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a b s t r a c t

A geometric process is proposed in which a random political constituency map emerges
through an influx of settlers to a region. At first there is a spatially dispersed
native population with established political opinions. The settlers, in sequence, choose
random locations in the region and each adopts the political opinion of its closest
neighbour, whether native or fellow settler. Various qualitative properties of the resulting
constituencies are derived for a planar case of the model. A linear case is also discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and model

Traditional votermodels are part of the interacting particle system tradition and are surveyed in the two books by Liggett
(1985, 1999). In these models there is a static configuration of individuals, each of which has a current political allegiance.
From time to time an individual changes the colour of its political spots by reference to the opinions of its neighbours.
By contrast, in the model we propose here, the politics of individuals are immutable and the political map emerges

through a process of settler immigration. There is an initial, spatially distributed native population with entrenched and
varied political views. Settlers arrive one by one, each choosing an independent point in space and each adopting the political
colour of its nearest neighbour,whether native or fellow settler. The final politicalmap is then formedby tidying the resulting
data.
Let us formalize the general model. The political battleground is a metric space (E, ρ) with Borel σ -field B. Natives

have decided political allegiances, either Black or White, and occupy non-empty disjoint Borel subsets B0 and W0 of E.
Settlers arrive in sequence, choosing points (ξn)n∈N independently in E according to a non-atomic probability measureµ on
E, assuming that such exists. We suppose that µ(B0) = µ(W0) = 0 and that the underlying probability space is complete.
Let Bn and Wn denote the sets of Black and White voters just after the arrival of the nth settler. These are defined

inductively as follows:
if ρ(ξn, Bn−1) < ρ(ξn,Wn−1) set Bn = Bn−1 ∪ {ξn} and Wn = Wn−1;
if ρ(ξn, Bn−1) > ρ(ξn,Wn−1) set Bn = Bn−1 and Wn = Wn−1 ∪ {ξn}.

Here ρ(ξ, B) = infx∈B ρ(ξ, x) denotes the distance between ξ ∈ E and B ∈ B. Ties, for which ρ(ξn, Bn−1) = ρ(ξn,Wn−1),
are to be broken independently at random, though these will not figure in the cases we study.
Let

B∞ =
∞⋃
n=0

Bn, W∞ =
∞⋃
n=0

Wn.

From these raw data we colour the political map. Let B′
∞
be the set of accumulation points of B∞; likewise,W ′∞. The final

Grey, Black and White constituencies, which may not exhaust E, are then defined as follows:
G = B′

∞
∩W ′

∞
, B = B′

∞
\G, W = W ′

∞
\ G.

The aim is to understand the nature of these constituencies.
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Fig. 1.

It is hard to believe that the above voter–settler model is new, for it certainly poses some intriguing questions;
nevertheless, we have found no appearance in the probability literature. Perhaps the closest relatives are Voronoi processes
(Borovkov and Odell, 2007), since at each stage of the settler sequence E is divided into coloured Voronoi cells whose
geometry governs future developments. However, such processes seem generally monochrome. A two-population model
with some remote similarity is discussed in Deijfen and Häggstrom (2004).
We suggest applications in biology, sociology, cognitive mapping and linguistics: (a) a botanical species populates a

region, each new plant being infected by one of two mutually excluding contagions; (b) from time to time members of a
social network purchase a certain item, each choosing the brand of a close associate; (c) a child acquires concepts, classifying
them ‘attractive’ or ‘repulsive’, say, by reference to cognate concepts; (d) settlements develop in a geographical area and
inhabitants adopt a linguistic trait, e.g., a vowel sound, from their nearest neighbours. As a concrete but fanciful example
(which we do not study here), let E be the sphere S2, with the usual metric, and let µ be normalized Lebesgue measure on
E. Let B0 andW0 consist of north and south poles, respectively. Settlers regard themselves as ‘northeners’ or ‘southerners’
according to the designation of their respective nearest neighbours. The Black, White and Grey constituencies are then
political ‘northern’ and ‘southern’ hemispheres together with the ‘equator’.
Rather than attempting a general theory in this introductory note, we study two specific cases. In the first and principal

one the settlers choose sites uniformly in the unit discwithWhite circumference and Black centre. Section 2 is devoted to the
proof of themain tool in this investigation, and Section 3 gives somebasic topological features of the resulting constituencies.
The second case, which is the subject of Section 4, is a variant of the classical ‘sticking breaking’ model (Lloyd, 1989) which,
incidentally, has enjoyed a resurgence of attention recently owing to its applications in Bayesian statistics. Here E is the
unit interval with native Black andWhite end-points. In the final map a Grey point constituency separates Black andWhite
sub-interval constituencies, and the question is: what is the distribution of this point?

2. The planar case

In this section and the next we work in R2 with the usual metric. The closed disc with centre x ∈ R2 and radius r > 0
will be denoted by S(x, r) and its circumference by C(x, r). We also write S(r) = S(0, r) and C(r) = C(0, r)with 0 being the
origin. Specifically, we study what seems to be a reasonable prototype — the voter–settler model for a Black-centred disc
with a White circumference:

E = S(1), µ = normalized Lebesgue measure on E, B0 = {0}, W0 = C(1). (∗)

From now on we work exclusively in the topology of E.
For the purposes of acclimatization, Fig. 1 shows a single realization of the set Bn with n = 10 000; the White points are

invisible. The process is restless, so there is no guarantee that the ostensibly Black region will not be infiltrated significantly
by White points later on. Nevertheless one would expect the final constituency map for this realization to be dominated by
a single large region of each colour, separated by a highly complex border region. Such casual observations are not easy to
translate into rigorous propositions.
The mainstay of our work is the result below, which allays the fear that all points will end up Grey. The remainder of this

section is devoted to the proof.

Theorem 1. Consider the voter–settler model with data (∗). Then

P(0 ∈ B) = 1.
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Throughout the argument, C will denote a generic positive constant. Introduce discs Sk = S(2−k), k = 0, 1 . . ., and write
Ξn = {ξ1, . . . , ξn} for the settler locations at stage n.

Lemma 1. Let m ≥ 0 be an integer. Then, almost surely, for some (random) k, n ≥ 0, |Ξn ∩ Sk+1| = |Ξn ∩ Sk| = m.

Proof. If the firstm settlers lie in S1, stop. Otherwise, restrict attention to a disc Sj that excludes thesem points and try again,
and so on. These Bernoulli trials have success probability (1/4)m, and almost surely onewill give the required condition. �

Because of Lemma 1, on inflating Sk, it is more than enough to prove the following.

Lemma 2. In (∗) replace B0 = {0} with B0 = {0, η1, η2, . . .}, where the ηi are points of an independent Poisson process on
E = S(1) with intensity λ > 0. Then

lim
λ→∞

P(S(1/2) ⊂ B) = 1. (1)

A further lemma is needed before the proof of Lemma 2. To prepare for this let T ∼ Poisson(πλ) be independent of the
ξi and ηi sequences. At stage T the ηi together with ξ1, . . . , ξT constitute a Poisson process of intensity 2λ on E. We shall
show that when λ is large, White points are unlikely to penetrate very far towards 0.

Lemma 3. Assume the conditions of Lemma 2. Let r ∈ (0, 1) and let

A =
⋃
s∈S(r)

{ρ(s, BT ) > ρ(s,WT )},

where T is defined above. Then

P(A) ≤ q(λ, r) := 1 ∧ Cλ2/3(1− r)−2 exp{−C(1− r)2λ1/3}. (2)

Proof. The argument is combinatorial. Define the annulus A = S(1)\S(r), and write

u = C(1), v = S(r), Ξ = ΞT , H = {η1, η2, . . .}.

Say that a subset of A is η free if it contains no points of H . Let G = (V , E ) be the random directed graph with vertex set
V = {u, v, {ξ1}, . . . , {ξT }} and edge set E , where (x, y) ∈ E if and only if

x 6= y and ∃ s ∈ y s.t. ρ(s, x) < ρ(s,H),

i.e., whenever x and y are distinct and some point of y is closer to some point of x than to all ηi. As usual, the in-degree of
y ∈ V is

indeg(y) = #{x ∈ V : (x, y) ∈ E }.

An n-path is a directed path in G from u to v through n points ofΞ ; in particular, if (u, v) ∈ E this edge constitutes a 0-path.
Write

∆v = indeg(v), ∆ = max
ξ∈Ξ

indeg({ξ}),

so that the number of n-paths is no larger than∆v∆n.
Next we prove some probability bounds. First, since∆v ≤ #Ξ and #Ξ ∼ Poisson(πλ) we have

P(∆v > 7λ) ≤ P(#Ξ > 7λ) ≤ e−7λEe#Ξ = e−7λ.eπλ(e−1) ≤ e−Cλ. (3)

Secondly, observe that, conditional on the set X = Ξ ∪ H , the points in X belong to Ξ or H according to independent
coin flips. Hence, for the in-degree of a point x in V to exceedM , both x and theM points nearest to x (if such exist) must lie
inΞ . Thus,

P(∆ > M) = EP(∆ > M|X)

= E

(
P

(⋃
x∈X

((x ∈ Ξ) ∩ (indeg({x}) > M)) | X

))
≤ E(#X .(1/2).2−M) = 2−Mλ. (4)

Thirdly, for N ∈ N, writing r ′ = 1− r ,

P(∃ an n-path for some 0 ≤ n < N) ≤ C(N/r ′)2e−Cλ(r
′/N)2 . (5)
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For, if there is an n-path, 0 ≤ n < N , then there must be at least one η free set in A of the form A ∩ S(x, r ′/N), x ∈ A .
But it is possible to choose a collection of fewer than C(N/r ′)2 discs of radius r ′/4N with centres in A so that at least one
is contained in each of the aforementioned sets. The probability that any one of these discs is η free is less than e−Cλ(r

′/N)2 ,
and (5) follows.
We are now in a position to complete the argument. Motivated by (3)–(5), define

B = BN,M,λ = (∆v ≤ 7λ) ∩ (∆ ≤ M) ∩ (6 ∃ an n-path for any 0 ≤ n < N).

Call an n-path live if the settlers thereon arrive in the order prescribed by the path. Thus, each n-path is live with probability
1/n!, independently of the setsΞ and H . Let

Ln = the number of live n-paths, n = 0, 1, . . . , L =
∞∑
n=0

Ln.

Note that the event A occurs precisely when there is a live n-path for some n ≥ 0. Thus,

P(A) = P(L ≥ 1) ≤ P(L ≥ 1 ∩ B)+ P(Bc). (6)

For the first term on the right of (6) we have

P(L ≥ 1 ∩ B) ≤ E(L1B) =
∞∑
n=N

E(Ln1B) ≤
∞∑
n=N

7λMn

n!
≤
7λMN

N!
eM ≤ Cλ(eM/N)NeM ,

where conditioning on G is needed for the second inequality and Stirling’s approximation for the fourth. For the second term
on the right of (6), by virtue of (3)–(5),

P(Bc) ≤ P(∆v > 7λ)+ P(∆ > M)+ P(∃ an n-path for some 0 ≤ n < N)

≤ e−Cλ + λe−CM + C(N/r ′)2e−Cλ(r
′/N)2 .

Finally, in order to use these estimates efficiently in (6), choose N = bλ1/3c, andM = bN/10c. This yields

P(A) ≤ Cλ2/3r ′−2e−Cr
′2λ1/3 . �

Proof of Lemma 2. Define new discs by Sk = S(rk), k ∈ N0, with r0 = 1, rk ↓ 1/2. For each k let Tk be a random variable
such that the ηi together with ξ1, . . . , ξTk form a Poisson process of intensity 2

kλ on E = S(1). Write

Ak =
⋃
s∈Sk

{ρ(s, BTk) > ρ(s,WTk)}, Ck =
k⋂
i=1

Aci , A∗ =
∞⋂
i=1

Aci ,

and observe that A∗ ⊂ {S(1/2) ⊂ B}.
We know already from Lemma 3 that

P(A1) ≤ q(λ, r1). (7)

Since the event Ck depends only on the ξi and ηi in the annulus S0− Sk, it follows that, conditional on Ck, the ξi and ηi in Sk at
time Tk still constitute a Poisson process of intensity 2kλ and are, moreover, coloured Black. Paying proper regard to scaling
we can therefore re-use the estimate from Lemma 3 to deduce that

P(Ak+1|Ck) ≤ q(2kλr2k , rk+1/rk), k ∈ N. (8)

We have, therefore,

P(A∗) = 1− P

(
∞⋃
k=1

Ak

)
= 1−

(
P(A1)+

∞∑
k=1

P(Ak+1|Ck)

)
≥ 1−

∞∑
k=0

q(2kλr2k , rk+1/rk),

and as long as the rk sequence does not converge too rapidly (e.g., rk = (k+ 1)/2k) the last summation vanishes as λ→∞.
This proves (1) and, with it, Theorem 1. �

By an obvious coupling argument, the conclusion of Theorem 1 remains valid when the native locations are changed to
B0 = {0} ∪ B+0 and W0 = W

+

0 , where for some 0 < ε < 1, (B+0 ∪ W
+

0 ) ∩ S(ε) = ∅. We have been unable to determine
whether P(C(1) ⊂ W) = 1, but the following is clearly true.

Corollary 1. Under the conditions of Theorem 1, if w ∈ C(1), then P(w ∈ W) = 1.
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3. The planar constituencies

We continue to study instance (∗) of the voter–settler model described in Section 2, the aim now being to use Theorem 1
to prove some qualitative properties of the constituencies.

Theorem 2. For the voter–settler model with data (∗), each of the following holds almost surely in the topology of E.

1. The sets B,W and G partition E.
2. B is an open set containing B∞;W is an open set containing W∞\W0.
3. G = ∂B is non-empty, closed, dense in itself and nowhere dense.
4. µ(G) = 0.

Proof. We omit a.s. qualifications; complements are with respect to E.

1. This is an immediate consequence of B∞ ∪W∞ being almost surely dense in E.
2. Let bn be the nth point of B∞ to occur. Consider a disc in E with centre bn, small enough to exclude all previous points,
both settler and native. Apply Theorem 1 to settlers in this disc to conclude that bn ∈ B. Hence, B∞ ⊂ B.
Further, if x ∈ B there is an open disc S with centre x that contains no point ofW∞. Because B∞ ∪W∞ is dense in S,

S ⊂ B, and therefore B is open.
The properties ofW follow similarly.

3. First of all, let Q be a fixed, countable subset ofW0 that is also dense therein; write Z = Q ∪ (W∞ \W0). As in 2., Z ⊂ W.
Now let x ∈ E and let V be any open neighbourhood of x. If x ∈ G then V contains a point in B∞ ⊂ B and a point in

Z ⊂ Bc ; hence x ∈ ∂B. Conversely, if x ∈ ∂B then V contains a point of B and a point of Bc . It follows that V contains a
point of B∞ and a point of Z ⊂ W∞, and so x ∈ G. Thus, G = ∂B.
Since G is the boundary of an open set it is both closed and nowhere dense. Also, by Theorem 1 and Corollary 1 we

know that (0, 0) ∈ B and (1, 0) ∈ W. Hence (a, 0) ∈ Gwhen a = inf{x > 0 : (x, 0) ∈ W}, i.e., G is not empty.
Finally, any open disc with centre g ∈ G contains a point b ∈ B and a point w ∈ Z ⊂ W. In this disc an arc that

contains b andw but not g must include a further point in G, and therefore G is dense in itself.
4. To verify that µ(G) = 0 it suffices by Fubini’s theorem to show that P(x ∈ G) = 0 for all x ∈ E \W0. Accordingly, pick
λ > 0 and x ∈ E\W0, and let Sk = S(x, 2−k), k ∈ N, and T ∼ Poisson(λ), independently. By Lemma 1, for some (random)
k ≥ 1, every one of the first T settlers to arrive in Sk will lie in Sk+1; hence they will each have the same colour. We are
then in a position to conclude from Lemma 2 that P(x ∈ G) = 0 (the fact that 0 ∈ B0 in this lemma has no bearing on its
conclusion). �

Next we confirm the complexity of the constituencies.

Theorem 3. For the voter–settler model with data (∗), almost surely, B,W and G are disconnected and each has an infinity of
connected components.

To this end, fix n ∈ N and let b ∈ Bn,w ∈ Wn. Write

r = ρ(b, w), I = S(b, r) ∩ S(w, r), U = S(b, r) ∩ S(w, r).

We say that b andw are cocooned if the sets S(b, r)∩Wn and S(w, r)∩Bn are empty: for instance, the closest pair of opposing
points at any stage is cocooned. Observe that the only coloured points in I are b andw, and that S(b, r) ⊂ E since C(1) ⊂ Wn.
The key to Theorem 3 is the abundance of cocooned pairs.

Lemma 4. Let N ∈ N. Almost surely, at some stage in the settler process there are at least N cocooned pairs whose respective U
are disjoint.

Proof. Let A be one of N congruent closed sectors of S(1). For each n ∈ N let bn, wn be the closest pair of points for which
bn ∈ A ∩ Bn and wn ∈ Wn (almost surely such a pair is unique). Then ρ(bn, wn) → 0. Since A is compact we can extract a
convergent subsequence bn′ . Almost surely, the limit of this subsequence is not 0, by Theorem 1, and does not lie on one of
the bounding radii of A since the phase of each bn 6= 0 is uniformly distributed over the range appropriate to A. It follows
that, almost surely, for all large enough n′ the points bn′ andwn′ are cocooned and their U lies in A. Repeating the argument,
restricting attention to the subsequence n′ for each sector in turn, yields the required cocooned pairs. �

Nowsuppose that at a certain stage points b andw are cocooned. For ε > 0 consider the followingpotential developments
regarding subsequent settlers in U (see Fig. 2):

(a) the first settler b′ in U lies in S(w, r) ∩ S(b, 12 r) ⊂ I and is thus coloured Black;
(b) the next settlers x1, x2, . . . in U are coloured White, forming the successive vertices of a polygon in I that circumscribes
b′, with the distance between each pair of adjacent vertices being less than rε;

(c) once the xi have arrived we intervene in the process and colour Black the circle C(b, r), including the pointw, and then
let the process resume;

(d) for each i, S(xi, rε) ⊂ W.
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b

b'

x1

x2

S(w,r)

S(b, r)

w

Fig. 2.

The purpose of the intervention in (c) is revealed in the argument below.

Proof of Theorem 3. Let F(ε) denote the event that (a), (b) and (d) occur, subject to (c), and let F0(ε) ⊃ F(ε) denote the
same event without the intervention. For all sufficiently small ε we have

P(F0(ε)) ≥ P(F(ε)) ≥ δ(ε) > 0, (9)

where δ(ε) does not depend on r or the geometry of U ∩ E. Fix such a value of ε.
If F(ε) occurs we say that b′ is encircled. In this case, by virtue of Theorem 1, the polygon in (b), which is a subset ofW, cir-

cumscribes at least one connected component of each ofB andG, almost surely. Furthermore, under the intervention, if there
are N cocooned pairs in E with disjoint U then the respective events F(ε) are independent, and so the number of encircled
Black points is at least Binomial(N , δ(ε)). In view of (9) the same holds without the intervention. A similar argument applies
to encircling White points. Since, by Lemma 4, we may choose N arbitrarily large, Theorem 3 follows immediately. �

In closing this section we suggest three problems.

Problem 1. Find the distribution of µ(B).

Problem 2. Find the distributions of the inner and outer radii of B:

R∗ = ρ(0,W), R∗ = 1− ρ(C(1), B).

Problem 3. Find the (presumably degenerate) distribution of the Hausdorff dimension of G.

4. The linear case

In this section we work in Rwith the usual metric, taking

E = [0, 1], µ = Lebesgue measure on E, W0 = {0}, B0 = {1}.

Thus the ξn are i.i.d. Uniform(0, 1). It is clear that, almost surely,

G = {Y }, W = [0, Y ) B = (Y , 1],

where Y is a random variable taking values in (0, 1). We identify the distribution of Y in our final result.

Theorem 4. Y ∼ Beta(2, 2) with density 6y(1− y), 0 < y < 1.
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Proof. If ξ1 > 1/2 thenW1 = {0}, B1 = {ξ1} and Y is determined by the analogous voter–settler process on [0, ξ1]; similarly
for ξ1 < 1/2. Accordingly, Y satisfies the distributional equation

Y d
=

{
ξY if ξ > 1/2,
ξ + (1− ξ)Y if ξ < 1/2, ξ ∼ Uniform(0, 1), Y ⊥ ξ . (10)

Eq. (10) can be rewritten as the stochastic linear equation

Y d
= AY + B, Y ⊥ (A, B), (11)

where

A = max{ξ, 1− ξ} ∼ Uniform(1/2, 1), B = ξ1(ξ < 1/2).

Despite a developed theory, explicit solutions of such equations are rare, especially when, as here, A and B are not
independent. Nevertheless it follows from Theorem 1.5 and 3.2 of Vervaat (1979) (the latter being due to Grincevičius)
that the distribution of Y is determined uniquely by (11) and is continuous; moreover the required distribution is clearly
symmetric about 1/2. The plausible Y ∼ Beta(2, 2) satisfies (10), and thus Theorem 4 is proved. �

This rings a little hollow: can the solution of (11) be found more systematically? One approach is to use the Laplace
transform ψ(s) := Ee−sY , s > 0. From (11) we have

ψ(s) = Ee−s(AY+B) = EE(e−s(AY+B)|ξ)
= E(e−sBψ(sA))

=

∫ 1/2

0
e−sxψ(s(1− x))dx+

∫ 1

1/2
ψ(sx)dx

=

∫ 1/2

0
(e−sx + 1)ψ(s(1− x))dx;

and putting u = sx yields the following integral equation for ψ:

sψ(s) =
∫ s/2

0
(e−u + 1)ψ(s− u)du, s > 0.

This is a homogeneous Volterra equation of the second kind with a discontinuous kernel. The ‘half-convolution’ form looks
inviting, but it is not mentioned in Polyanin and Monzhirov (1998), for example, and seems to lie outside the analytical
mainstream. Theorem 4 provides a probabilistic solution.
A different approach is to start from scratch and condition on ξ1. This yields the following functional equation for F , the

distribution function of Y :

F(x) =


∫ x

0
F
(
x− u
1− u

)
du+

∫ 1

1/2
F
( x
u

)
du, 0 < x ≤ 1/2,

1− F(1− x), 1/2 < x < 1.
(12)

With due care at x = 1/2 one can deduce from (12) that f = F ′ exists, is continuous on (0, 1) and satisfies

f ′(x) =
1

(1− x)
f (x)+

1
x
(f (2x)− f (x)), 0 < x < 1/2, (13)

with f (x) = f (1− x), 1/2 < x < 1. Consequently, except perhaps at inverse powers of 2, f has derivatives of all orders. At
x = 1/3, where f (x) = f (2x), the derivatives can be obtained recursively using (13): in fact, the third and higher derivatives
are all zero, and the formal Taylor expansion about x = 1/3 recommends f as the Beta(2, 2) density.
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