
Technische Universität München

Department of Mathematics

Average Percolation

Perkolation von Mittelwerten

Master’s Thesis in Cooperation with

The University of California, Berkeley

by Michael Preischl

Supervisor: Prof. Nina Gantert (TUM)

Advisors: Prof. Nina Gantert (TUM)

Prof. David Aldous (UCB)

Submission Date: 12/17/2015

Acknowledgements

In the making of this thesis I experienced a lot of support and helpfulness, at this point
I would like to mention the people I feel most indebted to.
I want to thank Professor David Aldous from the UC Berkeley not only for accepting my
request to be my supervisor during the time in California in this exchange program but
also for all the effort he put into my project and the very open-hearted way he included
me in his group of fellow researchers. To him, I owe the topic of this thesis and many
valuable pieces of advice.
In the same way, I want to thank my supervisor here at the TUM, Professor Nina Gan-
tert for all the time and work she invested to answer all my questions, make helpful
suggestions and explain every concept I struggled with. Her support and also her lec-
tures, which I found important sources of knowledge in many chapters formed the final
state of this thesis.
I would also like to thank the international coordinators of our faculty, especially Car-
ola Jumpertz, for making this exchange program happen. Her professional counselling
helped me gain experiences to cherish for a lifetime.
Last but not least I want to express my heartfelt gratitude towards my family who
always supported me in any situation thinkable.

2

I hereby declare that this thesis is my own work and that no other sources have been
used except those clearly indicated and referenced.

Munich, December 17th Michael Preischl

Contents

1 Introduction 5
1.1 Classical Percolation Theory . 6
1.2 Percolation of Averages . 7

2 Minimal Average Percolation in Tree Models 9
2.1 The d-Regular Tree . 9

2.1.1 Existence of a Critical Value . 11
2.1.2 An Upper Bound on c(d) . 18
2.1.3 A Lower Bound on c(d) . 20
2.1.4 Approximations via Monte Carlo Methods 24

2.2 Excursion: Recursive Distributional Equations 24
2.3 The Galton Watson Tree . 26
2.4 Paths Instead of Trees . 30

2.4.1 Another Upper Bound on c(d) . 34
2.4.2 Average Percolation and Polar Sets 37

3 The Complete Graph Case 39
3.1 The PWIT as a local limit of Wn . 39
3.2 Looking for Paths in Wn . 42
3.3 Looking for Trees in Wn . 46

3.3.1 Proof of the Subcritical Behaviour 47
3.3.2 Proof of the Supercritical Behaviour 50

3.4 Lower and Upper Bounds on c(0) . 51

4 Scaling Behaviour Around Criticality 53
4.1 The Idea Behind Scaling Exponents . 53
4.2 Scaling Behaviour in the Complete Graph Case 54

4.2.1 The First Attempt . 55
4.2.2 Recent Results on the Scaling Window and Phase Transitions . . 60

4

1 Introduction

Combining randomness with the spatial structure of graphs has been one of the most
interesting and fruitful branches of probability theory in the past decades. Whether we
think of the classical Erdős Rényi random graph, electrical networks or something like
the frog model, this combination usually results in a very rich mathematical theory. Fur-
thermore, most probabilistic models on graphs provide relevant real-world applications.
One of the most fascinating and thus also one of the most well-studied of those models
is the so called percolation. It was first introduced by Broadbent and Hammersley [6]
in 1957 and has spawned a series of very interesting questions, many of which are still
open today. In this thesis, we want to focus on percolation of averages which is quite
similar to percolation but in some aspects also fundamentally different. This model is
due to Aldous, who first studied it in an article in 1998 [1]. Our aim was to give a
comprehensive overview of the research that has already been done on the topic as well
as applying the model in slightly different variations to different underlying graphs. In
Chapter 3 we want to present Aldous’ paper [1] and reconstruct his results. Chapter
2 considers percolation of averages on tree models. More precisely, a phase transition
for a critical parameter value is shown and bounds on this critical threshold are stated.
This particular case has not been studied yet and although some methods are based on
Aldous’ work, most of the results in Chapter 2.1 have not been known before. Chap-
ter 2.2 wraps up Aldous’ and Bandyopadhyay’s survey about recursive distributional
equations [3] whereas Chapter 2.4 shows the connection between percolation of averages
and Branching Random Walks. Finally in Chapter 4 the concept of scaling behaviour
as well as the notion of universality from percolation theory are introduced. We then
cite a paper about the scaling behaviour of percolation of averages by Aldous [2] and
also present some very recent research on this topic by Ding [7] respectively Ding and
Goswami [8].

In the following, we want to give a short overview of the idea behind percolation as
well as some fundamental concepts. Concerning the huge amount of research that has
been done on percolation, this introduction is only able to give a very rudimentary
glimpse of the topic. For more details, we refer e.g. to Grimmett’s book [12].

5

1 Introduction

1.1 Classical Percolation Theory

We start off with an arbitrary graph G = (V,E), which consists of a vertex set V
and edges E ⊂ V × V . Next, a probability p ∈ [0, 1] is fixed and every edge e ∈ E
is independently of all other edges defined to be “open” with probability p and hence
“closed” with probability 1 − p. Now roughly speaking, classical percolation theory is
concerned with investigating the formation and size of open clusters that is, connected
components consisting of open edges. Usually, the underlying graph is of infinite or
potentially infinite size like the Z2 lattice or a Galton Watson tree. Then, a naturally
interesting question would be, whether there exists an open cluster of infinite size. In
particular, we usually fix one vertex x0 in the graph which we call the origin and then
define C(x0) to be the number of edges in the biggest open cluster containing the origin.
Next define the percolation function p 7→ θ(p) by

θ(p) := Pp(C(x0) =∞). (1.1)

For convenience, in percolation theory, the underlying graph is in most cases supposed
to be transitive which means that for every x, y ∈ V there is a bijection π : V → V with
π(x) = y and

(π(u), π(v)) ∈ E ⇔ (u, v) ∈ E ∀u, v ∈ V.

In transitive graphs, we often write C instead of C(x0) since the percolation function is
then independent of the choice of x0.

Trivially, it holds that θ(0) = 0 and θ(1) = 1, hence we define the critical value

pc := inf{p : θ(p) > 0} (1.2)

with 0 ≤ pc ≤ 1. So intuitively speaking, pc is the smallest value we can choose as the
probability to have an open edge such that we still see an infinite open cluster. This
abrupt change of behaviour in the sense of

• p < pc ⇒ There is almost surely no infinite open cluster.

• p > pc ⇒ There is an infinite open cluster with probability 1.

is called a phase transition. Note that by Kolmogorov’s 0-1 law, the probability to have
any infinite open cluster is 0 or 1, so if the probability to have an infinite open cluster
around the origin is positive, we know that there existst almost surely some infinite open
cluster.

Even though the percolation function and the critical value seem to be very natural
concepts, they turn out to be rather hard to analyze rigorously. In fact, the critical
value is only known for some special cases of underlying graphs (including the Z2 lattice
and the Galton Watson tree) and also the exact behaviour of θ(p) is unknown in most

6

1 Introduction

cases. Especially the question whether θ is continuous at the critical value and the exact
scaling behaviour of θ(p) for p ↓ pc are major points of interest in current research.

Percolation theory is however not just a theoretical construct inside mathematics but
has some very useful applications. For example, in statistical physics the connection
between the Ising model and percolation on the Z2 lattice is used to handle occuring
phase transitions (see e.g. [16]).
Another field of application includes oil drilling. If we interpret the vertices as holes in a
rock formation and the edges as intermediate rock respectively soil of differing densitiy,
we could assume that, whenever the density of the rock between two holes lies below
a certain value, then oil can flow from one hole to the other. Or to translate it in the
language of percolation theory: given a graph with independent weights on the edges,
we call an edge open, whenever its weight does not exceed some fixed value.

1.2 Percolation of Averages

Instead of the aforementioned classical percolation, we want to study a concept which
we call percolation of averages or average percolation. We start again with some graph
G, consisting of vertices V and edges E ⊂ V × V but this time we also need a weight
function

ω : E → R+

e 7→ ωe

which assigns a non-negative number to every edge. In particular, we are interested in
the case when ω is not a deterministic function but assigns independent and identically
distributed (iid) random weights to the edges. If we denote the edge weight distribution
by µ, then for any fixed value c, the probability that an arbitrary edge e satisfies ωe ≤ c
is µ([0, c]). We already noted that we get the classical percolation model with ‘success’
probability p = µ([0, c]) by defining

e open ⇔ ωe ≤ c.

So open clusters s around some vertex x0 ∈ V are connected subgraphs s = (V ′, E ′) of
G with vertex set V ′ and edge set E ′ that fulfill

x0 ∈ s and max
e∈E′
{ωe} ≤ c. (1.3)

Now to get to percolation of averages, we just replace the maximum in (1.3) by the
mean. Thus an “open” cluster s around x0 is a connected subgraph s = (V ′, E ′) of G
again with vertex set V ′ and edge set E ′ that fulfills

x0 ∈ s
1

|E ′|
∑
e∈E′

ωe ≤ c (1.4)

7

1 Introduction

Note that in contrast to classical percolation theory, these open clusters around x0 with
respect to average percolation are no longer uniquely defined.

Similarly as in the classical percolation theory we want to study the maximal size of
those open clusters. Just as before, the most interesting question seems to be the ex-
istence of infinite open clusters and we want to see whether we can define something
analogous to the percolation function in (1.1) and the critical value in (1.2).

Thinking about applications of this model, it might be sensible to look at finite graphs.
Then, instead of fixing a certain value c and asking

I) “what is the biggest open cluster with mean weight below c”

we could turn the question around and ask

II) “given a graph and a number m, what is the smallest value c such that we can find
a connected subgraph on at least m edges with mean weight not bigger than c.”

If we apply question II) to the complete graph on n vertices and set m = n − 1 , we
are dealing with the well-known task of finding minimal spanning trees (MST). So our
percolation of averages can not just be seen as a variant of classical percolation but also
as some sort of generalization of the MST problem.
In the case that the edge weights follow an exponential distribution with mean n, Frieze
[11] showed that the smallest value c from question II) applied to the complete graph
converges to ζ(3) =

∑∞
i=1 i

−3 as n→∞.
Another interesting question connected with the complete graph on n vertices is the
growth rate of the biggest open cluster in average percolation, with fixed threshold c, if
we send n→∞. This is exactly what Aldous investigated in [1] and we will look at his
results in greater detail later.

8

2 Minimal Average Percolation in Tree
Models

The reason why we want to put our focus on tree models first is twofold. On the one
hand, tree structures are always a natural first choice when examining graph related
problems as their spatial structure usually allows for recursions. Indeed, in this case the
recursive approach is so effective that, when looking at different graphs later on, we will
try to reduce them to the tree case and then apply similar techniques as in this chapter.
The second reason is the generality of statements concerning tree models. We can look
at regular trees, general trees or even random graphs like the Galton Watson tree and,
for most parts, just use the same methods over and over again.

2.1 The d-Regular Tree

Definition 2.1. Let d ≥ 3 and consider an infinite d-regular tree. That means, a con-
nected graph td = (V,E) without cycles, where every vertex has degree d. Furthermore,
assign a weight ωe to each edge e ∈ E. Here the ωe are independent and follow an
exponential distribution with mean d. Denote the resulting weighted graph by Td. In
Td choose one designated vertex to be “the root” and denote it with x0. We will adress
vertices with a distance of 1 edge to x0 as the “first generation”, vertices with a distance
of 2 edges to x0 as the “second generation” and so on.

Figure 2.1 shows an example for d = 3 with a canonical choice of labelling for the
vertices. We are now interested in finding a subgraph of Td which contains the root
(we will sometimes call this a “rooted subgraph”) and whose average weight is below a
certain value c, i.e. we are looking for t ⊂ Td with x0 ∈ t and

1

|t|
∑
e∈t

ωe ≤ c. (2.1)

Note that expressions like e ∈ t and x0 ∈ t can cause confusion since e denotes an edge,
whereas x0 is a vertex. However we believe that by context and notation (e for edges,
x for vertices) it should always be clear what kind of object is meant. By |t| we will

9

2 Minimal Average Percolation in Tree Models

x0

x03

x032

x0322x0321

x031

x...x...

x02

x022

x...x...

x021

x...x...

x01

x012

x...x...

x011

x0112x0111

Figure 2.1: The root and the first three generations of a 3-regular tree.

always denote the number of edges of t.

It is now natural to ask for the maximal size of such a subtree. In particular, we want
to study the question whether there is an infinite rooted subtree t with mean weight not
greater than c. Of course, the answer to this will depend on c. It seems intuitively clear,
that for c = 0 there will almost surely be no tree at all that fulfills (2.1) (except for the
trivial one that consists only of x0) whereas for c → ∞ it should be relatively easy to
find arbitrarily large subtrees that fulfill (2.1). This hints to the existence of a critical
value for c, where an infinite component appears. In the following, we want to provide
the rigorous arguments that will indeed confirm this conjecture and also provide some
more details about the critical value. In order to tackle the aforementioned questions,
we will look at a quantity that is somewhat more convenient when passing to the limit
|t| → ∞ in (2.1). Let

An := min

{
1

n

∑
e∈t

ωe : t is a connected subgraph of Td, |t| = n, x0 ∈ t

}
. (2.2)

Note that the set of all subtrees with size n that contain the root is finite therefore
the definition makes sense. An is a random variable, however, we will show that the
limit limn→∞An exists and is not random. Since we are always working with connected
subgraphs in this chapter, we want to write t ⊂ Td for the expression “t is a connected
subgraph of Td”.

10

2 Minimal Average Percolation in Tree Models

2.1.1 Existence of a Critical Value

Let tmax := sup{|t| : t ⊂ Td, x0 ∈ t, 1
|t|
∑

e∈t ωe ≤ c} As we will see, the probability of

the event {tmax =∞} depends on the values of c and d. In particular, we want to prove
that for every d there is a critical value c(d) such that, almost surely

c > c(d) ⇒ tmax =∞
c < c(d) ⇒ tmax <∞.

To achieve this, we use a recursive distributional equation (RDE), a trick that will be
used several times throughout the thesis.

Definition 2.2. Write M1 for the set of probability measures on [0,∞] and define
Γ∗c : M1 → M1 by saying that Γ∗c(µ) is the distribution of

∑d−1
i=1 (c − νi + Yi)

+, where
the Yi are iid with distribution µ and independent of the νi which are iid with an
exponential (mean d) distribution. Now we recursively define Γkc (µ) to be the distribution
of
∑d

i=1(c − ηi + Zi)
+ where the Zi are iid with distribution (Γ∗c)

k−1(µ) and the ηi are
again independent and also independent of the Zi and exponentially distributed with
mean d.

The following lemma gives us the existence of a fixed point c(d) of Γc that will turn
out to be the critical value we are looking for and it is also the limit of An for n→∞.
Furthermore, this characterization of c(d) will be useful for numerical simulations later
on.

Lemma 2.3. Write δx for the Dirac measure at x. There exists a critical value 0 ≤
c(d) ≤ d with the following properties

1. For c < c(d), the map Γc has a fixed point µc such that µc([0,∞)) = 1 and
Γkc (δ0)→ µc as k →∞.

2. For c > c(d), the map Γc has no fixed point except δ∞ and Γkc (δ0)→ δ∞ as k →∞.

Proof. The proof follows from monotonicity arguments. We write � for the ‘stochasti-
cally less than’ partial order on M1, i.e.

µ1 � µ2 ⇐⇒ µ1[0, x] ≥ µ2[0, x] ∀0 ≤ x ≤ ∞.

Obviously by definition, Γ∗c and therefore also Γc are increasing maps for any c > 0:

µ1 � µ2 ⇒ Γc(µ1) � Γc(µ2).

By induction, we get that Γkc (δ0) � Γk+1
c (δ0). Hence it follows that there is a limit

Γkc (δ0) ↑ µc (2.3)

11

2 Minimal Average Percolation in Tree Models

for k →∞. It is easy to see that Γc(limk→∞ Γkc (δ0)) = limk→∞ Γk+1
c (δ0) holds (note that

Γ is defined by a sum over finitely many terms so we can pull the limit out). This means
that µc := limk→∞ Γkc (δ0) is a fixed point. Assume µc(∞) = p. Now we have

(1− p) = µc([0,∞)) = Γcµc([0,∞))

= P

(
d∑
i=1

(c− ηi + Zi)
+ <∞

)
= P(Zi <∞ ∀1 ≤ i ≤ d)

= (1− p)d.

It follows that p = 0 or p = 1. This result holds for any fixed point of Γc.
Furthermore it is clear that

c1 ≤ c2 ⇒ Γc1(µ) � Γc2(µ). (2.4)

Hence we can define
c(d) := inf{c : µc(∞) = 1}

and trivially c(d) ≥ 0. To show that c(d) ≤ d, fix c > d and consider independent
random variables Y and Z where Y ∼ µ and Z = c − ν1 with ν1 ∼ exp(1

d
). Write

dist(X) for the distribution of a random variable X, then note that Γc(µ) � dist(Y +Z)
and inductively it follows that

Γkc (δ0) � dist(Z1 + · · ·+ Zk) (2.5)

with the Zi being independent copies of Z. Because of c > d, we have E[Z] = c − d =

a > 0. With the law of large numbers and (2.5) we conclude Γkc (δ0)
k→∞−→ δ∞. But this

means that c(d) ≤ d.

Now we want to establish a connection between the function Γc and our tree model. On
that account we look at the following definition and lemma.

Definition 2.4. Let T ∗d be a weighted infinite d-ary tree i.e. in contrast to the d-regular
tree, every vertex should have d children (which means every vertex except for the root
has degree d+1) and the edge weights are chosen as iid exponential (mean d+1) random
variables.

Looking at Figure 2.2a, it is obvious that any weighted d-regular tree Td as described in
Definition 2.1 consists of d independent weighted (d− 1)-ary trees T ∗d−1 as described in
Definition 2.4 which are all tied together to a common root.
We write Td,m for the d-regular tree up to generation m and, analogously, write T ∗d,m for
the d-ary tree up to generation m. So Td,m, respectively T ∗d,m contains all vertices that
have a distance of at most m edges to x0. Note that Td,m and T ∗d,m are finite trees.

12

2 Minimal Average Percolation in Tree Models

x0

x03

x032

x0322x0321

x031

x...x...

x02

x022

x...x...

x021

x...x...

x01

x012

x...x...

x011

x0112x0111

(a) The 3-regular tree T3. Here the 2-ary trees, starting at x01, x02 and x03

are drawn in orange, green and red. The edges connecting the individual
parts to one common root are the dashed lines.

x0

x03

x033

x...x...x...

x032

x...x...x...

x031

x...x...x...

x02

x023

x...x...x...

x022

x...x...x...

x021

x...x...x...

x01

x013

x...x...x...

x012

x...x...x...

x011

x...x...x...

(b) The root and the first three generations of a 3-ary tree. Note that the
blue subtree is itself again a 3-ary tree, starting one generation later.
This illustrates the induction argument from the proof of Lemma 2.5.

Figure 2.2: The difference and the connection between d-regular and d-ary trees.

13

2 Minimal Average Percolation in Tree Models

Lemma 2.5. (Γ∗c)
m(δ0) is the distribution of max{c|t| − ω(t) : t ⊂ T ∗d−1,m, x0 ∈ t},

where
ω(t) :=

∑
e∈t

ωe

is the total weight of t.
Consequently, Γmc (δ0) is the distribution of max{c|t| − ω(t) : t ⊂ Td,m, x0 ∈ t}.

Proof. Inductively for (Γ∗c)
m: The case m = 0 is obvious and then, looking at Figure

2.2b, note that the maximal value over height m subtrees can be obtained by considering
the maximal value Yi over height m−1 subtrees where each of these trees roots at one of
the d−1 children of the original root. Each of those d−1 subtrees and the corresponding
edge to the original root is added if and only if the contribution made by that branch
is positive, i.e. if c− νi + Yi > 0. The claim about Γc follows from the fact that Td can
be seen as d independent versions of T ∗d−1, tied together with independent exponentially
(mean d) distributed edges but that is exactly the Definition of Γc (See Definition 2.2
for comparison and Figure 2.2a for an illustration).

Corollary 2.6.

• For c > c(d) we find an infinite, rooted subtree t ⊂ Td with average weight less
than c with probability 1.

• For c < c(d) we cannot find an infinite, rooted subtree t ⊂ Td with average weight
less than c with probability 1.

Proof. Let c > c(d) and set
X := sup{c|t| − ω(t) : t ⊂ Td, x0 ∈ t} and Xm := max{c|t| − ω(t) : t ⊂ Td,m, x0 ∈ t}. It
holds

X = lim
m→∞

Xm =∞ a.s.

since
lim
m→∞

dist max{c|t| − ω(t) : t ⊂ Td,m, x0 ∈ t} = lim
m→∞

Γmc (δ0) = δ∞.

On the other hand, if c < c(d), we know that

X = lim
m→∞

Xm <∞ a.s.

by the same argument and the claim follows

A slightly stronger statement, which we already announced in the beginning of this
Chapter is given by the following theorem:

Theorem 2.7. Let c(d) be the critical value from Lemma 2.3, then

An
p−→ c(d).

14

2 Minimal Average Percolation in Tree Models

Proof.
Let c < c(d) and consider a random variable Zn where

Zn := max{c|t| − ω(t) : t ⊂ Td,n, x0 ∈ t}.

It clearly holds

Zn ≥ c|t| − ω(t) ∀t ⊂ Td,n, x0 ∈ t

⇐⇒ ω(t)

|t|
≥ c− Zn

|t|
∀t ⊂ Td,n, x0 ∈ t

⇒ An ≥ c− Zn
n

As c < c(d), we can use Lemma 2.3 and Lemma 2.5 to conclude limn→∞ P(Zn →∞) = 0
which then establishes

P (An ≥ c(d)− ε) n→∞−→ 1 ∀ε > 0. (2.6)

Now let c > c(d) and take n ∈ N sufficiently large. We shall construct a tree T̃ with n
edges and the desired mean weight.
For m ∈ N use again Lemma 2.3 and Lemma 2.5 to choose k such that

Γkcδ0((cm,∞]) >
1

2
. (2.7)

We use the following algorithm:

1 Set x̃0 = x0 and T̃ = ∅. Furthermore let q :=
∑k

i=1(d− 1)i.

2 Starting at x̃0, go down one generation and call the first child (at the very left) x̃.

3 Denote the d−regular tree up to generation k with root x̃ by Td,k(x̃). Look for a tree
t̃ with at least m edges and average edge weight at most c in Td,k(x̃). Because of (2.7)
the chance to succeed is at least 1

2
. If the search is successful go to 4, otherwise go to

5.

4 Set T̃ = T̃ ∪ t̃ and also add the edge (x̃0, x̃). If |T̃ | ≥ n− q go to step 6, otherwise find
the following vertex: starting at x̃ go down t̃ by always choosing the most left edge
possible. If a dead end is reached, stop and set the last visited vertex to be the new
x̃0. Now repeat at step 2.

5 Define the new x̃0 to be the second child (i.e. the second from left) of the old x̃0 and

add the edge between the new x̃0 and the old x̃0 to T̃ . If |T̃ | ≥ n − q go to step 6,
otherwise repeat at step 2.

6 Add random edges (that is, edges the algorithm has not looked at yet) until |T̃ | = n.

15

2 Minimal Average Percolation in Tree Models

It remains to show that the tree T̃ generated by this algorithm has the desired properties.
First of all, we note that the maximal number of edges that can be added in step 4 is
q + 1, so using step 6 as soon as |T̃ | ≥ n− q ensures that we don’t have to delete edges

to reach |T̃ | = n. In order to reach enough edges to begin with step 6, we need at most
dn−q
m
e ≤ n−q

m
+ 1 successful steps. As the success probability is bigger than 1

2
we won’t

need more than 3n−q
m

+ 3 attempts in the algorithm. In the end we have a tree of size
n − q − 3n−q

m
− 3 with mean weight less than c, q random edges with mean d and one

linking edge for each attempt (successful or not). Note that the algorithm has not seen
any of the linking edges, therefore they also have mean d. In total this gives:

ω(T̃)

|T̃ |
=
c(n− q − 3n−q

m
− 3) + qd+ (3n−q

m
+ 3)d

n

= c+
q(d− c)

n
+

3(d− c)
m

− 3q(d− c)
mn

+
3(d− c)

n
.

Now choose m big and we get

P (An ≤ c(d) + ε)
n→∞−→ 1 ∀ε > 0. (2.8)

Combining (2.6) and (2.8) gives An
p−→ c(d).

Having proved that An converges in probability, the question arises whether we can say
something about other modes of convergence. For this purpose, note that the sequence
(An) is uniformly integrable, that is

lim
k→∞

(
sup
n

∫
{|An|≥k

|An|dP
)
.

To show this, we use the following lemma without proof

Lemma 2.8. Assume that g : R+ → R+ is increasing with limx→∞
g(x)
x

= ∞ and that
supn E[g(|Xn|)] <∞.
Then (Xn) is uniformly integrable.

Now let X1, X2, . . . be iid exponentially distributed random variables with mean d and
write Sn :=

∑n
i=1Xi.

Choose g(x) := x2, it holds

sup
n

E[g(|An|)] ≤ sup
n

E
[
g

(
Sn
n

)]
= sup

n
E
[
S2
n

n2

]
. (2.9)

Note that

Var

(
Sn
n

)
=

Var(X1)

n
= E

[
S2
n

n2

]
− E

[
Sn
n

]2

⇒ sup
n

E
[
S2
n

n2

]
= sup

n

d2

n
+ d2 <∞. (2.10)

16

2 Minimal Average Percolation in Tree Models

Hence, by Lemma 2.8, we can follow from (2.9) and (2.10) that (An) is indeed uniformly
integrable.

Getting back to the modes of convergence, we look at the following very well-known
result

Theorem 2.9. If a sequence of random variables (Xn) is uniformly integrable and con-
verges in probability to a random variable X, then we have Xn → X in L1.

So since we already proved that An converges in probability and also showed that the
sequence in uniformly integrable, we can immediately deduce that An converges in L1. A
very similar calculation involving MSn

n
−c(d) the moment generating function of Sn

n
− c(d)

actually shows that An → c(d) in Lp for any p > 1.

Naturally, the next thing to check would be whether An also converges almost surely.
However, it turns out that this question is quite hard to answer. As a first attempt, one
can look at a slightly easier object. Define

Ãn := min

{
1

|t|
∑
e∈t

ωe : t ⊂ Td, |t| ≤ n, x0 ∈ t

}

and let Fn be the sigma algebra generated by the edge weights of the first n generations.
It is fairly easy to see that (Fn)n∈N is a filtration and that

• Ãn is Fn-measurable for all n,

• E[|Ãn|] <∞ for all n,

• E[Ãn+1|Fn] ≤ Ãn.

Hence, Ãn is a supermartingale with respect to the filtration Fn. Recall Doob’s forward
convergence theorem, which states

Theorem 2.10. Suppose Xn is a super martingale which satisfies

sup
n

E[|Xn|] <∞

Then, almost surely limn→∞Xn =: X∞ exists and E[|X∞|] <∞.

This is a classical result in martingale theory. For a proof see e.g. [9].

Since Ã1 is integrable and E[|Ãn|] ≤ E[|Ãm|] for n > m, it is clear that supn E[|Ãn|] <∞
holds, hence we know that the sequence Ãn converges almost surely and since it is dom-
inated by Ã1 we know it also converges in Lp for any p.

17

2 Minimal Average Percolation in Tree Models

Unfortunately Ãn does not really give us relevant information about the minimal average
edge weight of infinite subtrees in Td, which is what we are actually interested in and
what we described by An. Furthermore, we cannot hope to be able to apply the same
technique to An since An is not a (super)martingale.

Another possibility to show almost sure convergence of the sequence An would be to
look directly at the distribution of An and prove that the tails decay sufficiently fast for
n → ∞. To do this, define an := nAn or equivalently an

n
= An. Now we want to show

that for all ε > 0
P
(an
n
≥ c(d) + ε

)
decays exponentially in n. Then, the summation over all n would still be finite, hence
we could use the Borel Cantelli lemma to deduce limn→∞An ≤ c(d) almost surely. A
natural first attempt to achieve this would be using Markov’s inequality which yields

P
(an
n
≥ c(d) + ε

)
≤ E

[
eλan

]
e−λn(c(d)+ε)

for any λ > 0. But unfortunately it is a priori unclear that there is a λ > 0 such that
E
[
eλan

]
e−λn(c(d)+ε) decays exponentially. The problem here is that the distribution of

an is quite complicated and hence calculating the exponential moments rigorously seems
to be out of reach. It might be possible to find an upper bound on an

n
that is easier to

handle. Obviuosly, for X1, X2, . . . iid exponentially distributed the sum Sn :=
∑n

i=1 Xi

would satisfy an
n
≤ Sn

n
, however this bound is too coarse.

In conclusion, it can be said that the question for almost sure convergence of An is
not trivial and might be worth to invest further research into. In this thesis however,
we rather tried to gain more information about the critical value c(d) itself, so the next
two sections are dedicated to deriving upper and lower bounds on c(d).

2.1.2 An Upper Bound on c(d)

We can get an obvious upper bound by considering the following greedy algorithm:
Starting from the origin, always choose the edge with the smallest weight.
So in every step we have d−1 edges to choose from which means the edge weight on the
resulting graph has the distribution of mini∈[d−1](νi) where νi ∼ exp(1

d
) and the νi are

independent. Recall that the Minimum of an exp(a) random variable and an indepen-
dent exp(b) random variable is again exponentially distributed with parameter a+ b. So
in our case, we know that the edge weight on our subgraph follows an exp((d − 1) · 1

d
)

distribution and therefore has mean d
d−1

which gives us the bound c(d) ≤ d
d−1

.

We will try to find a better bound by using some percolation theory. First note that

P (Y ≤ a) =

∫ a

0

1

d
e−

1
d
xdx = 1− e−

a
d .

18

2 Minimal Average Percolation in Tree Models

So if we define in our tree all edges with a weight smaller thanor equal to a to be open,
we are in the case of bond percolation on a tree with “open’ probability 1− e−ad .

Recall that the critical probability for bond percolation on a d−regular tree equals 1
d−1

,
so the probability to have an infinite open cluster starting from the origin is positive if
and only if

1− e−
a
d >

1

d− 1
⇐⇒ a > −d log

d− 2

d− 1
(2.11)

so choose a∗ := −d log d−2
d−1

.

In this infinite open cluster, all edges have weight less than or equal to −d log d−2
d−1

so

obviously also the average edge weight of this cluster is less than or equal to −d log d−2
d−1

.
Therefore a∗ is an upper bound for c(d). Note that having a positive probability for this
rooted open cluster is sufficient since we know by our previous results, that the existence
of an infinite, rooted subtree with average weight below a certain value is a 0-1 event.
To answer the question if this bound is useful, we look at the upper bound c(d) <
d
d−1

that we already have by the greedy algorithm. A short calculation shows that

−d log d−2
d−1
≤ d

d−1
. So the new bound is indeed better than the previous one.

We can also investigate the behaviour for d→∞:

lim
d→∞
−d log

d− 2

d− 1
= . . . = 1 (2.12)

However, we still want to go a little further and try to improve our bound. We found a
cluster where every edge has a weight below a∗, but in fact we only demand the average
of the weights to be below a certain value. To make use of this we introduce the following
construction:

Given a > 0, set q := P (Y < a) where Y ∼ exp(1
d
).

Step 1: Construct a bond percolation on the d−regular tree with P (”open”) = q.
Step 2: Assign independent weights ωe to the edges according to the following rule:

• If e is open, then ωe follows an exp(1
d
) distribution conditioned on ωe < a.

• If e is closed, then ωe follows an exp(1
d
) distribution conditioned on ωe > a.

This construction assures us to have an open cluster with independent edge weights and
it is obvious that we thus constructed Td with exponential (mean d) edge weights again.
In the case that a ≥ −d log d−2

d−1
, we have q ≥ 1

d−1
and therefore with positive probability

an infinite open cluster that contains x0. We can now calculate the average weight of

19

2 Minimal Average Percolation in Tree Models

this open cluster:

lim
n→∞

E
[
Sn
n

∣∣∣∣Xi ≤ −d log
d− 2

d− 1
∀i ∈ [n]

]
=

∫ a∗

0

x
1

d
e−

1
d
x · (d− 1)dx

= . . . = d(d− 2)

(
log

(
d− 2

d− 1

)
− 1

)
+ d2 − d

So we get c(d) ≤ d(d − 2)
(
log
(
d−2
d−1

)
− 1
)

+ d2 − d. Which is again better than our

previous bounds and has the limit 1
2

for d→∞.

2.1.3 A Lower Bound on c(d)

We will try to find a lower bound for the critical value c(d) by estimating
E[|{t : |t| = n,w(t) < cn}|] where t is a subtree of the d-regular tree which contains the
root.
First, we need an estimate for the number of rooted subtrees in Td that have exactly n
edges.

Let an denote the number of rooted subtrees of a d-ary tree that contain exactly n
edges. Furthermore let bn be the number of rooted subtrees of a (d+1)-regular tree that
contain exactly n edges.

Using generating functions, it can be shown that

an =
1

n+ 1

(
d(n+ 1)

n

)
,

see e.g. [21] for a proof of this result. As we consider only d-regular trees for d ≥ 3, it
suffices to look at d-ary trees with d ≥ 2. Hence, using Stirling’s formula to approximate
the factorials we get

an =
1

n+ 1

(
d(n+ 1)

n

)
d≥2
<

1

n+ 1

(
d(n+ 1)

n+ 1

)
≈

√
d

(n+ 1)
√

2π(d− 1)(n+ 1)︸ ︷︷ ︸
≤1

(
d

(
1 +

1

d− 1

)d−1
)n+1

≤ (de)n+1. (2.13)

Because our basic model is a regular tree, we are interested in bn. It is not hard to see
that

bn = an + a0an−1 + a1an−2 + · · ·+ an−2a1 + an−1a0,

20

2 Minimal Average Percolation in Tree Models

so with (2.13) we get

bn ≤ (de)n+1 + n(de)n. (2.14)

Now we want to estimate the probability, that a given tree of size n has average edge
weight smaller than c. For this we use some large deviations theory, especially Cramér’s
Theorem which says, given a sequence Yi of iid random variables with law µ and E[Yi] =
k, and some c < k, we have

lim sup
n→∞

1

n
logP

(
Sn
n
≤ c

)
≤ − inf

x∈(−∞,c]
Λ∗µ(x).

Here, Sn denotes
∑n

i=1 Yi and Λ∗µ is the Legendre transformation of µ, i.e.

Λ∗µ(x) := sup
λ∈R

(
λx− log

(∫
eλxdµ

))
whenever

∫
eλxdµ exists and Λ∗µ is set to ∞ otherwise. So in our case of exponentially

distributed edge weights with mean d+ 1, we get∫
eλxdµ =

∫ ∞
0

1

d+ 1
e−

1
d+1

xeλxdx =
1

1− λ(d+ 1)
.

Note that we have to assume λ < 1
d+1

for this integral to be finite.

Now by calculating d
dλ

Λ∗(x) and looking for zero points of this derivative, we find that
λ = 1

d+1
− 1

x
is the only solution. After having checked that this is indeed a maximum,

we get

Λ∗µ(x) =

(
1

d+ 1
− 1

x

)
x− log

(
1

1−
(

1
d+1
− 1

x

)
(d+ 1)

)
=

x

d+ 1
+ log

d+ 1

x
− 1.

We conclude

P
(
Sn
n
≤ c

)
≤ e−n(

c
d+1

+log d+1
c
−1). (2.15)

Putting together (2.14) and (2.15), we find

E[|{t ⊂ Td+1 : |t| = n,w(t) < cn, x0 ∈ t}|] ≤
(
(de)n+1 + n(de)n

)
e−n(

c
d+1

+log d+1
c
−1)

= (de+ n)

(
de

e
c
d+1

+log d+1
c
−1

)n
.

So it holds

de

e
c
d+1

+log d+1
c
−1

< 1 ⇒ E[|{t ⊂ Td+1 : |t| = n,w(t) < cn, x0 ∈ t}|]→ 0

21

2 Minimal Average Percolation in Tree Models

which is the case iff c
d+1
− log(c) + log d+1

d
− 2 > 0. But note that c < d + 1, so we are

looking for the smaller zero point of c
d+1
− log(c) + log d+1

d
− 2.

In conclusion, this means, c(d + 1) is greater than the smaller zero point of c
d+1
−

log(c) + log d+1
d
− 2 or equivalently, c(d) ≥ c−(d), where c−(d) is the smaller zero point

of c
d
− log(c) + log d

d−1
− 2.

Again, we calculate the limit for d→∞:

lim
d→∞

c−(d) = e−2. (2.16)

The Graphics 2.3 and 2.4 show the function c
d
− log(c) + log d

d−1
− 2 for d = 4 where we

can approximately see c−(4) = 0.189.

22

2 Minimal Average Percolation in Tree Models

0 2,5 5 7,5 10 12,5 15 17,5

-2,5

2,5

5

7,5

Figure 2.3: The function y = x
d
− log(x) + log d

d−1
− 2 for d = 4. The first zero point is

c−(4).

0,1872 0,1876 0,188 0,1884 0,1888 0,1892 0,1896 0,19 0,1904 0,1908 0,1912 0,1916

-0,0012

-8⋅10-4

-4⋅10-4

4⋅10-4

8⋅10-4

0,0012

0,0016

Figure 2.4: The first zero point in detail.

23

2 Minimal Average Percolation in Tree Models

2.1.4 Approximations via Monte Carlo Methods

Whenever the exact value of some constant is hard to find, numerical simulations can
be used to find at least a good approximation.

In this particular case, it is actually quite straightforward to think of a Monte Carlo
simulation, as all one has to do is simulating the RDE from Definition 2.2. That means,
start with a vector of zeros and apply the map Γc until the fixed point is (nearly) reached.
Since we already proved in Lemma 2.3 that Γmc (δ0) converges to µc for m→∞, we can
be sure to obtain a sample that follows (almost) the distribution µc.

While this sounds very easy in theory and is indeed not very hard to implement, it
turns out that around 100000 iterations of the map Γc are needed, which corresponds to
investigating a d-regular tree up to its 100000th generation. Since this is computation-
ally very expensive, we restricted ourselves to the values d = 4, d = 5 and d = 6. The
results are shown in Table 2.1 , where we also state the upper and lower bound, as they
were calculated in the preceeding chapters.

lower bound approximated value upper bound
d = 4 0.189 0.295 0.756
d = 5 0.175 0.265 0.685
d = 6 0.167 0.249 0.645

Table 2.1: The approximated values of the critical threshold c(d) for d = 4, d = 5 and
d = 6 along with the corresponding bounds. These estimates were found
by Monte Carlo Simulations of 100000 iterations of Γc(δ0) for varying c. In
each step, 500 values were drawn to ensure the empirical distributons are
sufficiently close to the actual ones.

2.2 Excursion: Recursive Distributional Equations

At this point we want to say a few words about the method we applied to show the
existence of the critical value. We realized that the spatial structure of the tree can
be represented by a map Γc which was then checked for fixed points and convergence
behaviour.

This is a very useful technique and possible applications pop up in quite a lot of differ-
ent problems, for example in Galton Watson branching processes or statistical physics
models on trees. However, somewhat surprisingly, there is relatively few literature on
the subject and it wasn’t until 2005 that Aldous and Bandyopadhyay coined the expres-
sion recursive distributional equation. We want to follow their approach from [3] and

24

2 Minimal Average Percolation in Tree Models

introduce the notion more generally. LetM(S) be the space of probability distributions
on some measurable space (S, σ) and let (T, τ) be another measurable space. Set

T ∗ := T ×
⋃

0≤m≤∞

Sm

where Sm is the product space and the union is a disjoint union. Given a measurable
function g : T ∗ → S and a probability measure ν on T × {0, 1, 2, . . . ;∞} we can make
the following definition.

Definition 2.11. Γ(µ) is the distribution of g(η,Xi, 1 ≤ i ≤ N) with

i The (Xi, 1 ≤ i) are independent with distribution µ.

ii (η,N) has distribution ν.

iii The families (Xi, 1 ≤ i) and (η,N) are independent.

A fixed point equation of the form

X
d
= g(η,Xi, 1 ≤ i ≤ N) (2.17)

is called a recursive distributional equation (RDE).

In our previous example, N = d − 1 was fixed and η was a sequence of length N of
independent random variables but note that in particular N does not need to be finite
and can even be random, we will indeed encounter both of these cases later.

Notice that the case N = 1 corresponds to the well studied task of finding a stationary
distribution for a discrete time Markov Chain. Unfortunately for general N the stan-
dard techniques from the MC setting don’t apply, thus we have to think of other ways
to identify the limits (if existent) and to state the basin of attraction.
In many cases, existence can be deduced quite easily from monotonicity, as we did in
the previous section. Concerning attractiveness the case isn’t quite that obvious but a
very useful criterium can be gained via the contraction method [3]:

Lemma 2.12. Let M be a subset of M1(S) such that Γ maps M into M and let d be
some complete metric on M . Further suppose that

sup
µ1 6=µ2∈M

d(Γ(µ1),Γ(µ2))

d(µ1, µ2)
< 1

Then Γ has a unique fixed point µ in M whose domain of attraction is all of M .

However, as this result won’t be of immediate importance for our thesis, we don’t want
to state a proof here and also not stress on attractiveness but instead look at another
topic that we will give more attention later: the question for scaling behaviour.

25

2 Minimal Average Percolation in Tree Models

Example 2.13. Let S = R+ and let η be R-valued with E[η] = β. Fix c ∈ R and
consider the RDE

X
d
= max(0, X + η − c).

There is a solution Xc on R+ iff c > β and it is not hard to show that this solution is
given by

Xc
d
= max

j≥0

j∑
i=1

(ηi − c)

where the ηi are independent copies of η. Now a possible question to ask would be how
E[Xc] behaves for c→ β. As it turns out, for Var(η) ∈ (0,∞) it holds

E[Xc] ∼
Var(η)

2(c− β)
as c ↓ β (2.18)

which can be shown by the fact that random walks converge weakly to Brownian motions
with drift. What we will be aiming to do later is to gain a statement of the form (2.18)
for our mean weight model as well.

Although we won’t actually solve any of the occuring RDEs, they do not only give us
an existence statement about the critical value but also provide a very easy and compu-
tationally reasonable way of simulating our models as we have seen in chapter 2.1.4.

For a much more detailed look at the subject we refer to [3], a very nice application of
RDEs in the context of the frog model can be found in [14].

2.3 The Galton Watson Tree

Instead of using a deterministic d-regular tree as underlying graph structure, we could
also work on a random graph and thus add a little more complexity and generality to
our model. As we still want to make use of a tree structure, we focus on random trees,
in particular on Galton Watson trees.

A Galton Watson tree consists of one starting vertex, again called “the root” and denoted
by x0, and a given offspring distribution. That means the number of children of x0 is a
random variable, denoted by X0, with

P (X0 = j) =: pj ∀j ∈ {0, 1, 2, . . . } and
∞∑
j=0

pj = 1.

Throghout this chapter, we assume that the number of children of one single vertex is
almost surely bounded by some number N , which means pn = 0 for all n > N . We

26

2 Minimal Average Percolation in Tree Models

x0

x04

x042

x...

x...

x...

x...x...x...x...

x041

x03

x031

x...

x...

x...

x...x...

x...

x02

x023

x...

x...x...x...

x...

x022

x...

x...x...

x021

x01

x011

x...

x...x...

x...

x...

x...x...

x...x...

Figure 2.5: The root and the first four generations of a Galton Watson tree.

denote the children of the root (if there are any) by x01, . . . , x0X0 Now each child of
the root also gives birth to a random number of children X0i, i ∈ {1, . . . , X0} (which
are then grandchildren of the root), again according to the same offspring distribution.
We will use the notation x011, . . . , x01X01 for the children of the first child of the root,
x021, . . . , x02X02 for the children of the second child of the root and so on. This con-
struction is continued at each new vertex. Furthermore, the offspring of any vertex is
assumed to be independent of all other vertices. The resulting tree is often interpreted
as a family tree, which is why we call the children of the root the “first generation”
the grandchildren of the root the “second generation” and in general all vertices with
a distance of n edges to the root the n-th generation. The root itself constitutes the
zeroth generation. Obviously, a d-ary tree is just a special case of a Galton Watson tree
with the offspring distribution pj = 1 for j = d and pj = 0 otherwise.

Definition 2.14. Let u := E[X] =
∑∞

j=1 jpj be the expected offspring for any vertex.
We now assign weights to all edges of the Galton Watson tree. The weights are assumed
to be independent of each other, independent of the offspring distributions at any vertex
and they should follow an exponential distribution with mean u. We call the resulting
model the weighted Galton Watson tree and denote it by Gu. See Figure 2.5 for an
illustration of a Galton Watson tree.

We always want to assume p1 6= 1, since this would obviously result in a very trivial
tree. Note that for p0 > 0 it is possible that the tree “dies out” i.e. that after a finite
number of generations there is no offspring anymore. A standard result about Galton
Watson trees states that this extinction probability, denoted by q, satisfies

• For u ≤ 1, it holds q = 1.

27

2 Minimal Average Percolation in Tree Models

• For u > 1, it holds 0 ≤ q < 1.

To avoid the (for our purpose) uninteresting case of almost sure extinction, we always
assume u > 1, if not otherwise stated. A Galton Watson tree with u > 1 is also called
supercritical.

Just as before, we now want to examine the biggest rooted subgraphs that have an
average weight below some value c. Similarly as in the d-regular case, we consider an
RDE.

Definition 2.15. Define ΓGc : M1 → M1 by saying that ΓGc (µ) is the distribution of∑X0

i=1(c − νi + Yi)
+. Here the Yi are iid with distribution µ and independent of the

νi which are also iid and are exponentially distributed with mean u. Furthermore, X0

follows the offspring distribution of the Galton Watson tree.

This definition is obviously analogous to Definition 2.2 and it is also easy to see that
(ΓGc)m(δ0) is the distribution of max{c|t| − ω(t) : t ⊂ Gu,m}, where Gu,m is the finite
weighted Galton Watson tree up to the m-th generation.

Since in the Galton Watson case extinction will occur with positive probability, we cannot
hope to find a limit distribution µGc of (ΓGc)m(δ0) for m→∞ that fulfills µc(∞) = 0 or
1. Therefore, we first want to assume p0 = 0, i.e. every vertex has at least one child.
Looking at the definition of (ΓGc)m

(ΓGc)m(δ0) = dist

X0∑
i1=1

c− νi1 +

X0i1∑
i2=1

c− ν(1)
i2

+ · · ·+
X0i1...im−1∑

im=1

(c− ν(m)
im

)+ . . .

++

we see that by interpreting Xa as the number of children of vertex xa with some indexing
sequence a, every realisation of (ΓGc)m uniquely defines a realisation of a Galton Watson
tree up to generation m.

To prove the existence of a critical threshold, we are seeking to establish a similar result
as Lemma 2.3.

Lemma 2.16. For p0 = 0 exists a critical value 0 ≤ cG(u) with the following properties:

1. For c < cG(u), the map ΓGc has a fixed point µGc such that µGc ([0,∞)) = 1 and
(ΓGc)m(δ0)→ µGc as m→∞.

2. For c > cG(u), the map ΓGc has no fixed point except for δ∞ and
(ΓGc)m(δ0)→ δ∞ as m→∞.

Proof. It is easy to see that we still have monotonicity in both ways as before:

µ1 � µ2 ⇒ ΓGc (µ1) � ΓGc (µ2)

28

2 Minimal Average Percolation in Tree Models

and
c1 ≤ c2 ⇒ ΓGc1(µ) � ΓGc2(µ).

Therefore, we can deduce that there exists an increasing limit

(ΓGc)m(δ0) ↑ µGc as m→∞.

To establish
ΓGc (lim

m→∞
(ΓGc)m(δ0)) = lim

m→∞
(ΓGc)m+1(δ0) (2.19)

we can use monotone convergence.

Now let p := µGc (∞). As µGc is a fixed point, we have

p = µGc (∞) = ΓGc (µGc)(∞) = lim
m→∞

(ΓGc)m(∞).

Furthermore we can be sure that the number of summands in the definition of limm→∞(ΓGc)m

is infinite because we know that the underlying Galton Watson tree does not die out.
This obviously means p > 0⇒ ΓGc (µGc)(∞) = 1 which implies p = 0 or 1.

Finally we define cG(u) := inf{c : µGc (∞) = 1}.

Indeed, we could even drop the restriction p0 = 0. However the statement we get then
gives slightly less information.

Lemma 2.17. (ΓGc)m(δ0) converges for m→∞ to a probability measure µGc . Further-
more, there exists a critical value 0 ≤ cG(u) with the following properties:

1. For c < cG(u), the measure µGc fulfills µGc ([0,∞)) = 1.

2. For c > cG(u), the measure µGc fulfills µGc (∞) > 0.

The proof is basically verbatim the same as the proof of Lemma 2.16, using monotonic-
ity in two ways to show the existence of the limit. It is, however not possible to reuse
the former proof in order to show that µGc is indeed a fixed point of ΓGc and also the
assumption that µGc (∞) = 0 or q might seem very plausible but actually needs further
justification. Hence we can just define cG(u) := inf{c : µGc (∞) > 0} in the case of
possible extinction.

Of course an immediate question is, how the Galton Watson case is connected with
the deterministic trees we considered earlier. We noted that a Galton Watson tree with
offspring distribution δd is just a d-ary tree but how about a Galton Watson tree with
offspring distribution, say λ = 1

2
δ2 + 1

2
δ3? Intuitively, it seems obvious that the critical

value cGλ (2.5) of this Galton Watson tree has to lie between c(2) and c(3). The reason
why this is true is, because we can compare the distributions λ and δ2 respectively λ and
δ3 via the partial ordering �. Then, with δ2 � λ � δ3 we can use the same monotonicity

29

2 Minimal Average Percolation in Tree Models

arguments as in the proof of Lemma 2.16 to deduce c(2) ≤ cGλ (2.5) ≤ c(3). However,
finding an explicit formula for cGλ (2.5) in terms of c(2) and c(3) seems to be very hard
to find.
Unfortunately, � is just a partial ordering, which means not every pair of distributions
λ and µ has to be comparable. In the case of Galton Watson trees with non-comparable
offspring distributions λ and µ we cannot use monotonicity and it is a priori unclear
what role the means, variances and other characteristica of the two distributions play.
We tried to adress this problem in Section 2.4.2

2.4 Paths Instead of Trees

Up to now, we considered subgraphs of weighted trees and examined the formation of
clusters with small average weight. In this section we want to look only at specific
subgraphs, namely paths starting at the root. For the sake of generality, we will use the
weighted, supercritical Galton Watson tree Gu as underlying graph again.

In analogy to (2.2), we define

Bn := inf

{
1

n

∑
e∈π

ωe : π is a path in Gu which starts at x0, |π| = n

}
. (2.20)

Our aim is to get a statement about the behaviour of Bn for n → ∞. Interestingly,
this particular model has been researched before. In literature this setting is known as
branching random walk and was first studied by Hammersley [13].

In the following, we want to use some celebrated results from the field of branching
random walks to tackle the problem we are interested in. The proofs require mostly
large deviations theory and are close to those in Peres’ book [19], where in Chapter 18,
the question for the maximal displacement is adressed, whereas we are interested in Bn

which corresponds to the minimal displacement in the language of branching random
walks.

Recall that in Gu, the weights ωe on the edges are iid exponentially distributed with
mean u. For any vertex x, let πx be the unique path from x to the root x0. Obviously,

Sx :=
∑
e∈πx

ωe,

the weight of the path from x to x0 is distributed as the sum of iid exponential random
variables.
Next, we want to apply Cramér’s Theorem in a more general form than what we used
in Chapter 2.1.3.

30

2 Minimal Average Percolation in Tree Models

Theorem 2.18 (Cramér’s Theorem).
Let Y1, Y2, . . . be iid with law µ ∈M1(R). Write Sn :=

∑n
i=1 Yi.

For A ⊆ R closed, we have

lim sup
n

1

n
logP

(
Sn
n
∈ A

)
≤ − inf

x∈A
Λ∗µ(x).

For U ⊆ R open, we have

lim inf
n

1

n
logP

(
Sn
n
∈ U

)
≥ − inf

x∈U
Λ∗µ(x).

Here, the rate function

Λ∗µ(x) := sup
λ∈R

(
λx− log

(∫
eλxdµ

))
is again the Legendre transformation of the distribution µ. By the same calculation as
in Chapter 2.1.3, we find for the particular case when µ is an exponential distribution
with mean u:

Λ∗µ(x) =
x

u
+ log

u

x
− 1. (2.21)

Since we will not look at any other cases than the exponential distribution, we just want
to write Λ∗ instead of Λ∗µ. We are now ready to state the main theorem of this section.

Theorem 2.19. Let Gu be a weighted Galton Watson tree with mean u > 1 and iid
weights ωe that are exponentially distributed with mean u.Then, conditioned on the event
that Gu survives

lim
n→∞

Bn = s∗

with s∗ := inf{s : Λ∗(s) ≤ log u}.

This Theorem is actually just a special case of a much stronger statement which was
established as the result of a series of papers by Hammersley [13], Kingman [17] and
Biggins [5]. The stronger Theorem, along with the details of the more general model of
branching random walks, that also involves non-independent edge weights, can be found
in a very nice introduction by Shi [20].

Proof. We first show the lower bound, that is, we want to prove that

lim
n→∞

1

n
min

x:|πx|=n
Sx ≥ s∗. (2.22)

Let ε > 0 and let Y1, Y2, . . . be iid exponentially distributed with mean u. Write

Sn :=
n∑
i=1

Yi. (2.23)

31

2 Minimal Average Percolation in Tree Models

Applying Theorem 2.18 to the closed set {x ∈ R+ : x ≤ n(s∗ − ε)} yields

P(Sn ≤ n(s∗ − ε)) ≤ 2e−n(inf0≤x≤(s∗−ε) Λ∗µ(x)).

By the definition of s∗, we know that there is a δ > 0 such that Λ∗(s∗ − ε) > log u + δ.
Hence

P(Sn ≤ n(s∗ − ε)) ≤ 2e−n(log u+δ) = u−ne−nδ. (2.24)

Now a standard result about Galton Watson trees states that the number of vertices
in the n-th generation divided by un, the expected offspring to the n-th power, is a
martingale. Hence, if Zn denotes the number of vertices in the n-th generation, we have
E [Zn] = un. Combining this with (2.24) and using σ-subadditivity leads to

P(Sx ≤ n(s∗ − ε) for some x with |πx| = n| non-extinction︸ ︷︷ ︸
=:Cn

) ≤ un

1− q
u−ne−nδ.

Therefore
∑

n P(Cn) <∞. Using the Borel Cantelli lemma, we can conclude P(Cn holds
for infinitely many n) = 0 which means (2.22) holds almost surely.

For the upper bound, choose a > s∗ sufficiently close to s∗. Using (2.21) it is easy
to check that Λ∗(x) is strictly decreasing in an open neighbourhood of s∗. Hence we can
choose ε > 0 such that Λ∗(a) + ε < log u.
Now, for any k ≥ 1 and M ∈ [1,∞] consider the following embedded branching process

B̃(k,M):
Start at x0 and let the set of offspring of any vertex x be all its descendants w in Gu
that satisfy

• |πw| = |πx|+ k.

• Sw < Sx + ka.

• Su < Sx +M(|πu| − |πx|) for all u on the path from x to w.

So by the first two requirements, the offspring of a vertex x are all w that are k genera-
tions further down the Galton Watson tree than x and for which the mean edge weight
of the path connecting x to w is less than a. Roughly speaking, the third requirement
demands that the deviation of the mean weight along the path should be bounded. Note
that for M =∞, the last requirement is always satisfied. Figure 2.6 respectively Figure
2.7 shows a possible realisation of this embedded branching process B̃(k,M) for k = 2
and how it evolves from Gu.

32

2 Minimal Average Percolation in Tree Models

x0

w3

w7w6w5

w2w1

w4

Figure 2.6: The root and the first 4 generations
of a Galton Watson tree. All ver-
tices that fulfill the requirements of
B̃(2,M) are drawn in red.

x0

w3

w7w6w5

w2w1

w4

Figure 2.7: Here, B̃(2,M) is
exracted as a Gal-
ton Watson tree of its
own.

Obviously, B̃(k,M) is again a Galton Watson process, which means the number of
children of any two vertices x, y are independent and identically distributed. Write

E
[
|B̃(k,M)|

]
for the expected offspring of any vertex in B̃(k,M). Let Sn be again the

sum defined in (2.23). By Theorem 2.18, applied to the open set {x ∈ R+ : x < a}, it
holds

E
[
|B̃(k,∞)|

]
= ukP(Sk < ka) ≥ uk

1

2
e−k infx<a Λ∗(x).

Since Λ∗ is continuous, we have

uk
1

2
e−k infx<a Λ∗(x) ≥ 1

2
uke−k(Λ∗(a)+ε).

Hence

E
[
|B̃(k,∞)|

]
≥ 1

2
uke−k(log u−ε) > 2

for k large enough. So by choosing M sufficiently large, we get that the embedded
branching process B̃(k,M) satisfies

E
[
|B̃(k,M)|

]
> 1

which means B̃(k,M) is supercritical and therefore it survives with a positive probabil-

ity. Now the crucial step is to realize that whenever B̃(k,M) does not die out, there is
a path π in Gu, starting at x0 which has an average edge weight of at most a, or in other
words limn→∞Bn ≤ a with Bn from (2.20).

To conclude the proof of Theorem 2.19 we need the notion of inherited properties. A

33

2 Minimal Average Percolation in Tree Models

property A of a Galton Watson tree Gu is called inherited if all finite trees have property
A and the subtrees Gu(1), . . . ,Gu(X0) which are the Galton Watson trees rooted at all
the children of x0, have property A whenever Gu has property A. Inherited properties
are for example {The tree is finite} or {The number of vertices in the n-th generation
grows polynomially in n}. The following is a well known result about Galton Watson
trees. A proof can be found in Chapter 3 of [19].

Theorem 2.20. Let Gu be a supercritical Galton Watson tree. If A is inherited, then

P(A| non-extinction of Gu) ∈ {0, 1}.

It is fairly straightforward that for any a the property
A := {Gu is finite or limn→∞Bn ≤ a} is inherited. Theorem 2.20 together with the fact

that B̃(k,M) survives with a positive probability implies that

P(lim
n→∞

Bn ≤ a| non-extinction) = 1

which proves the upper bound.

2.4.1 Another Upper Bound on c(d)

At this point it is worth noting that every path is, of course, also a tree. If we compare
Definitions 2.2 and 2.20, we see that An ≤ Bn. Hence, the value s∗ from Theorem 2.19
is actually another upper bound for the critical value c(d) which we tried to estimate
in Section 2.1.2 since we already mentioned that a d-ary tree is just a special case of a
Galton Watson tree with the offspring distribution δd. Note that in T ∗d as a “deterministic
Galton Watson tree” extinction is not possible, we do not have to consider conditional
probabilities. We now want to give the calculation of limn→∞Bn = s∗ in detail.
Recall that s∗ was defined as s∗ := inf{s : Λ∗(s) ≤ log u} with

Λ∗(x) =
x

u
+ log

u

x
− 1.

Now in the case that Gu = Td∗, the expected number of offspring is obviously d. Hence,
an upper bound for the critical calue c∗(d) of the d-ary tree is the smallest solution of

x

d
+ log

d

x
− 1− log d.

Note that we are talking about d-ary trees here. In order to get a result about the
d-regular tree model we studied in Chapter 2.1 one would have to consider a weighted
Galton Watson tree with expected offspring d − 1 and edge weights that are iid expo-
nentially distributed with mean d. So the same calculation for d-regular trees yields,
that an upper bound for c(d) from Chapter 2.1 is given by the smallest solution of

x

d
+ log

d

x
− 1− log(d− 1).

34

2 Minimal Average Percolation in Tree Models

Figure 2.8 and 2.9 show the case for d = 4 and indicate an upper bound of 0, 565 for
c(4). Compared to the value from Section 2.1.2, which calculates as 0, 756, this is an
improvement.

35

2 Minimal Average Percolation in Tree Models

0 2,5 5 7,5 10 12,5 15 17,5

-2,5

2,5

5

7,5

Figure 2.8: In blue: the function y = x
d

+ log d
x
− log(d− 1)− 1 for d = 4. The first zero

point is an upper bound on c(4). For comparison, we also plotted in red the
function y = x

d
− log(x) + log

(
d
d−1

)
− 2 from Section 2.1.3. Recall that the

first zero point of the red function was c−(4), the lower bound on c(4).

0,08 0,16 0,24 0,32 0,4 0,48 0,56 0,64

-0,08

0,08

0,16

0,24

Figure 2.9: The two zero points in detail. The critical value c(4) has to be in between
the blue and the red line.

36

2 Minimal Average Percolation in Tree Models

2.4.2 Average Percolation and Polar Sets

Besides finding a formula to explicitly calculate the critical value for paths in the sense
of (2.20) for any given offspring distribution, it might be interesting to look at average
percolation from a more abstract point of view. Doing so, we also hope to gain insights
about the critical value for subtrees cG(u).

We already noted that the intuitive notion of “infinite subtrees respectively paths with
bounded mean weight” is mathematically not quite clear, hence we want to present a
slightly different interpretation. Instead of looking at Bn as introduced in (2.20)

Bn := inf

{
1

n

∑
e∈π

ωe : π is a path in Gu which starts at x0, |π| = n

}
and then taking the limit n→∞, we now look at the whole infinite tree and ask whether
there is a path π = (x0, x1, x2, . . .) starting at the root that satisfies

lim sup
n→∞

1

n

n∑
i=0

ω(i,i+1) ≤ c (2.25)

where ω(i,i+1) denotes the weight of the edge connecting xi and xi+1. The difference
between the two concepts is subtle: when we are trying to prove limn→∞Bn ≤ c we just
demand that for any (big) length n, we find some rooted path π whose mean weight is
arbitrarily close to c. When we are working with the notion of (2.25) however, we want to
find one specific rooted path whose mean weight is, in the limes superior, bounded by c.

Even so this new interpretation seems to be, at first glance, harder to study than Bn,
it can be tackled by the concept of so called polar sets for random trees. The idea
goes back to Evans [10] and attempts to characterize random trees by special sets. The
results we are interested in were published in a work by Pemantle and Peres [18] which
also gives a nice introduction to the theory of polar sets that we want to outline briefly.

Definition 2.21. Let T be an infinite, possibly random but locally finite tree with
root x0 and further vertices x1, x2, . . . labelled in breadth-first order from left to right.
Furthermore let {Xi} be a collection of iid random variables, indexed by all the vertices
of the tree except for the root. In our case, we imagine Xi to be the weight of the
unique edge that connects xi to its parent. Now for any closed set B ⊂ R∞ let P(T ;B)
denote the probability that there exists an infinite, non intersecting path x0, xi1 , xi2 , . . .
for which (Xi1 , Xi2 , . . .) ∈ B. Obviously, P(T ;B) depends on the tree T as well as on
the set B and the distribution of the Xi which we want to denote by µ. A set B with
P(T ;B) = 0 is called polar for the tree T with respect to µ. Now two trees T1 and T2

are called equipolar with respect to µ if for every closed set B ⊂ R∞ holds

B is polar for T1 with respect to µ ⇐⇒ B is polar for T2 with respect to µ.

37

2 Minimal Average Percolation in Tree Models

The following theorem tells us that Galton Watson trees with the same mean have the
same polar sets, which is the main statement (and even the title) of [18].

Theorem 2.22. Let p and p′ be the offspring distributions of two Galton Watson trees
that satisfy

∑
n npn = u =

∑
n np

′
n and p0 = p′0 = 0. If the variances of the offspring

distributions,
∑

n n
2pn and

∑
n n

2p′n are both finite, then the Pp×Pp′ probability of picking
two equipolar trees is 1.

In our case, we consider the closed sets

Bc :=

{
(a1, a2, . . .) : lim sup

1

n

n∑
i=1

ai ≤ c

}

which encodes exactly the notion of (2.25). Next, we define the critical value c̃:

c̃ := inf{c : P(Gu;Bc) > 0}.

Now by Theorem 2.22, we know that any two Galton Watson trees with the same mean
have the same critical value c̃, as long as their offspring distributions have finite variance
and satitisfy p0 = 0 respectively p′0 = 0.

Although this result only gives information about the critical value c̃ for the inter-
pretation from (2.25), it seems promising to try and adapt the concept of polar sets to
fit the notions of (2.2) and (2.20). Anyway, principles of equivalence of Galton Watson
trees have been vivid fields of interest in the past decades and exploring the stand of
average percolation in this context might be worth some further research.

38

3 The Complete Graph Case

After having studied the largest trees respectively paths with small average weight on
tree structures, we want to shift our focus to a slightly different model. Instead of an
infinite tree we now look at Cn, the complete graph on the vertex set {1, 2, . . . , n}.
Again, we assign independent weights to the edges, this time following an exponential
distribution with mean n. Call the resulting graph with random weights Wn and for
c ∈ R define

Lπ(n, c) := max{|π| : π is a path in Wn, |π|−1ω(π) ≤ c} (3.1)

and
Lt(n, c) := max{|t| : t is a tree in Wn, |t|−1ω(t) ≤ c}. (3.2)

Probably the most immediate question related to these quantities is how they behave
in the limit n → ∞. At a first glance this looks very similar to what we did in the
previous chapter, however the fact that the edge weight distribution depends on n adds
some complexity to the problem. This is also the model that Aldous first studied in
his 1998 paper [1] which started the interest in this kind of stochastic mean field model
altogether. There he was able to show that, for both path and tree, there exists a critical
value c̃(0) respectively c(0) such that Lπ(n, c) respectively Lt(n, c) makes the transition
from o(n) to Θ(n). Furthermore, [1] provides the exact critical value for the path case
which in turn has lead to a series of studies about the scaling behaviour near that critical
value. In this chapter, we want to present the central results concerning the complete
graph case and also look at some implications thereof.

3.1 The PWIT as a local limit of Wn

We start this section by introducing the so called Poisson weighted infinite tree or short
PWIT. It will serve us as a local approximation of Wn in a sense that we will define
shortly. This is the crucial idea for dealing with the complete graph case, as it turns
out that the tree structure provided by the PWIT makes it much easier to study the
questions we are interested in.

Start with a vertex x0 and call it the root. Attach to the root an infinite series of
children (x0i)i∈N. Assign weights to the edges 0 < ω(x0, x0,1) < ω(x0, x02) < . . . which

39

3 The Complete Graph Case

are the points of a Poisson rate 1 process. That means ω(x0, x01) is the time of the first
occurence of an exp(1) event, ω(x0, x02) is the time of the second occurence and so on.
At each child of the root, again attach infinitely many vertices with the same weight dis-
tribution on the edges, independently of all other edges and continue this construction
at each new vertex. The resulting infinite tree is, for obvious reasons, called Poisson
weighted infinite tree (PWIT) and we will denote it by T ∞.
Furthermore we will use T ∞k to denote the subtree that contains only the first k genera-
tions and LT ∞k the subtree that consists of the first k generations and inlcudes only the
first L children of every vertex. Clearly LT ∞k is a finite tree. What we will do now is to
construct a map that establishes the connection between LT ∞k and Wn. So first of all
look at the vertex set of LT ∞k which we will denote by LNk. It is not hard to see that

LNk = {x0} ∪ {x0i : i ∈ ∪kj=1{1, 2, . . . , L}j}.

For n large enough, we can define ϕ : LNk → {1, 2, . . . , n} inductively as follows:

• Set ϕ(x0) := 1

• For any x0...ij in LNk with parent x0...i define ϕ(x0...ij) := arg miny ω(ϕ(x0...i),y) where
the minimum is taken over all vertices in Wn that have not yet been the image of
any pervious vertex under ϕ.

As a result, we get a weighted tree LT
(n)
k inWn on the same vertex set as LT ∞k . Example

3.1 might help to visualize this construction.

Example 3.1. For this example, we set k = L = 2 and look at ϕ : 2N2 → {1, . . . , 6}.
Because |{1, . . . , 6}| < | 2N2|, we won’t be able to map every point in 2N2 and thus only
see the first steps of the construction. However, as complete graphs tend to look rather
messy for bigger n, we decided to map to {1, . . . , 6} and hope this example makes it
clear how to apply the mapping for bigger n. The edge weights in K6, the complete
graph on 6 vertices shall be given as

ω(1,2) = 3, 97 ω(1,3) = 3, 14 ω(1,4) = 2, 01 ω(1,5) = 7, 30 ω(1,6) = 1, 12

ω(2,3) = 2, 48 ω(2,4) = 4, 23 ω(2,5) = 3, 13 ω(2,6) = 1, 98 ω(3,4) = 5, 55

ω(3,5) = 2, 01 ω(3,6) = 4, 20 ω(4,5) = 1, 07 ω(4,6) = 0, 96 ω(5,6) = 8, 80.

Now by definition, we set ϕ(x0) = 1. Next we look at the neighbours of 1 and see
that (1, 6) is the edge with the minimal weight among all edges incident to 1 (we say
“6 is the cheapest neighbour”). Hence, we set ϕ(x01) = 6. For ϕ(x02), we look for the
cheapest neighbour again, but as 6 has already been used, we choose the second cheapest
neigbour and set ϕ(x02) = 4. Since we are mapping from 2N2, the next vertex waiting
to be mapped is x011. Again, we look for the cheapest neigbour, that hasn’t previously
been used and get ϕ(x011) = 2. Applying the same procedure again, we find ϕ(x012) = 3.

For the resulting subtree 2T
(6)
2 (or the first part of it) see Figure 3.1.

40

3 The Complete Graph Case

3,97

3,14 7,30

1,12

8,80

1,075,55

2,48

1

2

3

4

5

6

2,01
1,98

4,20

0,964,23

3,13

2,01

Figure 3.1: W6, the weighted, complete graph on 6 vertices. The edges of 2T
(6)
2 are

drawn in green.

Obviously the edge weights of any vertex in LT
(n)
k to its children are distributed as the

order statistics of L exponential mean n distributed random variables ηn1 < ηn2 < · · · <
ηnL. But it is not hard to show that

(ηn1 , η
n
2 , . . . , η

n
L)

d−→ (ξ1, ξ2, . . . , ξL)

for n→∞. Where ξ1 < ξ2 < · · · < ξL are the points of a rate 1 Poisson process.

So in conclusion we see that, for fixed k and L, the edge weights of LT
(n)
k , which is

a tree in Wn converge in distribution to those of LT ∞k , which is a subtree of T ∞. We
call this sense of convergence local weak convergence because it means that for big n we
can identify any finite neighbourhood around a vertex inWn with a finite neighbourhood
around the root of T ∞.

41

3 The Complete Graph Case

3.2 Looking for Paths in Wn

Equipped with the local approximation forWn we can now begin to study the quantities
defined at the beginning of this chapter. We want to start with the path case as it is
slightly easier and also because we can prove that the exact critical value equals e−1.

Theorem 3.2. Let Lp be defined as in (3.1). It holds

• For all c < e−1 we have

lim
n→∞

P(Lp(n, c) > εn) = 0

for all ε > 0.

• For all c > e−1 there is a δ(c) > 0 such that

lim
n→∞

P(Lp(n, c) > δ(c)n) = 1.

Proof. : For the subcritical case we use a counting argument, i.e. we want to determine
E [|{π : |π| = k, ω(π) ≤ ck}|] where π denotes a path inWn. Obviously, a path of length
k (in edges) is defined by an ordered tuple of vertices (v0, . . . , vk) and there are precisely
n · (n − 1) · ... · (n − k) different vertex-tuples of length k + 1 in Wn. Noting that we
do not care about the orientation of the path we can identify any two tuples that are
the reverse of each other. Denote the number of paths of length k in Wn by Nπ and we
arrive at

Nπ =
n!

2(n− k − 1)!
.

Notice that we could also allow paths where the starting vertex equals the ending ver-
tex. The number of those “rings” only differs by the last factor and leads to the same
asymptotic behaviour. We will not carry out the exact calculation for the rings but bear
in mind that our results are equally valid in the ring case.

Now for Pπ, the probability that a path of length k has total weight less than ck, we use
the representation in form of a Poisson process. Let ηi be the time between the i-th and
(i− 1)-th occurence of an exp(1

n
) distributed event. We want η1 + η2 + · · ·+ ηk ≤ ck so

at time ck we want that at least k events have occured. Hence we find

Pπ = P
(

Poisson

(
1

n
· ck
)
≥ k

)
≤
(
ck
n

)k
k!

e−
ck
n .

If we now combine our results, we find that

E [|{π : |π| = k, ω(π) ≤ ck}|] ≤ Nπ · Pπ.

42

3 The Complete Graph Case

We use Sterling’s formula n! ≈
√

2πn
(
n
e

)n
to handle the factorials. In order to avoid

ambiguities we use the bold letter π to denote the constant, whereas π denotes a path.
Luckily all the π’s cancel out very soon. We find

k−1 logE [|{π : |π| = k, ω(π) ≤ ck}|] ≤ k−1 log

(
n!

2(n− k − 1)!

(
ck

n

)k
1

k!
e−

ck
n

)
Sterling
≈ 1

k
log

1

2
+

1

k
log

(√
2πn√

2π(n− k − 1)

(n
e

)n(e

n− k − 1

)n−k−1
)

+ log
ck

n
− c

n
− 1

k
log

(
√

2πk

(
k

e

)k)
=

1

k
log

n

e
+
n− k − 1

k
log

n

n− k − 1
+ log(c) + o(1).

So we get

E [|{π : |π| = k, ω(π) ≤ ck}|] =
n

e

(
n

n− k − 1

)n−k−1

ck.

Now we can deduce

P (Lπ(c, n) > εn) ≤
∑

εn≤k≤n−1

E [|{π : |π| = k, ω(π) ≤ ck}|]

=
∑

εn≤k≤n−1

n

e

(
n

n− k − 1

)n−k−1

ck

≤ (n− 1)
n

e

(
n

n− εn− 1

)n−εn−1

cεn

= (n− 1)
n

e

(
1 +

1 + εn

n− εn− 1

)n−εn−1

cεn

for n big
≈ (n− 1)

n

e
e1+εncεn.

So we see that for c < e−1 we get

P(Lπ(c, n) > εn)
n→∞−→ 0. (3.3)

For the supercritical case we use the local correspondence between Wn and T ∞ and
therefore want to interpret T ∞ as a continuous time branching process that looks as
follows: Start with some vertex x0. Every vertex has an infinite number of children,
where the “birth” of x0i, the i-th child of x0 is distributed as ξi, the i-th point of a rate
1 Poisson process. This process is obviously equivalent to T ∞. The continuous process
is sometimes called the Yule branching process.
So for large n and any given vertex v∗ in Wn, we can identify any finite size neighbour-
hood around v∗ with a Yule process starting at v∗.

43

3 The Complete Graph Case

If we denote the maximal generation up to some time s by Gs, we have the follow-
ing result from [4]

Gs

s

s→∞−→ e a.s.. (3.4)

But how does it translate to our situation concerning paths? Thinking about it, it is
clear that we can interpret Gs as |π| and s as ω(π). So instead of (3.4) we can write

min

{
ω(π)

|π|
, π is a path in T ∞, |π| = m, x0 ∈ π

}
m→∞−→ e−1. (3.5)

For convenience, we want to use the notation π ⊂ . . . to say “π is a path in. . . ” as we
will always use the letter π for paths and t for trees we don’t have to fear ambiguities.
What we want to do now is to construct a path of order n in Wn. For this define Ψk

c

to be the distribution of max{c|π| − ω(π) : π ⊂ T ∞ up to generation k} and Ψk
c,L is the

same distribution when only the first L children of every vertex are considered. Clearly

Ψk
c,L

d−→ Ψk
c for L→∞. From (3.5) we can deduce that

Ψk
c
k→∞−→ δ∞ a.s. (3.6)

for all c > e−1.

Lemma 3.3. For e−1 < c < 1, a ∈ N and n sufficiently large, there exists an algorithm on
Wn which takes an arbitrary vertex x0 and finds vertices x1, . . . , xq−1. With probability
at least 1

2
the algorithm finds a path π ⊂ {x0, . . . , xq−1} which contains both x0 and

xq−1 and it holds c|π| − ω(π) > ca. Furthermore, the algorithm will not look at more
than the q vertices x0, . . . xq−1 and will not look at any edges that have no endpoint in
the set {x0, . . . xq−1} and q depends only on c and a.

Proof. of Lemma 3.3: Because of (3.6) we know that for every a ∈ R we can choose k
such that Ψk

c ([ca,∞]) ≥ 1
2
. Furthermore we can choose L ∈ N such that Ψk

c,L([ca,∞]) ≥
1
2
. But this means that under the assumption that for big n we have Wn = T ∞ in a

local sense, we can fix any vertex x0 in Wn and with probability at least 1
2

find a path
π originating at x0 such that c|π| − ω(π) > ca. This path obviously has at least a edges
and average edge weight at most c. As we restricted ourselves to k generations and L
children in T ∞, we considered at most q =

∑k
i=0 L

i vertices and didn’t look at any more
edges.

Here is the construction of an order n path in Wn with average weight at most c:

1 Take e−1 < c < 1 and fix an arbitrary vertex x0 in Wn. Take k and L as above such
that Ψk

c,L([ca,∞]) > 1
2

and use the algorithm from Lemma 3.3 to look for a path π
with c|π| − ω(π) > ca. Suppose the algorithm succeeds (i.e. it finds a path with

44

3 The Complete Graph Case

the desired properties), denote the q vertices that were examined during the search
with x1, . . . , xq−1 (if less than q vertices were examined during the search just include
arbitrary extra vertices).

2 Look for the vertex y0 := arg miny∈Wn\{x0,...,xq−1} ω(xq−1, y). Remove the vertices
x0, . . . , xq−1 from Wn and apply the algorithm from Lemma 3.3 again but this time
starting at y0 and c replaced by n

n−qc. This modification is necessary as we are now
looking at a complete graph on n− q vertices but the edge weights still have mean n.
Denote the q vertices that were examined during the search with y1, . . . , yq−1.

3 If the algorithm succeeds add the path and the linking edge (xq−1, y0) to π and re-
peat the previous step, that is look for the vertex z0 := arg minω(yq−1, z) where the
minimum is taken over all z ∈ Wn \ ({x1, . . . , xq−1} ∪ {y1, . . . , yq−1}) and apply the
algorithm from Lemma 3.3 again with starting point z0 and n

n−2q
c instead of c.

4 If the algorithm fails, remove the vertices y0, . . . , yq−1 from the graph and look for the
best neighbour of xq−1 in the remaining graph.
That means search for z0 := arg minω(xq−1, z) where the minimum is taken over all
z ∈ Wn \ ({x1, . . . , xq−1} ∪ {y1, . . . , yq−1}). Now apply the algorithm from Lemma 3.3
again with starting point z0 and n

n−2q
c instead of c.

5 Repeat this procedure for multiple steps. Note that in step s + 1 we look for a path
with average edge weight at most n

n−sq .

We continue for εn
q

stages with 0 < ε < 1. As the success probability was at least 1
2

we
can say that for n → ∞ at least one third of our tries, which is εn

3q
were successes. In

this case, π consists of εn
3q

single paths of size a and a linking edge between each of those

paths, resulting in a total edge number of εn
3q

(a+ 1)− 1.
All the single paths have an average edge weight of at most

c
n

n− εn
q
q

=
c

1− ε

and if we denote the average weight of the linking edges by γ, we find that the average
edge weight of the total path is at most

c

1− ε
+

γ

a+ 1
.

As for large n, γ is approximately distributed as the first success of a Poisson process
with rate 1, we can say that P (γ ≤ 3)

n→∞−→ 1 which means the average edge weight is
asymptotically

c

1− ε
+

3

a+ 1
.

Because ε and a were arbitrary, we can choose ε small and a big and thus get the desired
path with length of order n and average weight at most c+ δ.

45

3 The Complete Graph Case

3.3 Looking for Trees in Wn

Similarly as in the first chapter, we will use a recursive distributional equation to es-
tablish the critical value for trees. However, by this method we can only hope to gain
insights about T ∞ and the difficulty will then be to transfer these results to Wn. Let’s
introduce the relevant RDE first.

Definition 3.4. Let 0 < ξ1 < ξ2 < . . . be the points of a Poisson rate 1 process. Then,
for any µ ∈M1, define Γ̂c(µ) to be the distribution of

∑∞
i=1(c− ξi + Yi)

+, where the Yi
are independent with distribution µ. So Γ̂c :M1 →M1.

It’s not hard to see that we have again

(Γ̂c)
m(δ0) = dist max{c|t| − ω(t) : t ⊂ T ∞m , x0 ∈ t}.

Furthermore, we also want to introduce Γ̂c,L :M1 →M1 by saying that Γ̂c,L(µ) is the

distribution of
∑L

i=1(c− ξi + Yi)
+ with ξi and Yi as before. Consequently, it holds

(Γ̂c,L)m(δ0) = dist max{c|t| − ω(t) : t ⊂ LT ∞m , x0 ∈ t}.

Just as we did earlier, we want to define the critical value by using the map Γ̂c. For this,
look at the following lemma.

Lemma 3.5. There exists a critical value 0 ≤ c(0) ≤ 1 with the following properties

1. For c < c(0), the map Γ̂c has a fixed point µc such that µc([0,∞)) = 1 and (Γ̂c)
m(δ0)→

µc as m→∞.

2. For c > c(0), the map Γ̂c has no fixed point except for δ∞ and (Γ̂c)
m(δ0) → δ∞ as

m→∞.

Proof. : Analogously to the two similar lemmas before, we use monotonicity: It is quite
easy to see, that

µ1 � µ2 ⇒ Γ̂c(µ1) � Γ̂c(µ2)

and
c1 ≤ c2 ⇒ Γ̂c1(µ) � Γ̂c2(µ).

So by induction, we know that (Γ̂c)
m(δ0) � (Γ̂c)

m+1(δ0), which means that there exists
an increasing limit

(Γ̂c)
m(δ0) ↑ µc as m→∞.

The fact that
Γ̂c

(
lim
m→∞

(Γ̂c)
m(δ0)

)
= lim

m→∞
(Γ̂c)

m+1(δ0)

46

3 The Complete Graph Case

follows again from monotone convergence.
It is easy to see, that any measure µc which is a fixed point under Γ̂c must fulfill µc(∞) =
0 or 1. Together with the monotonicity this allows us to define

c(0) := inf{c : µc(∞) = 1}.

While c(0) ≥ 0 is obvious, the claim that c(0) ≤ 1 is again proven by noting that
for independent random variables Y and Z with Y ∼ µ and Z ∼ c − ξ1, we have
dist(Z + Y) � Γ̂c(µ). hence, for independent copies Z1, . . . , Zm of Z it holds dist(Z1 +

· · ·+Zm) � (Γ̂c)
m(δ0). Obviously, E[Z] = c− 1 so if c > 1 the law of large numbers tells

us that (Γ̂c)
m(δ0)

m→∞−→ δ∞ which means that c(0) ≤ 1.

We shall now present the main result of this section.

Theorem 3.6. Let c(0) be the critical value from Lemma 3.5. It holds

• For c < c(0) we have limn→∞ P(Lt(n, c) > εn) = 0 for all ε > 0.

• For c > c(0) there is ε(c) > 0 such that limn→∞ P(Lt(n, c) > ε(c)n) = 1.

So in other words: there is a critical threshold c(0), where the quantity Lt(n, c) makes
the transition from o(n) to Θ(n).

In the interests of clarity, we will divide the proof into two parts.

3.3.1 Proof of the Subcritical Behaviour

We start by stating a helpful lemma

Lemma 3.7. Let (tn)n∈N be a sequence of trees in Wn such that each tn contains an

edge en between two vertices v
(n)
1 and v

(n)
2 and the edge weight ω(e) is the sn-th highest

among the edge weights of all edges incident to v
(n)
1 . If limn→∞ sn =∞ then ω(tn)→∞

as n→∞.

Proof. : Let q(m, a, sn, n) be the probability that there exists a path π = v0, v1, . . . , vj
with j ≤ m in Wn, such that

i) maxi≤j ωvi−1,vi ≤ a.

ii) |{v : ωvj−1,v < ωvj−1,vj}| ≥ sn.

47

3 The Complete Graph Case

Now fix m and a. The edge weights follow an exponential distribution with mean n, so
the probability for one edge weight to be smaller than a is given by∫ a

0

1

n
e−x

1
ndx = 1− e−

a
n ≤ a

n
.

In a complete graph on n vertices the number of paths on i edges is bounded by ni,
hence the expected number of paths that fulfill i) in the definition of q can be bounded
by

m−1∑
i=0

ni
(a
n

)i
=

m−1∑
i=0

ai.

If we now consider condition ii), we see that

∣∣{v : ωvj−1,v < ωvj−1,vj}
∣∣ ≤

∣∣∣∣∣∣∣∣
v : ωvj−1,v < max

i≤j
ωvi−1,vi︸ ︷︷ ︸
=a

∣∣∣∣∣∣∣∣ .

And P(|{v : ωvj−1,v < a}| ≥ sn)
n→∞−→ P(ξsn+1 ≤ a) where ξi is again the Poisson process

with rate 1. So for each path, the probability that there is some vertex vj fulfilling
condition ii) tends to P(ξsn+1 ≤ a). We conclude that

lim sup
n→∞

q(m, a, sn, n) ≤ P(ξsn+1 ≤ a)
k−1∑
i=0

ai = 0.

Because obviously limn→∞ P(ξsn+1 ≤ a) = 0. Looking at the sequence of trees (tn)n∈N,

we see that each of them contains a path (the edge en between v
(n)
1 and v

(n)
2) which

fulfills condition ii). By what we have just shown, the probability that this edge weight
is bounded by some arbitrary number a tends to 0, therefore ω(en) and hence also ω(tn)
tends to ∞.

The statement we just proved seems rather technical and indeed we will only need it to
show the next lemma which will then lead to the subcritical behaviour.

Lemma 3.8. Let c < c(0). Take x > 0,m ≥ 1 and let N(c,m, x, n) be the set of all
vertices v ofWn such that there is some tree t containing v with the following properties

• |t| ≤ 3m.

• ω(t) ≤ c|t| − x.

Then for any ε > 0, it holds

lim sup
n→∞

P(|N(c,m, x, n)| > εn) ≤ ε−1µc([x,∞))

where µc = limm→∞(Γ̂c)
m(δ0).

48

3 The Complete Graph Case

Proof. : Let ε > 0. By the construction of the PWIT (see Section 3.1 for details) we
have

dist max{c|t| − ω(t) : t ⊂ LT
(n)
3m, x0 ∈ t} → (Γ̂c,L)3m(δ0) as n→∞

so, obviously

lim sup
n→∞

dist max{c|t| − ω(t) : t ⊂ LT
(n)
3m, x0 ∈ t, |t| ≤ 3m} � (Γ̂c,L)3m(δ0). (3.7)

It is clear that (Γ̂c,L)3m(δ0) � (Γ̂c)
3m(δ0), hence we claim

lim sup
n→∞

dist max{c|t| − ω(t) : t ⊂ Wn, 1 is in t, |t| ≤ 3m} � (Γ̂c)
3m(δ0). (3.8)

And here is why: Assume that (3.8) was not true, then, because (3.7) holds for any L
we know that the sequence of tn that yield the maximum in (3.8) satisfies the following

• Each tn contains vertices v
(n)
1 , v

(n)
2 such that the edge en that links v

(n)
1 to v

(n)
2 has

the ln-th smallest edge weight among all edges incident to v
(n)
1 where ln is some

sequence with lim supn→∞ ln =∞.

However, we can easily choose a subsequence tnk such that limk→∞ lnk = ∞. Then we
know by Lemma 3.7 that ω(tnk) → ∞ but this subsequence cannot yield any maxima
for c|tnk | − ω(tnk) as we demand |tnk | ≤ 3m. So (3.8) is true.

From (3.8) we get that

lim sup
n→∞

P(max{c|t| − ω(t) : t ⊂ Wn, 1 is in t, |t| ≤ 3m} ≥ x)

= lim sup
n→∞

P(1 ∈ N(c,m, x, n))︸ ︷︷ ︸
:=p1

≤ (Γ̂c)
3m(δ0)([x,∞)) ≤ µc([x,∞)).

Furthermore, for n large enough |N(c,m,x,n)|
n

can be interpreted as the probability that any
specific vertex is in N(c,m, x, n). Because this probability is the same for all vertices in

Wn, we have |N(c,m,x,n)|
n

n→∞−→ p1. Using the Markov inequality it follows that

lim sup
n→∞

P(|N(c,m, x, n| ≥ εn) = lim sup
n→∞

P
(
|N(c,m, x, n|

n
≥ ε

)
≤ lim sup

n→∞
ε−1E

[
|N(c,m, x, n|

n

]

≤ ε−1E

lim sup
n→∞

|N(c,m, x, n|
n︸ ︷︷ ︸

=p1

 ≤ ε−1µc([x,∞))

where we used Fatou’s lemma to exchange the limes superior with the expectation.

49

3 The Complete Graph Case

Now we are ready to prove the statement about the subcritical regime. Let m ≥ 1 and
c1 < c2 < c3 < c(0). Suppose there is a tree t∗ with |t∗| ≥ εn and ω(t∗)|t∗|−1 ≤ c1. If
n is big enough such that εn ≥ m, then we can decompose t∗ into subtrees which have
between m and 3m edges each (this is a well known result about trees which is actually
pretty easy to see by considering “worst case” trees). Looking at the decomposition of
t∗ we note that some of the subtrees may have average weight greater than c2, we call
those “heavy trees” but as the average weight of t∗ is at most c1, the number of edges in

such heavy trees is at most c1
c2
εn. So at least

(
1− c1

c2

)
εn edges of t∗ lie in “light trees”

with average edge weight smaller or less than c2. A subset of k edges of a tree is incident

to at least k + 1 different vertices, hence there are at least
(

1− c1
c2

)
εn vertices in light

subtrees with average edge weight at most c2 and a total number of edges between m
and 3m. We define x by

c2m = c3m− x.

It follows that for m ≤ |t| ≤ 3m we have c2|t| ≤ c3|t| − x. In the next step, we define
the events

A := Lt(n, c1) ≥ εn

B := |N(c3,m, x, n)| ≥
(

1− c1

c2

)
εn.

By the preceding considerations and the definition of N(c3,m, x, n), we see that A⇒ B.
Therefore

P(Lt(n, c1) ≥ εn) ≤ P
(
|N(c3,m, x, n)| ≥

(
1− c1

c2

)
εn

)
.

So with the help of Lemma 3.8 we get

lim sup
n→∞

P(Lt(n, c1) ≥ εn) ≤
(

1− c1

c2

)−1

ε−1µc3([m(c3 − c2),∞)).

But as m was arbitrary, the subcritical behaviour from Theorem 3.6 follows.

3.3.2 Proof of the Supercritical Behaviour

Similarly as we did in the proof of Theorem 3.2, we will state an algorithm that finds
subtrees in Wn with small average weight.

Lemma 3.9. Let c(0) < c, a ∈ N and n sufficiently large. Then there is an integer
q which depends solely on c and a such that there exists an algorithm on Wn which
takes an arbitrary vertex v1 and finds vertices v2, . . . vq. With probability at least 1

2

the algorithm finds a tree t ⊂ {v1, . . . vq} which contains both v1 and vq and it holds
c|π| − ω(π) > ca. Furthermore, the algorithm will not look at more than the q vertices
v1, . . . vq and will not look at any edges that have no endpoint in the set {v1, . . . vq}.

50

3 The Complete Graph Case

Proof. : The proof is essentially the same as that for Lemma 3.3, replacing “path” with
“tree”, which is why we chose not to repeat it at this point.

Using the algorithm from Lemma 3.9 we can construct an order n tree inWn with average
weight not greater than c for any c > c(0). We do not want to present the construction in
detail, as it differs only very slightly from that used to prove the supercritical behaviour
in Theorem 3.2. The full argument can be found in Aldous’ paper [1].

3.4 Lower and Upper Bounds on c(0)

Unfortunately, our proof for the behaviour of Lt(n, c) did not provide the concrete value
of the critical threshold c(0). We have seen the rather crude estimation 0 ≤ c(0) ≤ 1, in
this section we want to improve on the bounds.

In Section 3.2, we proved that the critical value for Lπ(n, c) equals e−1. As every path
is obviously also a tree, we immediately get the improved lower bound e−1 < c(0).

For the upper bound, we use a counting argument. Recall Cayley’s formula, which
says that the number of trees that can be formed out of n labelled vertices equals nn−2.
Furthermore, a tree with k edges must have k + 1 vertices, hence we arrive at

E [|{t : |t| = k, ω(t) ≤ ck}|] =

(
n

k + 1

)
(k + 1)k−1P(η1 + · · ·+ ηk︸ ︷︷ ︸

iid exp(1
n

) distributed

≤ ck)

=

(
n

k + 1

)
(k + 1)k−1P

(
Poisson

(
ck

n

)
≥ k

)
.

Now take n→∞ and k →∞. The asymptotics of the Poisson probability will be given
by the term for “= k”, which is

e−
ck
n

(
ck

n

)k
1

k!
.

Therefore we get

1

k
logE [|{t : |t| = k, ω(t) ≤ ck}|] ≤1

k
log

(
n

k + 1

)
+ log(k + 1)− 1

k
log(k − 1)

+ log

(
ck

n

)
− 1

k
log k!− c

n
.

51

3 The Complete Graph Case

Using the fact that
(
n
k+1

)
≤ nk+1

(k+1)!
, we arrive at

1

k
logE [|{t : |t| = k, ω(t) ≤ ck}|] ≤1

k
log n+

1

k
log

nk

(k + 1)!
+ log(k + 1)

+ log
ck

n
− 1

k
log k!− 1

k
log(k − 1)− c

n

=
1

k
log n+ log(ck(k + 1))− 2

k
log(k!)

− 1

k
log(k + 1)− 1

k
log(k − 1)− c

n
.

We will again use Stirling’s formula to get rid of the factorials and thus, for n big, we
can write

1

k
logE [|{t : |t| = k, ω(t) ≤ ck}|] ≤

1

k
log n+ log(ce2) + log

k + 1

k
− 1

k
log(2πk)− 1

k
log(k + 1)− 1

k
log(k − 1)− c

n
.

Now fix ε > 0 and look at εn ≤ k ≤ n. It is clear that log k+1
k
− 1

k
log(2πk)− 1

k
log(k +

1) − 1
k

log(k − 1) − c
n

= o(1) for εn ≤ k ≤ n and n → ∞. So if we choose c such that
ce2 < λ for some λ < 1, then

E [|{t : |t| = k, ω(t) ≤ ck}|] ≤ nλk εn ≤ k ≤ n.

In conclusion we get

P(Lt(n, c) > εn) ≤
∑

εn≤k≤n

E [|{t : |t| = k, ω(t) ≤ ck}|] ≤ n2λεn → 0,

which means c(0) ≥ e−2.

52

4 Scaling Behaviour Around Criticality

Once the existence of a critical value where a phase transition takes place is proved, it
is naturally interesting to investigate the exact behaviour of the model near this critical
threshold. In percolation theory this leads to defining so called scaling exponents which
we want to explain briefly.

4.1 The Idea Behind Scaling Exponents

As stated in the introduction, the important parameter for bond percolation on a graph
G is the probability p for an edge to be open and the critical value pc is the smallest
value of p for which an infinite cluster appears. Therefore we know that θ(p) = 0 for all
p < pc and θ(p) > 0 for all p > pc, here θ(p) = Pp(C = ∞) is the chance of an infinite
cluster at the origin, see (1.1) for the precise definition. So if we imagine this transition
to happen in a “smooth way”, we would expect θ(p) to go to zero for p ↓ pc. Indeed it
is assumed that the behaviour of θ(p) follows a power law with a scaling exponent β in
one of the following senses:

1. logarithmic form:

lim
p↓pc

log θ(p)

log(p− pc)
= β, (4.1)

2. bounded-ratios form: There are constants 0 < c1 < c2 < ∞ such that, uniformly
for p ≥ pc

c1(p− pc)β ≤ θ(p) ≤ c2(p− pc)β, (4.2)

3. asymptotic form: There is a constant c such that, as p ↓ pc

θ(p) = c(p− pc)β(1 + o(1)). (4.3)

The equations (4.1) - (4.3) are sometimes summarized by simply writing

θ(p) ∼ (p− pc)β as p ↓ pc. (4.4)

53

4 Scaling Behaviour Around Criticality

and then noting which of the above forms is meant. Now the somewhat surprising con-
jecture is that (4.4) is valid for any graph G in one of the three senses defined above.
That means the actual value of β may depend on G but the qualitative behaviour of
the model near criticality is quite insensitive to the underlying graph structure. This
concept is called universality and it has been one of the main fields of interest within
percolation theory in the past decades. Note that the assumption of universality comes
from numerical observations and considerations within statistical physics, where perco-
lation is a paradigm model. So, besides some special cases, there is no rigorous proof
for the existence of a scaling exponent β. Actually even a slightly weaker claim, which
is the continuity of p 7→ θ(p) has not been proved in general yet. We will look at this
“smooth transition” property for mean-weight paths in the next chapter. For a more
detailed summary of scaling behaviour and more examples of scaling exponents in clas-
sical percolation theory see [15] section 1.2.1.

4.2 Scaling Behaviour in the Complete Graph Case

Now let us, again, look at Wn, the weighted, complete graph on n vertices. The basic
question we examined in Chapter 3 was, given a c ∈ R, what is the maximal size of a path
respectively subtree of Wn such that the average weight is below c. From Theorem 3.2
we know that at the critical point c = e−1, the maximal path size makes the transition
from o(n) to Θ(n). Theorem 3.6 gives the same results for trees instead of paths but
does not provide the exact critical value c(0).
So it seems natural to define

δ(c) = lim
n→∞

E
[
max{n−1|π| : π is a path in Wn, |π|−1ω(π) ≤ c}

]
(4.5)

δ̃(c) = lim
n→∞

E
[
max{n−1|t| : t is a tree in Wn, |t|−1ω(t) ≤ c}

]
(4.6)

as deterministic functions in c. Because of the Theorems 3.2 and 3.6, we know that
δ(c) = 0 for all c ≤ e−1 and δ̃(c) = 0 for all c ≤ c(0). As we expect a “smooth”
transition, we would assume that

δ(c) −→ 0 as c ↓ e−1

and
δ̃(c) −→ 0 as c ↓ c(0).

But we could go even further and assume that these transitions satisfy a power law in
the sense of (4.4):

δ(c) ∼ (c− e−1)β as c ↓ e−1 (4.7)

δ̃(c) ∼ (c− c(0))β̃ as c ↓ c(0) (4.8)

54

4 Scaling Behaviour Around Criticality

for some scaling exponents β and β̃.
Indeed, Aldous made this conjecture in his paper [2] and also provided a convincing,
though non-rigorous numerical argument, which we want to present in the following.

4.2.1 The First Attempt

The approach we will use is known as the cavity method and it stems from statistical
physics. In their 2005 paper [3] Aldous and Bandyopadhyay give a very nice overview
of this method:

Start with a combinatorial optimization problem over some size-n random structure,
then follow these steps:

i) Formulate a “size-∞” random structure which is the n → ∞ limit in the sense of
local weak convergence.

ii) Define the relevant quantities on the size-∞ structure.

iii) Formulate a corresponding combinatorial optimization problem on the size-∞ struc-
ture.

iv) If the size-∞ structure is treelike, observe that the relevant quantities satisfy a
problem specific RDE.

v) Solve the RDE and use the unique solution to find the value of the optimization
problem on the size-∞ structure.

vi) Show that you can transfer the solution of the size-∞ problem back to a feasible
solution of the size-n problem with almost the same cost.

So the main idea is to consider the modelWn in the limit n→∞. We already identified
this limit model as the Poisson weighted infinite tree T ∞ and we have already seen that
it is somewhat better tractable than Wn. Working within T ∞ enables us to formulate
the search for the maximal size path respectively tree as an optimization problem which
can be solved using Lagrange multipliers. Unfortunately this is also one of the reasons
why this method is non-rigorous as it seems impossible to find the transformation men-
tioned in step vi).

We will concentrate on the path case in this thesis. For more details and also a similar
treatment of the tree case, we refer to [2].

55

4 Scaling Behaviour Around Criticality

To begin with, it is convenient to define

ε(δ) = lim
n→∞

E
[
min{|π|−1ω(π) : π is a path in Wn, |π| ≥ δn}

]
(4.9)

and to work with ε(δ) instead of (4.5). The analogous conjecture to (4.7) is

ε(δ) ∼ δα + e−1 as δ ↓ 0 (4.10)

with α = 1
β
.

Now we can start to follow the steps of the cavity method.

Step i):
Let’s again have a closer look at the PWIT model. From Section 3.1 we know the fol-
lowing: Choose an arbitrary vertex of Wn as the root, denote it with x0 and fix r ∈ R.
Define the r−neighbourhood of x0 as the configuration of points that are connected to
x0 via a path with a total weight of less than r. Then for n→∞, the r−neighbourhood
of x0 in Wn converges in distribution to the r−neighbourhood of the root in T ∞. This
concept of convergence is called local weak convergence.

Step ii):
As we want to study paths π with a length of order n in Wn, we need to know what is
their analogon in T ∞. If we fix r ∈ R and just consider the r− neighbourhood around
the root again, the answer seems intuitively clear: We will see several vertex disjoint
fragments of the path crossing through the r−window around the root. We will very
likely not see any of the two endpoints of the path as this probability goes to 0 with a
fixed r. Look at Figure 4.1 for a visualisation.

Step iii):
We are now ready to define the optimization problem on T ∞. We write π = {π1, π2, . . . }
for a family of vertex disjoint doubly infinite paths in T ∞ and we want to divide those
families in three sets

i E0 is the set of such families for which no path goes through the root.

ii E2 is the set of such families for which some path goes through the root.

iii E1 is the set of such families where, in addition to the doubly infinite paths, there
exists exactly one singly infinite path. This path starts at the root.

56

4 Scaling Behaviour Around Criticality

x0

Figure 4.1: A finite window around the root. The black family of paths belongs to E0,
whereas the blue family is in E2.

Considering the following objective function

b(π) = c|{v : v is a vertex in some πi}| −
∑

e:e is an edge in some πi

ωe

with the corresponding optimization problem

maximize b(π) with π ∈ E0 ∪ E2 (4.11)

will lead to the optimization problem on T ∞ that, hopefully, yields information about
the Wn case.
To see the motivation behind this particular objective function it is helpful to notice
that our actual goal, which is finding ε(δ) or in other words

min
π:π path in Wn

ω(π)

|π|
subject to |π| ≥ δn

can be reformulated, including the Lagrange multiplier c, as

max
π:π path in Wn

|π|
n
c− ω(π)

|π|
. (4.12)

Now (4.11) is clearly just the corresponding problem in the PWIT. Equation (4.12) has
a random solution πn(c) and we suppose that

n−1E [|πn(c)|] n→∞−→ δ(c) (4.13)

57

4 Scaling Behaviour Around Criticality

and

E
[
ω(πn(c))

πn(c)

]
n→∞−→ ε(c). (4.14)

Step iv):
Unfortunately, working directly with (4.11) is difficult, as b(π) is the difference of two
sums, each having value ∞. Instead we want to consider the following quantities

X = max
π∈E1

b(π)−max
π∈E0

b(π) (4.15)

Z = max
π∈E2

b(π)−max
π∈E0

b(π) (4.16)

and see if they follow any RDE. To do so, we want to note an important property of T ∞.
For each child x0i of the root, the subtree Ti which consists of x0i and all descendants
thereof has the same distribution as T ∞ itself. Furthermore the different subtrees Ti are
independent for all i.
As a consequence, the random pairs (Xi, Zi) which are defined exactly as (4.15) and
(4.16) but on Ti are distributed as (X,Z) for all i and independent of each other.

Lemma 4.1. The distribution of X from (4.15) satisfies the recursive distributional
equation

X
d
= max

i

(
c− ωei +X − Z+

)
(4.17)

where ei denotes the edge between x0 and x0i. At this point, we recall that the weights
of the edges (ωei , 1 ≤ i <∞) originating at x0 are the points of a Poisson process with
rate 1.

Proof. : Consider π1 and π0, the families in E1 and E0, where the maxima in the definition
of (4.15) are attained. Suppose π1 contains an edge from x0 to x0i. It follows that π0

and π1 are identical on all subtrees Tj with j 6= i or in other words, everywhere except
for Ti and the edge ei which links x0 to x0i. So looking at the tree structure, we realise
that

X = max
π∈E1(i)

b(π)− max
π∈E2(i)∪E0(i)

b(π)

here E1(i), E2(i) respectively E0(i) denote the sets E1, E2 and E0 on Ti. But it is also
obvious that by definition

Xi = max
π∈E1(i)

b(π)− max
π∈E0(i)

b(π)

Z+
i = max

π∈E2(i)∪E0(i)
b(π)− max

π∈E0(i)
b(π).

So taking into account the edge ei, we see that X
d
= maxi(c−ωei +Xi−Z+

i) and since we
already noted that (Xi, Zi) has the same distribution as (X,Z), the lemma follows.

58

4 Scaling Behaviour Around Criticality

The next lemma tells us that we can find a similar recursion for Z.

Lemma 4.2. The distribution of Z from (4.16) satisfies the recursive distributional
equation

Z
d
= max

i

(
c− ωei +X − Z+

)
+ max

i

[2]
(
c− ωei +X − Z+

)
(4.18)

where max
[2]
i denotes the second maximum.

Proof. : If we interpret the doubly infinite path through the root as two singly infinite
paths starting in the root, we can use the same argumentation as in the proof of Lemma
4.1 except that there is obviously just one maximum, which is why the second path has
to be chosen as the second maximum.

From (4.13) we see that δ(c) is simply the proportion of vertices in the optimal solution
to (4.11). If we consider again the procedure that took us from Wn to the T ∞, we
realise that the root was chosen at random in Wn, so the root is also a typical vertex of
T ∞. This means we can identify expectations at the root with averages over all vertices.
Hence δ(c) is just the probability that the optimal π in (4.11) contains a path trough
the root. This happens if and only if Z > 0, which means that

δ(c) = P (Z > 0). (4.19)

To derive an equation for ε(c), we note that, again by the “typical vertex” property the
mean edge length over all edges in the optimal family equals the mean edge length over
the edges at the root in the optimal family, conditioned on the root being used. As
already mentioned, using the root means Z > 0 and in that case the lengths of the two
edges in the root are ω(eI) and ω(eJ), where

I = arg max
i

(c− ωei +Xi − Z+
i)

J = arg max
i

[2](c− ωei +Xi − Z+
i).

In conclusion we get

ε(c) =
E
[

1
2
(ωeI + ωeJ)1Z>0

]
δ(c)

. (4.20)

Step v):
Solving RDEs is a quite hard task. However, a pretty good numerical approximation
can be achieved relatively easy by using a bootstrap Monte Carlo method, similarly as
we did in Chapter 2.1.4. Just as Aldous did in [2], we represented the distribution of
(X,Z) by 1000000 points and iterated the RDE 1000 times while considering only the
first 20 points of the Poisson process (ωei , 1 ≤ i <∞). The results of our simulation are
shown in Table 4.1. In Figure 4.2, we plotted the δ-ε pairs from our simulations and in
red added a plot of the function ε = 0.31δ

1
3 + e−1 and looking at the data, it seems as

59

4 Scaling Behaviour Around Criticality

the claim of the scaling behaviour in Equation (4.10) and hence also Equation (4.7) is
validated with β = 3 and a constant of proportionality of 0.31.

We noted before that the transformation back to the size-n problem was missing. That
means, we didn’t actually proof the existence of the postulated scaling exponent. In-
deed, despite the promising results from this non-rigorous method, the claim about the
scaling behaviour of paths is wrong as we shall see in the next section.

c δ ε
0.5 0.0250 0.4613
0.48 0.0171 0.4491
0.46 0.0105 0.4361
0.44 0.0053 0.4219
0.43 0.0035 0.4152
0.42 0.0020 0.4068
0.41 0.0011 0.3999

Table 4.1: The simulated values of δ
and ε, as well as the corre-
sponding values of c.

0.005 0.010 0.015 0.020 0.025

0.
40

0.
41

0.
42

0.
43

0.
44

0.
45

0.
46

δ

ε

Figure 4.2: The simulated values (cir-
cles) and the postulated
scaling behaviour (red line).

4.2.2 Recent Results on the Scaling Window and Phase Transitions

As already mentioned, the conjectures about the scaling behaviour of longest paths in
Wn are not correct. Indeed there is a lot more complexity involved and it even turns out
that there is yet another phase transition in the supercritical regime. In the following
we want to present the results of Ding about the critical regime [7] (2013) as well as the
results of Ding and Goswami about the near-supercritical regime [8] (2015).

While the function δ we examined previously incorporates the behaviour of n−1Lπ(n, c),
Ding chose a different scaling and decided to look at log(n)−3Lπ(n, c) instead. Then he
was able to show (see [7] Theorem 1.1) that if c(n) is chosen in a window of ±a log(n)−2

around e−1 for a certain constant a > 0, the probability that log(n)−3Lπ(n, c(n)) is in
some interval [k,K] for constants k,K > 0, converges to 1 as n→∞. At this point we
want to remark that we use the notation c(n) to indicate that we are not dealing with an
apriori fixed constant but rather choose c(n) dynamically, i.e. it varies as n gets large.

60

4 Scaling Behaviour Around Criticality

The proof looks at typical paths of fixed length and small average weights and then uses
a second moment method to control the maximal deviation. For more details, we refer
to Ding’s work [7].

So we know that Lπ(n, c(n)) is of order log(n)3 for c(n) in an interval of length a2(log n)−n

around e−1. But interestingly, there is also another constant b > a and K ′ ∈ R+ such
that

P(n
1
4 ≤ Lπ(n, c(n)) ≤ K ′n(c(n)− e−1))

n→∞−→ 1

for c(n) ≥ e−1 + b(log n)−2 (see [7] Theorem 1.2 for the statement and also the corre-
sponding proof). In particular, this means that, in addition to the critical point e−1

where Lπ(n, c) makes the transition from o(n) to Θ(n), there is another critical point
somewhere in the shrinking interval e−1 + [a(log n)−2, b(log n)−2] where Lπ(n, c) makes
the transition from Θ((log n)3) to Θ(n).

We see that in the critical regime, with the “dynamical” threshold c(n), the search for
the longest paths with small average weight offers a pretty rich and diversified scaling
behaviour. Now let’s focus on the near-supercritical scaling laws again. In the preceding
Section 4.2.1 we have seen a non-rigorous argumentation for the existence of a scaling
exponent β such that

Lπ(n, c)

n
∼ (c− e−1)β.

This conjecture however, was corrected by Ding and Goswami (see [8] Theorem 1.1) by
proving the existence of absolute constants k∗ > 0, K∗ > 0 and η∗ > 0 such that for
c = e−1 + η with η ≤ η∗ it holds

lim
n→∞

P(ne
−K∗√
η ≤ Lπ(n, c) ≤ ne

−k∗√
η) = 1

or in other words
Lπ(n, c)

n
∼ e

−K∗√
η .

To summarize the above, in total we have the following results for the scaling behaviour
of Lπ(n, c), the longest path length with average edge weight below c in Wn:

• There is a phase transition at e−1, which means for c < e−1 fixed, L(n, c) is of
order o(n) whereas for c > e−1 fixed, L(n, c) is of order Θ(n).

• There are absolute constants a, k,K > 0 such that if we choose c(n) inside the
shrinking intervall e−1±a(log n)−2 we will have Lπ(n, c(n)) ∈ [k(log n)3, K(log n)3]
with probability 1 as n→∞.

• There are absolute constants b > a, K ′ such that if we choose c(n) > e−1 +

b(log n)−2 we will have Lπ(n, c(n)) ∈
[
n

1
4 , K ′n(c(n)− e−1)

]
with probability 1 as

n→∞.

61

4 Scaling Behaviour Around Criticality

• There are absolute constants k∗, K∗, η∗ such that if we choose c = e−1 + η fixed

with 0 < η < η∗ we will have Lπ(n, c) ∈
[
ne
−K∗√
η , ne

−k∗√
η

]
with probability 1 as

n→∞.

A somewhat more visual overview of the different regimes is given in Figure 4.3.

0 1

e−1 + b(log n)−2

e−1

±a(log n)−2

c(n) is chosen dynamically in
the shrinking interval e−1 ± a(log n)−2

⇒ Lπ(n, c(n)) ∈ [k(log n)3, K(log n)3]

c(n) is chosen dynamically in
the expanding interval [e−1 + b(log n)−2,∞)

⇒ Lπ(n, c(n)) ∈
[
n

1
4 , K ′n(c(n)− e−1)

]

e−1 + η∗

c = e−1 + η is fixed with η < η∗

⇒ Lπ(n, c) ∈
[
ne
−K∗√
η , ne

−k∗√
η

]

Figure 4.3: An illustration of the scaling behaviour in the different regimes. Note that
in the green interval it is possible and in the blue interval even necessary
that we choose c(n) arbitrarily close to e−1 as n goes to infinity.

62

Bibliography

[1] Aldous, D. : On the critical value for ‘percolation’ of minimum-weight trees in
the mean-field distance model. In: Combinatorics, Probability and Computing 7
(1998), Nr. 01, S. 1–10

[2] Aldous, D. : Percolation–like scaling exponents for minimal paths and trees in
the stochastic mean field model. In: Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences Bd. 461 The Royal Society, 2005,
S. 825–838

[3] Aldous, D. ; Bandyopadhyay, A. : A survey of max-type recursive distributional
equations. In: Annals of Applied Probability (2005), S. 1047–1110

[4] Aldous, D. ; Pitman, J. : The asymptotic speed and shape of a particle system.
In: Probability Statistics and Analysis (1983), S. 1–23

[5] Biggins, J. : The first-and last-birth problems for a multitype age-dependent
branching process. In: Advances in Applied Probability (1976), S. 446–459

[6] Broadbent, S. ; Hammersley, J. : Percolation processes. In: Mathematical
Proceedings of the Cambridge Philosophical Society Bd. 53 Cambridge Univ Press,
1957, S. 629–641

[7] Ding, J. : Scaling window for mean-field percolation of averages. In: The Annals
of Probability 41 (2013), Nr. 6, S. 4407–4427

[8] Ding, J. ; Goswami, S. : Percolation of averages in the stochastic mean field
model: the near-supercritical regime. In: arXiv preprint arXiv:1501.03579 (2015)

[9] Doob, J. : Classical Potential Theory and Its Probabilistic Counterpart: Advanced
Problems. Bd. 262. Springer Science & Business Media, 2012

[10] Evans, S. : Polar and nonpolar sets for a tree indexed process. In: The Annals of
Probability (1992), S. 579–590

[11] Frieze, A. : On the value of a random minimum spanning tree problem. In:
Discrete Applied Mathematics 10 (1985), Nr. 1, S. 47–56

63

Bibliography

[12] Grimmett, G. : What is Percolation? Springer, 1999

[13] Hammersley, J. : Postulates for subadditive processes. In: The Annals of Prob-
ability (1974), S. 652–680

[14] Hoffman, C. ; Johnson, T. ; Junge, M. : Recurrence and transience for the frog
model on trees. In: arXiv preprint arXiv:1404.6238 (2014)

[15] Hofstad, R. van d.: Percolation and random graphs. In: New perspectives in
stochastic geometry (2010), S. 173–247

[16] Hu, C.-K. : Percolation, clusters, and phase transitions in spin models. In: Physical
Review B 29 (1984), Nr. 9, S. 5103

[17] Kingman, J. : The first birth problem for an age-dependent branching process.
In: The Annals of Probability (1975), S. 790–801

[18] Pemantle, R. ; Peres, Y. : Galton-Watson trees with the same mean have the
same polar sets. In: The Annals of Probability (1995), S. 1102–1124

[19] Peres, Y. : Probability on trees: an introductory climb. In: Lectures on probability
theory and statistics. Springer, 1999, S. 193–280

[20] Shi, Z. : Random walks and trees. In: ESAIM: Proceedings Bd. 31 EDP Sciences,
2011, S. 1–39

[21] Stanley, R. : Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999

64

	Introduction
	Classical Percolation Theory
	Percolation of Averages

	Minimal Average Percolation in Tree Models
	The d-Regular Tree
	Existence of a Critical Value
	An Upper Bound on c(d)
	A Lower Bound on c(d)
	Approximations via Monte Carlo Methods

	Excursion: Recursive Distributional Equations
	The Galton Watson Tree
	Paths Instead of Trees
	Another Upper Bound on c(d)
	Average Percolation and Polar Sets

	The Complete Graph Case
	The PWIT as a local limit of Wn
	Looking for Paths in Wn
	Looking for Trees in Wn
	Proof of the Subcritical Behaviour
	Proof of the Supercritical Behaviour

	Lower and Upper Bounds on c(0)

	Scaling Behaviour Around Criticality
	The Idea Behind Scaling Exponents
	Scaling Behaviour in the Complete Graph Case
	The First Attempt
	Recent Results on the Scaling Window and Phase Transitions

