategy equilibria.

It is also worth noting that this theorem illustrates that the lowest qualities used in the rank-
order mechanism will be greater than all the qualities in the proportional mechanism. Thus 
even the agents who are most weakly incentivized to produce high-quality contributions in the 
rank-order mechanism produce higher quality content than all the agents in the proportional 
mechanism.

Our theorems so far have investigated diverging reward regimes, but have not considered 
regimes with a finite amount of attention. We illustrate below an example with non-diverging 
attention, where we can explicitly characterize the equilibrium conditions for both mechanisms. 
The incentives for agents to produce higher quality content in the rank-order mechanism than in 
the proportional mechanism still stand in this example, despite the finite amount of attention.

Example 5.1. Suppose there are K = 2 potential participants, each of whom has the same cost 
function c(q) and values attention A at v(A) = A. Also suppose that there are T = 2 voters that 
will vote on the quality of the agents’ contributions. Consider values of A that are large enough 
that both agents will participate with probability 1 in equilibrium (but not necessarily arbitrarily 
large). In this case, as we show in Appendix A, in the proportional mechanism, both agents 
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contribute with a quality q that satisfies c′(q)

q2/3−q+1
= A and in the rank-order mechanism in which 

all A units of attention are rewarded to the agent who finishes first, both agents contribute with a 
quality q that satisfies c′(q)

q2−q+1
= A. Since the functions fp(q) = c′(q)

q2/3−q+1
and fr(q) = c′(q)

q2−q+1
are both increasing in q for sufficiently convex c(·) and fp(q) > fr(q) for all values of q ∈ (0, 1), 
it then follows that the agents make higher quality contributions in equilibrium in the rank-order 
mechanism.

We now turn to questions related to the participation levels in the two mechanisms. While we 
have seen that the rank-order mechanism elicits higher quality contributions than the proportional 
mechanism, one might conjecture that these higher quality contributions only come at a cost of 
decreased participation. In our next theorem, we illustrate that these participation differences 
between the two mechanisms hold if and only if liminfA→∞ K(A)

A
	= 0:

Theorem 5.2. If limA→∞ K(A)
A

= 0, then there exists a sequence of values of T (A), with 
limA→∞ T (A) = ∞, such that full participation is achieved (i.e. βτ (A) = 1 for all τ ) for suffi-
ciently large A in both the rank-order and the proportional mechanism. If liminfA→∞ K(A)

A
	= 0, 

then the expected number of participants in the rank-order mechanism becomes arbitrarily small 
compared to the expected number of participants in the proportional mechanism in the limit as 
A → ∞.

Theorems 5.1 and 5.2 indicate that there can be an interesting participation/quality tradeoff 
that results between the rank-order and proportional mechanisms—the rank-order mechanism 
always elicits higher quality contributions than the proportional mechanism, but this potentially 
comes at the cost of a smaller number of participants. Thus while both the rank-order mecha-
nism and the proportional mechanism will elicit an arbitrarily large number of contributions in 
equilibrium, the expected number of contributors in the rank-order mechanism may diverge at 
a considerably slower rate than the expected number of contributors in the proportional mecha-
nism.8

A natural next question to ask is whether there are tools that the mechanism designer can use 
to achieve more favorable points on the participation/quality tradeoff by varying the parameters 
of either mechanism. In particular, one might ask whether changes in the number of votes con-
sidered in ranking the agents would potentially have an effect on the equilibrium participation 
and quality choices. This unfortunately, is not the case in the regime with diverging numbers of 
votes.

Theorem 5.3. Equilibrium participation and quality choices become independent of T in the 
limit as T → ∞ for both the rank-order mechanism and the proportional mechanism.

Thus when a large number of votes is considered in rewarding attention to the agents (as we 
have assumed for most of this paper), changes in the number of votes has little effect on equilib-
rium participation and quality choices. Thus while changing from a rank-order mechanism to a 

8 An implication of this result is that there may be more content diversity under the proportional mechanism than under 
the rank-order mechanism since the proportional mechanism elicits more contributions than the rank-order mechanism, 
and the larger number of contributions means there is a more diverse set of contributions to choose from. This is poten-
tially important in a world with heterogeneous viewers if having a diverse set of contributions is important for being able 
to personalize which contributions are shown to different viewers.
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proportional mechanism potentially has a significant effect on the participation/quality tradeoff 
that results, underlying changes in the number of votes considered in these mechanisms do not.

6. Conclusion

In this paper, we have analyzed the widely used rank-order mechanism for displaying user-
contributed content in a model with strategic attention-driven contributors, and shown that the 
rank-order mechanism elicits contributions of optimal quality in the limit as the amount of atten-
tion diverges. By contrast, whether equilibrium quality in the proportional mechanism becomes 
optimal depends on how quickly the number of potential contributors grows with the number 
of viewers. Even when equilibrium quality in the proportional mechanism tends to the opti-
mal quality, quality is almost always lower in the proportional mechanism than in the ranking 
mechanism. Thus, despite being more equitable, and sometimes eliciting more contributions, the 
proportional system creates inferior incentives for eliciting high quality contributions than the 
ranking mechanism.

There are a number of interesting directions for further work; we discuss three specific di-
rections. On most sites, there are almost always some contributors who produce consistently 
low quality contributions, despite receiving little or no attention for it. This indicates that some 
subset of contributors have zero cost for producing low-quality content. An ideal mechanism in 
this setting would continue to elicit high quality contributions and high participation from the 
remaining contributors: an interesting question is how effective the ranking mechanism is when 
such contributors are present, and whether other mechanisms might be more effective. A second 
interesting direction regards questions related to malicious voters. The ranking mechanism is ro-
bust to voters who do not vote according to the model as long as they do this uniformly for all 
content. However, it is less clear how robust the results are in a model in which some malicious 
voters try to bring up specific contributions or put down others. Finally, we assume throughout 
our model that all voters are homogeneous in terms of their evaluation of content, i.e., all voters 
upvote or downvote a given contribution with the same probability qi . The problem of modeling 
and analyzing mechanisms for a setting in which readers have different ‘tastes’, as captured in a 
model where different reader types have different probabilities of upvoting the same contribution, 
with or without personalized content display, is an interesting direction for further work.
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Appendix A

Proof of Proposition 3.1. Note that as T → ∞, the fraction of positive votes received by an 
agent who contributes with quality qi , 

mi

T
, converges in probability to qi and the fraction of 

positive votes received by an agent who contributes with quality qj , mj

T
, converges in prob-

ability to qj . Thus mi−mj

T
converges in probability to qi − qj , and thus if qi > qj , we have 

limT →∞ Pr(mi > mj ) = 1. �
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Proof of Theorem 3.1. First note that no player in this game would ever choose a qual-
ity q > maxτ {c−1

τ (v(A))}, as a player could always obtain a strictly greater expected pay-
off by not participating than by participating and choosing a quality q > maxτ {c−1

τ (v(A))}. 
Thus any mixed strategy equilibrium to the game in which players are restricted to choosing 
q ∈ [0, maxτ {c−1

τ (v(A))}] is also a mixed strategy equilibrium of the original game.
Now note that this modified game in which players are restricted to choosing q ∈ [0,

maxτ {c−1
τ (v(A))}] is a symmetric game in which each player has a pure strategy space that 

is compact and Hausdorff. Also note that each player’s expected payoff in this modified game is 
continuous in the actions of the players. It thus follows from Theorem 1 of [2] that there exists a 
symmetric mixed strategy equilibrium of this modified game. This in turn implies that there is a 
symmetric mixed strategy equilibrium of the original game. �
Proof of Theorem 3.2. Suppose by means of contradiction that there exists some q∗ < 1 and 
some γ > 0 such that the probability a contributor chooses quality q ≤ q∗ is at least γ for an 
infinite number of A. If qA denotes the minimum value of the set of all q in the supports of the 
distributions Fτ,A(q) for which βτ (A) > 0, then qA ≤ q∗ holds for all such A. For small ε > 0, 

let pA(ε) =
∑t

τ=1 πτ βτ (A)Fτ,A(qA+ε)∑t
τ=1 πτ βτ (A)

denote the probability that a contributor chooses some quality 

q ≤ qA + ε for a given A.
Our proof breaks down into three steps. We first show that if we restrict attention to a sub-

sequence of A for which the probability a contributor chooses quality q ≤ q∗ is at least γ , it 
must be the case that limA→∞ pA(ε) ≤ Cε for some constant C and small ε > 0, where the 
limit is taken along this subsequence. We then show that if limA→∞ pA(ε) ≤ Cε, then it must 

be the case that limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
= 0 along this subsequence. Finally, we show that if 

limA→∞ pA(ε) ≤ Cε and limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
= 0 along this subsequence, then it cannot 

be the case that qA is in the support of Fτ,A(q) for any τ .
Step 1: We first show that if we restrict attention to a subsequence of A for which the proba-

bility a contributor chooses quality q ≤ q∗ is at least γ (unconditional on the contributor’s type), 
it must be the case that limA→∞ pA(ε) ≤ Cε for some constant C and small ε > 0, where the 
limit is taken along this subsequence.

To see this, suppose by means of contradiction that there is no constant C such that 
limA→∞ pA(ε) ≤ Cε for small ε > 0 along this subsequence. Note that if a contributor chooses 
quality q = qA, then the probability she receives a higher ranking than a particular other contrib-
utor who chooses quality q ≤ qA + ε is no greater than 1

2 . Thus if ηA(ε) denotes the expected 
fraction of contributors who choose quality q > qA + ε and receive a lower ranking than this 
contributor for a given A, then the expected total fraction of contributors who receive a lower 
ranking than her is no greater than pA(ε)

2 + ηA(ε).
Now note that if this contributor instead uses quality q = qA + 2ε for some ε > 0, then the 

probability she receives a higher ranking than a particular other contributor who chooses quality 
q ≤ qA + ε goes to 1 in the limit as T goes to infinity. The expected fraction of contributors 
who choose quality q > qA + ε and receive a lower ranking than a contributor who uses quality 
q = qA + 2ε is at least as large as the expected fraction of contributors who choose quality 
q > qA + ε and receive a lower ranking than a contributor who uses quality q = qA. Thus if 
she instead uses quality q = qA + 2ε for some ε > 0, then the expected fraction of contributors 
who choose quality q > qA + ε and receive a lower ranking than her is at least ηA(ε). From this 
it follows that the expected total fraction of contributors who receive a lower ranking than this 
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contributor when she chooses quality q = qA + 2ε is at least pA(ε) + ηA(ε) in the limit as T
goes to infinity.

Thus, choosing quality q = qA + 2ε instead of q = qA results in this contributor receiving a 
higher ranking than an expected fraction of at least pA(ε)

2 more contributors. Therefore, if there 
are k participating contributors, the expected number of contributors that she beats increases by 
at least pA(ε)k

2 as a result of this change. Moving up in the rankings by one spot increases a 
contributor’s payoff by Θ( A

k2 ) since αj (k) −αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus choosing 

quality q = qA + 2ε instead of q = qA increases her expected benefits by Θ(
pA(ε)k

2 ( A

k2 )) =
Θ(

pA(ε)A
k

). So if bA(ε) denotes the change in expected benefits from choosing quality q = qA +
2ε instead of choosing quality q = qA, there is no constant C such that limA→∞ bA(ε) ≤ Cε for 
small ε > 0.

Now let cA(ε) denote the maximum added cost (taken over all possible types) that a con-
tributor incurs by choosing quality q = qA + 2ε instead of choosing quality q = qA. Note that 
there exists some constant C such that cA(ε) ≤ Cε for small ε > 0 since qA ≤ q∗ < 1 implies 
c′
τ (qA) ≤ c′

τ (q
∗) for all τ , which is finite. Combining this with the result in the previous para-

graph shows that there exists some large A and some small ε > 0 such that a contributor obtains a 
strictly larger expected payoff from choosing the quality q = qA +2ε instead of choosing quality 
q = qA. This contradicts the fact that qA is in the support of Fτ,A(q) for some participating type 
τ and proves that there exists some constant C such that limA→∞ pA(ε) ≤ Cε for small ε > 0
along this subsequence.

Step 2: Now we show that if there exists some constant C > 0 such that limA→∞ pA(ε) ≤ Cε

for small ε > 0 along this subsequence, then it must be the case that limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
=

0 along this subsequence.
To see this, note that if there exists some constant C > 0 such that limA→∞ pA(ε) ≤ Cε for 

small ε > 0 along this subsequence, then as T becomes large, the expected fraction of contribu-
tors who receive a lower ranking than a contributor who participates with quality q = qA goes to 
zero, for the following reason. Let ε(T ) denote the largest value of ε > 0 such that the probabil-
ity of an agent with quality qA receiving a higher ranking than one with quality qA + ε(T ) is at 
least 1

T
; then, limT →∞ ε(T ) = 0. Thus the expected fraction of contributors who receive a lower 

ranking than a contributor who participates with quality qA is no greater than pA(ε(T )) + 1
T

for 
any T . This tends to zero as T goes to infinity.

Thus if g(A) denotes the expected fraction of contributors who receive a lower ranking 
than a contributor who participates with quality qA, then limA→∞ g(A) = 0. Now if there are 
k contributors, then the expected number of contributors who receive a lower ranking than 
a contributor who participates with quality qA is g(A)k. Combining this with the facts that 
αj (k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1 and αk(k) = 0 for sufficiently large k shows 
that a contributor who participates with quality qA obtains an expected amount of attention 
Θ(g(A)k A

k2 ) = Θ(g(A)A
k
).

Now k∑t
τ=1 πτ βτ (A)K(A)

converges in probability to 1 as A → ∞, so Θ(g(A)A
k
) =

Θ(g(A) A∑t
τ=1 πτ βτ (A)K(A)

). Thus if limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
= 0 does not hold along this 

subsequence, then limA→∞ g(A) = 0 implies it must be the case that a contributor who con-
tributes with quality qA receives an expected amount of attention that approaches zero as 
A → ∞. But this means that an agent could obtain a strictly higher payoff by not con-
tributing than by contributing with quality qA for some large A, contradicting the fact that 
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qA is in the support of Fτ,A(q) for some participating type τ . This contradiction shows that 

limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
= 0 must hold along this subsequence.

Step 3: Finally we show that if limA→∞
∑t

τ=1 πτ βτ (A)K(A)

A
= 0 holds along this subsequence, 

then it cannot be the case that qA is in the support of Fτ,A(q) for any τ .

To see this, let γA =
∑t

τ=1 πτ βτ (A)Fτ,A(q∗)∑t
τ=1 πτ βτ (A)

denote the probability that an arbitrary contributor 

chooses a quality q ≤ q∗ for a given A, and note that γA ≥ γ for all A in the subsequence. Also 
note that if a contributor uses quality q = q∗ + ε instead of q = qA, then this costs her no more 
than c(q∗ + ε), where c(q∗ + ε) denotes the maximum value of cτ (q

∗ + ε) − cτ (qA) over all 
types τ .

Now if this contributor uses quality q = qA, then the probability she receives a higher ranking 
than a particular other contributor who chooses quality q ≤ q∗ is no greater than 1

2 . Thus if δA

denotes the expected fraction of contributors who choose quality q > q∗ and receive a lower 
ranking than this contributor using quality qA, then the expected total fraction of contributors 
that receive a lower ranking than her is no greater than γA

2 + δA.
Now, if she instead uses quality q = q∗ + ε for some ε > 0, then the probability she receives 

a higher ranking than a particular other contributor who chooses quality q ≤ q∗ goes to 1 in the 
limit as T goes to infinity. The expected fraction of contributors who choose quality q > q∗ and 
receive a lower ranking than a contributor who uses quality q = q∗ + ε is at least as large as the 
expected fraction of contributors who choose quality q > q∗ and receive a lower ranking than a 
contributor who uses quality q = qA. Thus if the contributor instead uses quality q = q∗ + ε for 
some ε > 0, then the expected fraction of contributors who choose quality q > q∗ and receive a 
lower ranking than the contributor is at least δA. From this it follows that the expected fraction 
of contributors who receive a lower ranking than this contributor when she chooses quality q =
q∗ + ε is at least γA + δA in the limit as T → ∞.

Thus choosing quality q = q∗ + ε instead of q = qA results in receiving a higher ranking 
than an expected fraction of at least γA

2 additional contributors. Thus if there are k participating 
contributors, this contributor increases the expected number of agents she beats by at least γAk

2
as a result of this change. As before, moving up in the rankings by one spot increases the payoff 
by Θ( A

k2 ) since αj (k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus if a contributor chooses 
quality q = q∗ + ε instead of choosing quality q = qA, then she increases her expected benefits 
by Θ(

γAk
2 ( A

k2 )) = Θ(A
k
) = Θ( A∑t

τ=1 πτ βτ (A)K(A)
).

But for sufficiently large A in the subsequence, it follows that this increase in expected benefits 
is greater than c(q∗ + ε) since limA→∞ A∑t

τ=1 πτ βτ (A)K(A)
= ∞ in the subsequence but c(q∗ + ε)

is independent of A. Thus from this it follows that a contributor obtains a strictly greater expected 
payoff from choosing quality q = q∗ +ε instead of choosing quality q = qA for sufficiently large 
A in the subsequence. This contradicts the existence of some such q∗ and proves the desired 
result. �
Proof of Theorem 3.3. Let c( 1

2 ) denote the maximum value of cτ (
1
2 ) over all types τ , and 

let g(A) ≡ A
K(A)

. Note that the probability that an agent who contributes with quality q = 1
2

receives only positive votes is 1
2T (A) . From this it follows that the expected benefit an agent 

obtains from participating with quality q = 1
2 is always at least g(A)

2T (A) (even if all other participants 
also receive all T (A) positive votes, each participant receives an equal amount of attention in 
expectation, which is no smaller than A ). Thus if g(A)

T (A) ≥ c( 1 ) for sufficiently large A, then 

K(A) 2 2
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all agents will strictly prefer participating with quality 1
2 to not participating at all. From this 

it follows that if T (A) satisfies T (A) ≤ log2(
g(A)

c( 1
2 )

) for sufficiently large A, then all agents will 

strictly prefer participating with quality 1
2 to not participating at all for sufficiently large A. Since 

A
K(A)

diverges as A → ∞, it then follows that there exists some sequence {T (A)}∞A=1 satisfying 
limA→∞ T (A) = ∞ such that βτ (A) = 1 must hold for all types τ for sufficiently large A. �
Proof of Theorem 3.4. To see that limA→∞ βτ (A) = 0 for all τ , suppose by means of contradic-
tion that there exists some β∗ > 0 such that there exists some type τ for which βτ (A) > β∗ for 
infinitely many values of A. Restrict attention to values of A for which βτ (A) > β∗ for this par-
ticular type τ . For such A, lim supA→∞ A

πτ βτ (A)K(A)
= s for some s < ∞. Thus for sufficiently 

large A, the expected benefit to participating for an agent of type τ is no greater than s + 1. 
But since we know from Theorem 3.2 that the probability an agent chooses a quality q ≥ q∗ for 
any q∗ < 1 goes to 1 as A → ∞, it follows that the expected cost to participating and following 
equilibrium strategies for an agent of type τ becomes arbitrarily large in the limit as A → ∞. 
From this it follows that for sufficiently large A in this subsequence, an agent of type τ strictly 
prefers not to participate. This contradicts our assumption that agents of type τ participate with 
positive probability

Now suppose that there is an infinite sequence of values of A such that, for each A, there 
is a symmetric equilibrium to the ranking mechanism with 

∑t
τ=1 πτβτ (A)K(A) < y, where 

y < ∞. Since limA→∞ βτ (A) = 0 for all τ , we know that βτ (A) < 1 for sufficiently large A. 
Furthermore, we know that there is at least one type τ for which βτ (A) > 0 for all A, so from 
this it follows that there is at least one type τ for which βτ (A) ∈ (0, 1) for sufficiently large A. 
Any agent of such a type τ must be indifferent between participating and not participating, so 
the expected costs from participating for this type must equal expected benefits.

For any given A, consider the set of types τ for which βτ (A) ∈ (0, 1), and let τ(A) denote 
the value of τ for which the total expected amount of attention received by agents of type τ
is largest in equilibrium (where if there are multiple types τ that receive the same expected 
amount of attention in equilibrium, then we let τ(A) be the first such type). Consider a type 
τ for which τ = τ(A) for infinitely many values of A (note that there are a finite number of 
types) and restrict attention to values of A for which τ = τ(A). Note that the total amount of 
attention received by agents of type τ is Θ(A), so from the condition on indifference between 
participating and not participating, it follows that E[c(q)|q ∼ Fτ,A(q)] = Θ( A

βτ (A)K(A)
) = Θ(A)

for all A in this sequence. Thus if q∗(A) denotes the largest quality in the support of Fτ,A(q), 
then we know that cτ (q

∗(A)) = Ω(A) for all A in this sequence. Thus there exists some function 
g(A) = Θ(A) independent of T (A) such that cτ (q

∗(A)) ≥ g(A) and q∗(A) ≥ c−1
τ (g(A)) for 

all A in this sequence. Thus if q̂(A) = c−1
τ (g(A)), then limA→∞ q̂(A) = 1 and q∗(A) ≥ q̂(A)

for all A in this sequence.
Now note that if a contributor chooses some quality q = q∗(A) + ε(A) instead of choos-

ing quality q = q∗(A) for some infinitesimal amount ε(A) = o( 1
T (A)

) (which may either be 
positive or negative), then the contributor changes the probability that she receives an addi-
tional positive vote by an amount Θ(ε(A)T (A)). Thus the contributor changes the probability 
that she receives a higher ranking than a particular other contributor by O(ε(A)T (A)), which 
means that the expected number of other contributors that this contributor beats changes by 
O(ε(A)T (A) 

∑t
τ=1 πτβ(A)K(A)) = O(ε(A)T (A)). When a contributor moves up in the rank-

ings by one spot, she increases her payoff by an amount Θ(A) since there are only a finite number 
of contributors, the difference in attention between any two positions is (αj(k) − αj+1(k))A for 
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some j and k, and αj (k) −αj+1(k) > 0 for all finite j and k by assumption. Thus if a contributor 
chooses some quality q = q∗(A) + ε(A) instead of choosing quality q = q∗(A) for some in-
finitesimal amount ε(A), then the contributor changes her expected benefits by O(ε(A)T (A)A).

Thus if bA(ε(A)) denotes the difference between the expected benefits from attention that 
a contributor obtains by choosing q = q∗(A) + ε(A) instead of choosing quality q = q∗(A)

for some infinitesimal amount ε(A), then |bA(ε(A))| = O(|ε(A)T (A)A|), meaning b′
A(0) =

O(T (A)A). But in order for a contributor of type τ to not be able to profitably deviate 
from choosing quality q = q∗(A), it is necessary that b′

A(0) = c′
τ (q

∗(A)). Thus c′
τ (q

∗(A)) =
O(T (A)A).

Recall that cτ (q
∗(A)) = Ω(A). Combining this with the result in the previous paragraph 

shows that c′
τ (q∗(A))

cτ (q∗(A))
= O(T (A)). Thus if q(A) denotes a minimizer of c′

τ (q)

cτ (q)
subject to the con-

straint q ∈ [q̂(A), 1], then log c′
τ (q(A))

cτ (q(A))
is less than the value of c′

τ (q)

cτ (q)
for every q ∈ [q̂(A), 1]. 

Thus if T (A) = Θ(log c′
τ (q(A))

cτ (q(A))
), then T (A) is less than the value of c

′
τ (q)

cτ (q)
for every q ∈ [q̂(A), 1]

for sufficiently large A. From this it follows that if c′
τ (q∗(A))

cτ (q∗(A))
= O(T (A)), then q∗(A) cannot be 

in [q̂(A), 1], and q∗(A) < q̂(A) for sufficiently large A, which would contradict the fact that 
q∗(A) ≥ q̂(A) for all A in this sequence.

Now since limq→1 cτ (q) = ∞, it follows that limq→1 log cτ (q) = ∞, limq→1
d
dq

log cτ (q) =
∞, and limq→1

c′
τ (q)

cτ (q)
= ∞. Thus limA→∞ q(A) = 1 implies limA→∞ c′

τ (q(A))

cτ (q(A))
= ∞. Combin-

ing this with the results in the previous paragraphs shows that if T (A) = Θ(log c′
τ (q(A))

cτ (q(A))
), then 

{T (A)}∞A=1 is a sequence satisfying limA→∞ T (A) = ∞ such that limA→∞
∑t

τ=1 πτβτ (A)

K(A) = ∞. �
Proof of Theorem 3.5. First note that the probability that at least l agents participate goes to 
one in the limit as A → ∞. To see this, suppose by means of contradiction that there is some 
π > 0 such that there are an infinite number of values of A for which the probability that fewer 
than l agents participate is greater than π . Then for any such sufficiently large A, an agent 
obtains a strictly greater expected payoff by participating with quality 0 (and obtaining at least 
αlA attention with probability greater than π ) than by not participating at all. This contradicts 
the fact that agents do not participate with some strictly positive probability and proves that the 
probability that at least l agents participate goes to one in the limit as A → ∞. From this and 
the fact that all agents of the same type participate with the same probability, it follows that the 
probability that at least l + 1 agents participate goes to one in the limit as A → ∞ as well.

Now suppose by means of contradiction that there is some ρ < 1 such that the probability 
that at least l agents make a contribution of quality q ≥ q∗ is less than ρ for an infinite number 
of A. Let q(A) denote the smallest q in the supports of the distributions Fτ,A(q). Since there is a 
positive probability that agents make contributions of quality q < q∗, it follows that q(A) < q∗.

Now suppose an agent i deviates from participating with quality q = q(A) to participating 
with quality q∗ + ε for some small ε > 0. Note that this deviation costs an agent no more than 
cτ (q

∗ + ε) for some τ , which remains bounded and finite as A → ∞. This deviation also in-
creases the probability that agent i will be ranked ahead of some other agent j who makes a 
contribution of quality q ≤ q∗ by at least 1

2 in the limit as A → ∞ (and thus T (A) → ∞): Since 
agent i was initially choosing the lowest possible quality, agent i would initially never beat any 
other agent with probability greater than 1

2 . But when agent i chooses quality q = q∗ + ε, the 
agent now beats any other agent who makes a contribution of quality q ≤ q∗ with probability 
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arbitrarily close to 1 in the limit as A → ∞. Thus this deviation increases the probability that 
agent i will be ranked ahead of some other agent j who makes a contribution of quality q ≤ q∗
by at least 1

2 in the limit as A → ∞.
Thus if there is a positive probability that fewer than l agents make a contribution of quality 

q ≥ q∗, this deviation increases the probability that an agent will be ranked amongst the top 
l contributions by an amount that remains bounded away from zero in the limit as A → ∞. 
Thus this deviation increases an agent’s expected benefit by an unbounded amount in the limit as 
A → ∞, while the cost from this deviation remains bounded above by cτ(q

∗ + ε), which is finite 
since q∗ < 1. Therefore this is a profitable deviation, contradicting our assumption that there is 
some ρ < 1 such that the probability that at least l agents make a contribution of quality q ≥ q∗
is less than ρ for an infinite number of values of A. From this it follows that for any q∗ < 1, the 
probability that at least l agents make a contribution of quality q ≥ q∗ goes to 1 in the limit as 
A → ∞. �
Proof of Theorem 4.1. First note that no player in this game would ever choose a qual-
ity q > maxτ {c−1

τ (v(A))}, as a player could always obtain a strictly greater expected pay-
off by not participating than by participating and choosing a quality q > maxτ {c−1

τ (v(A))}. 
Thus any mixed strategy equilibrium to the game in which players are restricted to choosing 
q ∈ [0, maxτ {c−1

τ (v(A))}] is also a mixed strategy equilibrium of the original game.
Now note that this modified game in which players are restricted to choosing q ∈ [0,

maxτ {c−1
τ (v(A))}] is a symmetric game in which each player has a pure strategy space that 

is compact and Hausdorff. Also note that each player’s expected payoff in this modified game is 
continuous in the actions of the players. It thus follows from Theorem 1 of [2] that there exists a 
symmetric mixed strategy equilibrium of this modified game. This in turn implies that there is a 
symmetric mixed strategy equilibrium of the original game.

But in Theorem 4.2 we show that there cannot exist an equilibrium in which there is some type 
τ that chooses qualities drawn from a distribution Fτ(q), where Fτ (q) is not a point mass. From 
this and the previous equilibrium existence result, it follows that there must exist an equilibrium 
of the form given in the statement of the theorem. �
Proof of Theorem 4.2. Suppose by means of contradiction that there exists a symmetric mixed 
strategy equilibrium in which there is some type τ that chooses qualities drawn from a distribu-
tion Fτ (q), where Fτ (q) is not a point mass. Let qL denote the infimum of the support of Fτ (q)

and qH denote the supremum of the support of Fτ (q). Since Fτ (q) is not a point mass, qL < qH .
If �β ≡ (β1, . . . , βt ) and bτ (qi, q−i , �β) denotes the expected benefit to an agent of type τ from 

participating with quality qi when all other agents have chosen qualities q−i and participate with 
probabilities given by �β, then we know that ∂bτ

∂qi
(qi, q−i , �β) is decreasing in qi for the following 

reason: The marginal benefit from receiving an additional positive vote is smaller when mi is 
larger for any fixed values of m−i since the difference between mi+1

mi+1+∑
j 	=i mj

and mi

mi+∑
j 	=i mj

is 

decreasing in mi . Now if G(mi |qi) denotes the distribution of the values of mi given that agent 
i is producing quality qi , then q ′

i > qi implies that G(mi |q ′
i ) first order stochastically dominates 

G(mi |qi). Thus if q ′
i > qi , then the expected benefit from receiving an additional positive vote 

is smaller when an agent is producing with quality q ′
i than it is when an agent is producing with 

quality qi . From this it follows that ∂bτ

∂qi
(qi, q−i , �β) is decreasing in qi .

At the same time, we know that c′
τ (qi) is nondecreasing in qi because cτ is convex. From this 

it follows that if agents are following a mixed strategy equilibrium in which agents participate 
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with probabilities given by �β and agents of type τ choose qualities that are random draws from 
the distribution Fτ (q), then E[ ∂b

∂qi
(qL, q−i , �β)] − c′

τ (qL) > E[ ∂bτ

∂qi
(qH , q−i , �β)] − c′

τ (qH ). But 

this implies that either E[ ∂bτ

∂qi
(qL, q−i , �β)] − c′

τ (qL) > 0 or E[ ∂bτ

∂qi
(qH , q−i , �β)] − c′

τ (qH ) < 0. In 
the first case, an agent can profitably deviate by choosing a quality slightly higher than qL, and 
in the second case an agent can profitably deviate by choosing a quality slightly lower than qH . 
This contradicts the possibility that there is a symmetric mixed strategy equilibrium in which 
there is some type τ that choose qualities drawn from a distribution Fτ (q), where Fτ (q) is not a 
point mass. �
Lemma 4.1. Let βτ (A) and qτ (A) denote equilibrium participation probabilities and quality 
choices in the proportional mechanism for agents of type τ for a given A. Then c′

τ (qτ (A)) =
Θ( A∑t

τ=1 πτ qτ (A)βτ (A)K(A)
) for any type τ for which βτ (A) > 0 for sufficiently large A.

Proof.

E
[
V (mi,m−i )

∣∣ ( �β,qi, q−i )
] = E

[
v

(
mi

mi + ∑
j 	=i mj

A

) ∣∣∣∣ ( �β,qi, q−i )

]
.

Note that for a given value of k, as T goes to infinity, mi

mi+∑
j 	=i mj

= mi/T

mi/T +∑
j 	=i mj /T

con-

verges in probability to qi

qi+∑
j 	=i qj

. Now if qj = qτ for all j 	= i, where τ denotes the type corre-

sponding to agent j , then qi

qi+∑
j 	=i qj

= qi

qi+∑t
τ=1 kτ qτ

, where kτ denotes the number of participat-

ing agents of type τ . Thus as A and K(A) go to infinity, qi

qi+∑t
τ=1 kτ qτ

converges in probability 

to qi

qi+∑t
τ=1 πτ βτ (A)K(A)qτ

. Thus d
dqi

E[V (mi, m−i )|( �β, qi, �qτ )] = Θ( d
dqi

qiA

qi+∑t
τ=1 πτ βτ (A)K(A)qτ

)

for large A, K(A), and T (A). But d
dqi

qiA

qi+∑t
τ=1 πτ βτ (A)K(A)qτ

= Θ( A∑t
τ=1 πτ βτ (A)K(A)qτ

). Thus in 

equilibrium it must be the case that c′
τ (qτ (A)) = Θ( A∑t

τ=1 πτ βτ (A)K(A)qτ (A)
). �

Proof of Theorem 4.3. Note that if limA→∞ K(A)
A

= 0, then the fact that c′
τ (qτ (A)) =

Θ( A∑t
τ=1 πτ βτ (A)K(A)qτ (A)

) = Ω( A
K(A)

) for all participating types τ implies limA→∞ c′
τ (qτ (A)) =

∞ and limA→∞ qτ (A) = 1 for all participating types τ . Also note that an agent can always ob-
tain a diverging amount of attention in the limit as A → ∞ by contributing with a quality q = 1

2
because such a contribution would result in at least A

2K(A)
units of attention in expectation in 

the limit even if all other agents participate and contribute with quality q = 1. However, such a 
contribution only incurs a finite cost, so all agents strictly prefer to participate than to not partic-
ipate in the limit as A → ∞. From this it follows that βτ (A) = 1 for all types τ for sufficiently 
large A.

Now suppose that lim infA→∞ K(A)
A

> 0. In this case, if βτ (A) = 1 for some type τ for 
sufficiently large A, then the fact that c′

τ (qτ (A)) = Θ( A∑t
τ=1 πτ βτ (A)K(A)qτ (A)

) implies that 

c′
τ (qτ (A)) = Θ(1) and lim supA→∞ qτ (A) < 1 for this type τ . And if βτ (A) < 1 for some partic-

ipating type τ for some infinite subsequence of A, then cτ (qτ (A)) = Θ(
qτ (A)A∑t

τ=1 πτ βτ (A)K(A)qτ (A)
)

since an agent of type τ receives Θ(
qτ (A)A∑t

τ=1 πτ βτ (A)K(A)qτ (A)
) units of attention in expectation 

and must be indifferent between entry and exit if βτ (A) < 1. Thus for such an agent of type 
τ , it must be the case that c′

τ (qτ (A)) = Θ( 1 ), meaning c′
τ (qτ (A)) = Θ(1) if qτ (A) → 1 for 
cτ (qτ (A)) qτ (A) cτ (qτ (A))
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some infinite subsequence of A. But since limq→1 cτ (q) = ∞, limq→1 log cτ (q) = ∞ as well, 

limq→1
d
dq

log cτ (q) = ∞, and limq→1
c′
τ (q)

cτ (q)
= ∞. Thus the fact that limA→∞ qτ (A) = 1 im-

plies that limA→∞ c′
τ (qτ (A))

cτ (qτ (A))
= ∞, meaning c′

τ (qτ (A))

cτ (qτ (A))
= Θ(1) cannot hold. From this it follows 

that qτ (A) → 1 cannot hold for any infinite subsequence of A, so it must be the case that 
lim supA→∞ qτ (A) < 1 for any such type τ . Thus lim supA→∞ qτ (A) < 1 holds for all partici-
pating types τ if lim infA→∞ K(A)

A
> 0.

Finally, to prove that lim infA→∞
∑t

τ=1 πτβτ (A) > 0, suppose by means of contradiction that 
there exists some subsequence of values of A for which limA→∞

∑t
τ=1 πτβτ (A) = 0. Then if 

an agent contributes with a quality q = 1
2 , the agent would obtain a diverging amount of atten-

tion because such a contribution would result in at least A

2
∑t

τ=1 πτ βτ (A)K(A)
units of attention in 

expectation in the limit even if all other participating agents contribute with quality q = 1. How-
ever, such a contribution only incurs a finite cost, so all non-participating agents strictly prefer 
to participate than to not participate in the limit as A → ∞. This contradicts our assumption that 
there exists some subsequence of values of A for which limA→∞

∑t
τ=1 πτβτ (A) = 0 and proves 

the result. �
Lemma 5.1. The minimum value of 

∑n
i=1 x2

i subject to the constraints xi ≥ 0 and 
∑n

i=1 xi = 1
is 1

n
.

Proof. Note that subject to the constraints xi ≥ 0 and 
∑n

i=1 xi = 1, the expression 
∑n

i=1 x2
i is 

minimized when xi = 1
n

for all i. To see this, note that if xi = 1
n

+ δi for some {δi}ni=1 satisfying ∑n
i=1 δi = 0, then 

∑n
i=1 x2

i = ∑n
i=1(

1
n

+ δi)
2 = ∑n

i=1(
1
n2 + 2

n
δi + δ2

i ) = 1
n

+ ∑n
i=1 δ2

i . But 1
n

+∑n
i=1 δ2

i is minimized when δi = 0 for all i. From this it follows that the expression 
∑n

i=1 x2
i is 

minimized when xi = 1
n

for all i, and the minimum value of 
∑n

i=1 x2
i subject to the constraints 

xi ≥ 0 and 
∑n

i=1 xi = 1 is 1
n

. �
Proof of Theorem 5.1. Suppose by means of contradiction that there exists some type τ that 
participates with non-vanishing probability for which Pr(qτ,r (A) ≤ qτ,p(A)) ≥ γ > 0 for an 
infinite number of A. Restrict attention to values of A satisfying Pr(qτ,r (A) ≤ qτ,p(A)) ≥ γ , and 
define q∗(A) to be the largest quality such that Pr(qτ,r (A) < q∗(A)) ≤ γ

2 for any such A. From 
this it follows that Pr(q∗(A) ≤ qτ,r (A) ≤ qτ,p(A)) ≥ γ

2 for all A in this subsequence. We also 
know from Theorem 3.2 that limA→∞ q∗(A) = 1.

Now suppose that a contributor of type τ deviates from Fτ,A(q) by making the following 
change: if she draws a quality q ∈ [q∗(A), qτ,p(A)], then she instead chooses a quality q + ε for 
some infinitesimal amount ε > 0; if she draws a quality q /∈ [q∗(A), qτ,p(A)], then she makes 
no change to her quality. We seek to show that this is a profitable deviation for a contributor for 
sufficiently large A in the subsequence. To do this, we first show that the additional expected cost 
from this deviation is bounded above by the marginal costs of producing higher quality content in 
the proportional mechanism, and then show that the expected benefit in the ranking mechanism 
from this deviation exceeds these marginal costs.

First note that this change in quality costs a contributor of type τ an additional amount no 
greater than E[cτ (q + ε) − cτ (q)|q ∈ [q∗(A), qτ,p(A)]] which, in the limit as ε → 0, converges 
to εE[c′

τ (q)|q ∈ [q∗(A), qτ,p(A)]] ≤ εc′
τ (qτ,p(A)) = Θ(ε A ) (since βτ (A) = 1 for all types τ
K(A)
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for large A in the proportional mechanism when limA→∞ K(A)
A

= 0). Next we calculate the 
expected benefits from this increase in quality.

Suppose a contributor i of type τ chooses a quality q ∈ [q∗(A), qτ,p(A)]. (This happens with 
probability at least γ /2 > 0 by assumption.) Then there exists an infinite sequence q̂(A) such 
that limA→∞ q̂(A) = 1 and Pr(mi

T
≥ q̂(A)) ≥ 1

2 for all A. Thus if two contributors of type τ both 
choose qualities in [q∗(A), qτ,p(A)], then the probability that they both receive at least q̂(A)T

positive votes is at least 1
4 . Moreover, conditional on both receiving at least q̂(A)T positive 

votes, the probability a contributor receives any particular number of votes is the same for both 
contributors.

From Lemma 5.1, we know that if two contributors of type τ both receive at least q̂(A)T pos-
itive votes and they both receive any particular number of votes with the same probability, then 
the probability that both contributors receive an equal number of votes is at least 1

(1−q̂(A))T
. Thus 

if one contributor receives an additional vote when both receive at least q̂(A)T positive votes, 
then this additional vote increases her probability of being ranked ahead of the other contributor 
by at least 1

2(1−q̂(A))T
(since the additional vote increases the agent’s probability of being ranked 

ahead of the other agent by a factor of 1
2 ).

Now the probability both contributor i and some other contributor of type τ choose qualities 
q ∈ [q∗(A), qτ,p(A)] is at least ( γ

2 )2. And we have seen that the probability that both contributors 
receive at least q̂(A)T positive votes if they choose qualities q ∈ [q∗(A), qτ,p(A)] is at least 1

4 . 
Combining this with the results in the previous paragraph shows that an additional vote for con-
tributor i increases the probability of her being ranked ahead of a particular other contributor of 

type τ by at least ( γ
2 )2 1

4
1

2(1−q̂(A))T (A)
= γ 2

32(1−q̂(A))T (A)
. Thus an additional vote for contributor 

i also increases her probability of being ranked ahead of some particular other contributor by at 

least πτ βτ (A)∑t
τ=1 πτ βτ (A)

γ 2

32(1−q̂(A))T (A)
.

Now increasing quality by ε(A) = o( 1
T (A)

) leads to an additional positive vote with proba-
bility Θ(ε(A)T (A)). Therefore, increasing quality by ε(A) increases the probability of being 

ranked ahead of a particular other contributor by Ω(ε(A)T (A)
πτ βτ (A)∑t

τ=1 πτ βτ (A)

γ 2

32(1−q̂(A))T (A)
) =

Ω(
ε(A)

1−q̂(A)
).

This implies that a contributor’s change in expected ranking from increasing quality by ε(A)

when q ∈ [q∗(A), qτ,p(A)] is Ω(
ε(A)k

1−q̂(A)
). And moving up in the rankings by one spot increases 

one’s payoff by Θ( A

k2 ) since αj (k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus if an agent 
increases her quality by ε(A) when q ∈ [q∗(A), qτ,p(A)], then her expected benefit increases by 
an amount Ω(

ε(A)k
1−q̂(A)

A

k2 ) = Ω(
ε(A)A

(1−q̂(A))
∑t

τ=1 πτ βτ (A)K(A)
).

Thus, increasing quality by ε(A) when q ∈ [q∗(A), qτ,p(A)] leads to an additional benefit 
of Ω(

ε(A)A

(1−q̂(A))
∑t

τ=1 πτ βτ (A)K(A)
), at an additional cost of O(

ε(A)A
K(A)

). Since limA→∞ q̂(A) = 1, it 

follows that this is a profitable deviation for sufficiently large A. This contradicts the assumption 
that there is a sequence of equilibria for which Pr(qτ,r (A) ≤ qτ,p(A)) ≥ γ > 0 for an infinite 
number of A and proves the desired result. �
Proof of Example 5.1. Note that in the proportional mechanism, an agent will obtain a total 
of A units of attention if the agent obtains at least one positive vote and the other agent does not 
obtain any positive votes. An agent will obtain (i) a total of A/2 units of attention if both agents 
receive the same number of positive votes, (ii) a total of 2A/3 units of attention if she obtains 
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two positive votes and the other agent obtains one positive vote, (iii) A/3 units of attention if 
she obtains one positive vote and the other agent obtains two positive votes, and finally (iv) no 
attention at all if she does not obtain any positive votes and the other agent obtains at least one 
positive vote.

Now if agents i and j contribute with qualities qi and qj , then the probability that both agents 
obtain the same number of votes is q2

i q2
j + 4qi(1 − qi)qj (1 − qj ) + (1 − qi)

2(1 − qj )
2. The 

probability that agent i obtains at least one positive vote and the other agent does not obtain 
any positive votes is q2

i (1 − qj )
2 + 2qi(1 − qi)(1 − qj )

2; that agent i obtains two positive votes 
while agent j obtains one positive vote is 2q2

i qj (1 − qj ); and that agent i obtains one positive 
vote while agent j obtains two positive votes is 2qi(1 − qi)q

2
j . From this it follows that agent i’s 

expected utility from contributing with quality qi given that agent j contributes with quality qj

is

ui(qi;qj ) = [
q2
i q2

j + 4qi(1 − qi)qj (1 − qj ) + (1 − qi)
2(1 − qj )

2]A

2
+ [

q2
i (1 − qj )

2

+ 2qi(1 − qi)(1 − qj )
2]A

+ 2q2
i qj (1 − qj )

2A

3
+ 2qi(1 − qi)q

2
j

A

3
− c(qi)

Differentiating this expression with respect to qi gives

u′
i (qi;qj ) = [

2qiq
2
j + 4(1 − qi)qj (1 − qj ) − 4qiqj (1 − qj ) − 2(1 − qi)(1 − qj )

2]A

2
+ [

2qi(1 − qj )
2 + 2(1 − qi)(1 − qj )

2 − 2qi(1 − qj )
2]A

+ 4qiqj (1 − qj )
2A

3
+ [

2(1 − qi)q
2
j − 2qiq

2
j

]A

3
− c′(qi)

In a symmetric pure-strategy equilibrium in which both agents participate with the same qual-
ity q (if one exists), it must be the case that the above derivative is equal to zero when evaluated 
at qi = qj = q . Thus if there is a pure strategy equilibrium in which both agents contribute with 
quality q , it must be the case that

[
2q3 + 4q(1 − q)2 − 4q2(1 − q) − 2(1 − q)3]A

2
+ [

2q(1 − q)2 + 2(1 − q)3

− 2q(1 − q)2]A + 4q2(1 − q)
2A

3
+ [

2(1 − q)q2 − 2q3]A

3
= c′(q)

By simplifying the left-hand-side of this equation, it then follows that q must satisfy

1

3

[
q3 + 4q2(1 − q) + 6q(1 − q)2 + 3(1 − q)3]A = c′(q).

Further simplifying the left-hand-side of this equation then gives A[ q2

3 −q +1] = c′(q), which 

in turn implies that q must satisfy c′(q)

q2/3−q+1
= A.

Next we turn to the rank-order mechanism in which all A units of attention are awarded to the 
agent who finishes first. Note that in the rank-order mechanism, if both agents receive the same 
number of positive votes, then both agents obtain A2 units of attention in expectation. If one agent 
receives a strictly greater number of positive votes than the other agent, then the agent with the 
larger number of positive votes obtains all A units of attention, and the agent with the strictly 
lower number of positive votes obtain 0 units of attention.
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Now if agent i contributes with quality qi and agent j contributes with quality qj , then 
the probability that both agents receive the same number of positive votes is q2

i q2
j + 4qi(1 −

qi)qj (1 − qj ) + (1 − qi)
2(1 − qj )

2 and that agent i obtains a strictly larger number of positive 
votes than agent j is q2

i (1 − qj )
2 + 2qi(1 − qi)(1 − qj )

2 + 2q2
i qj (1 − qj ). From this it follows 

that if agent i contributes with quality qi and agent j contributes with quality qj , then agent i
obtains an expected utility of

ui(qi;qj ) = [
q2
i q2

j + 4qi(1 − qi)qj (1 − qj ) + (1 − qi)
2(1 − qj )

2]A

2
+ [

q2
i (1 − qj )

2

+ 2qi(1 − qi)(1 − qj )
2 + 2q2

i qj (1 − qj )
]
A − c(qi).

Differentiating this expression with respect to qi gives

u′
i (qi;qj ) = [

2qiq
2
j + 4(1 − qi)qj (1 − qj ) − 4qiqj (1 − qj ) − 2(1 − qi)(1 − qj )

2]A

2
+ [

2qi(1 − qj )
2 + 2(1 − qi)(1 − qj )

2 − 2qi(1 − qj )
2 + 4qiqj (1 − qj )

]
A

− c′(qi).

As before, in a symmetric pure-strategy equilibrium in which both agents participate with 
the same quality q (if one exists), it must be the case that the above derivative is equal to zero 
when evaluated at qi = qj = q . Thus if there is a pure strategy equilibrium in which both agents 
contribute with quality q , it must be the case that

[
q3 + 2q(1 − q)2 − 2q2(1 − q) − (1 − q)3]A + [

2(1 − q)3 + 4q2(1 − q)
]
A = c′(q).

Simplifying the left-hand side of this expression then gives [q3 + 2q(1 − q)2 + 2q2(1 − q) +
(1 − q)3]A = c′(q), which in turn simplifies to [q2 − q + 1]A = c′(q). From this it follows that 
in equilibrium, the agents contribute with quality q satisfying c′(q)

q2−q+1
= A. �

Proof of Theorem 5.2. If limA→∞ K(A)
A

= 0, then we know from Theorem 3.3 that there exists 
some sequence of values of T (A) with limA→∞ T (A) = ∞ such that βτ (A) = 1 for all types 
τ for sufficiently large A in the rank-order mechanism. We also know from Theorem 4.3 that 
βτ (A) = 1 for sufficiently large A in the proportional mechanism. From this it follows that if 
limA→∞ K(A)

A
= 0, then there exists some sequence of values of T (A) with limA→∞ T (A) = ∞

such that βτ (A) = 1 for all types τ for sufficiently large A in both the rank-order and proportional 
mechanisms.

If limA→∞ K(A)
A

	= 0, then we know from Theorem 3.4 that limA→∞ βτ (A) = 0 for all types τ
in the rank-order mechanism. We also know from Theorem 4.3 that if qτ,p(A) denotes the quality 
that an agent of type τ chooses in the proportional mechanism in equilibrium for a given A, then 
lim supA→∞ qτ,p(A) < 1, so lim supA→∞ c′

τ (qτ,p(A)) < ∞, meaning c′
τ (qτ,p(A)) = Θ(1). We 

further know from Lemma 4.1 that c′
τ (qτ,p(A)) = Θ( A∑t

τ=1 πτ qτ,p(A)βτ (A)K(A)
) for any type τ for 

which βτ (A) > 0 for sufficiently large A. From this it follows that Θ( A∑t
τ=1 πτ qτ,p(A)βτ (A)K(A)

) =
Θ(1).

But this last result means that the expected number of participants in the game,∑t
τ=1 πτβτ (A)K(A), will satisfy Θ(

∑t
τ=1 πτβτ (A)K(A)) = Θ(A) for the proportional mech-

anism. And we have seen that limA→∞ βτ (A) = 0 for all types τ in the rank-order mechanism, 
meaning the expected number of participants in the rank-order mechanism is o(A). From this it 
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follows that the expected number of participants in the rank-order mechanism becomes arbitrar-
ily small compared to the expected number of participants in the proportional mechanism in the 
limit as A → ∞. �
Proof of Theorem 5.3. To prove this it suffices to show that for any fixed strategies of the other 
players, a player’s expected payoff from choosing a given action becomes independent of T for 
large T , in both the proportional and the rank-order mechanism—if all expected payoffs are 
independent of T , best responses and equilibria must be independent of T as well. First note 
that this holds whenever a player chooses not to participate because a player’s payoff from not 
participating is always zero regardless of the value of T in both mechanisms.

Now note that this holds when a player i participates and chooses quality qi in the propor-
tional mechanism. The cost of choosing quality qi is cτ (qi) for a participant of type τ regardless 
of the value of T . The amount of attention this participant receives when the other participating 
agents participate with qualities q−i is miA

mi+∑
j 	=i mj

where mj denotes the number of positive 

votes received by agent j . For any fixed strategies of the other agents, this in turn converges in 
probability to qiA

qi+∑
j 	=i qj

, where the sum is over all agents j 	= i who participate, in the limit as 

T → ∞. Thus for any fixed strategies of the other players, a player’s expected payoff from par-
ticipating with quality qi becomes independent of T for large T in the proportional mechanism.

Finally note that this holds when a player i participates and chooses quality qi in the rank-
order mechanism. As before, the cost of choosing quality qi is cτ (qi) for a participant of type τ
regardless of the value of T . The number of agents who receive a higher rank than player i con-
verges in probability to the number of agents who participate and choose a higher quality than qi , 
and the number of agents who receive a lower rank than player i converges in probability to the 
number of agents who participate and choose a lower quality than qi . Since the number of other 
agents who choose to participate and the number of these who receive a higher rank than agent i
uniquely determine the expected amount of attention that agent i will receive, it then follows that 
for any fixed strategies of the other players, a player’s expected payoff from participating with 
quality qi becomes independent of T for large T in the rank-order mechanism as well.

These results indicate that for both the rank-order mechanism and the proportional mecha-
nism, a player’s expected payoff from any given action becomes independent of the value of T
for large T for fixed strategies of the other players. The result then follows. �
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