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PREFACE

Billingsley's Convergence of Probability Measures (1968) was perhaps

the major influence in making the theory of weak convergence into a standard
part of both theoretical and applied probability. The purpose of this book
is to develop one or two further topics in weak convergence. We assume the
reader is familiar with the material presented by Billingsley; the only
other prerequisite is knowledge of stochastic processes up to the strong
Markov property of Brownian motion and the optional sampling theorem for
submartingales - Breiman (1968) is recommended,

One topic is to connect weak convergence with two post-1968 developments,
the "general theory of processes" of the Strasbourg school and the martingale
approach to stochastic processes (these developments are surveyed in Chapter 2).
In Chapter 3 we describe the systematic technique for establishing weak
convergence to a limit process with a martingale characterisation; this is
based upon & stopping time criterion for tightness (Section 4).

The major topic is the development (Chapter 5 onwards) of a new variant

of weak convergence, extended weak convergence, This is motivated by both

theoretical and practical considerations. Theoretically, extended weak
convergence is designed to be compatible with the techniques of the Strasbourg
school (e.g. the Doob-Meyer decomposition of submartingales, Section 19), _
with which classical weak convergence is incompatible, For the practical
motivation, consider the protolype wesk convergence result: approximating

1
normalised partial sums (n” %S } by Brownian motion (Wi). The purpose of

[t

the weak convergence formulation is to be able to deduce convergence of

functionals.zﬂjn”%s ot ) %o _/KW%), for functionals A of sample paths:



typical functionals of interest being A(f) = %3?1 £f(t) end A(f) =
measure{béT:f(t) > 0f. However, when approximaging one process (It) by
another we may be interested in something more than the distributions of
functionals of sample paths. For example, the optimally-stopped value
sup{EXT: T a stopping time} of a process cannot be represented by a
functional of sample paths, so weak convergeﬁce cannot handle guestions of
convergence of optimally-stopped values (Section 11), whereas extended weak
convergence can (Section 17).

This 1s unashamedly a "theoretical" book, but it is not merely theory
for its own sake. Rather, we are trying to present theoretical tools which
researchers interested in specific applications may find useful. The emphasis
is on techniques and concepts, not theorems and proofs, 1In the first three
chapters, where the material will be partly familiar to the reader and is
accessible elsewhere, proofs will sometimes be sketchy. But we have tried
to be more scrupulous later,

Finally, it should be emphasised that this book represents the author's
personal viewpoint. Since a preliminary version was circulated in 1978,
interest in connections between weak convergence and the general theory of
processes has started to grow; but this book does not purport to be a
definitive account of this growing field. For instance, it seemed unreééonable
to expect the reader interested in applications to master technical aspects
of the general theory. So we maske no mention of semimartingales, though
theoreticians would regard semimartingales as the natural setting for the

results of Chapter 3.
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CHAPTER 1 -~ WEAK CONVERGENCE

1 BACKGROUND

As mentioned in the preface, the reader is assumed to be familiar with
the basics of measure-theoretic probability and stochastic processes, and with
the theory of weak convergence as expounded in Billingsley (1968): references
of the form (B.5.1) refer to Thecrem 5.1 of that book. This first section is
intended to establish some notation, refresh the reader's memory of some
fundamental results and techniques, and mention some variations of these

fundamental results.

WEAK CONVERGENCE ON ABSTRACT SPACES

We consider only Polish (i.e. complete separable metric) spaces (S,d}.
ZL(X) denotes the distribution of a random element X of S. P(s) is the space
of probability measures s on S, equipped with the topology of weak convergence.
}fn-%>/A- denotes weak convergence of probability measures. For random elements

(Xn), Xn —> X denotes convergence in probability, i.e. d(Xn,X) —> 0 on R.
p P

And X => X denotes convergence in distribution, i.e. aZTXh)-JD L (X}, We
shall say Xh =» X on S if there is any possible doubt about the range space S.

Because S is Polish, tightness of a seguence (Xn) of random elements is
equivalent to precompactness (i.e. relativeicompactness) of the sequence of
distributions I(xn) (B.6.1,6.2).

Consider a map h:5-» 8', and suppose Xn => X on S. The continuous mapping
theorem (B.5.1) says: if h is continuous then h(Xn) = h(X) on 8'. It is
sometimes helpful to view this more abstractly. Define the induced map
hP(s)>P(s') by
(1.1)  BEX) = Z(a(x)).

The continuous mapping theorem may be paraphrased as: if h is continuous then

~
h is continuous.



Recall the following fundamental technique for proving weak convergence
Xn = X,
(i) Prove (Xﬁ) is tight.
(ii) Consider an arbitrary subsequential weak limit Y, and prove L(Y) = Z(X).
In the proofs in (B) of weak convergence on the function spaces C{0,1] and
D[b,i], step (ii) is achieved by proving convergence of finite-dimensional
distributions. Our proofs (Chapter 3) use martingale characterisations, and
thus avoid the necessity to prove convergence of finite-dimensional distributions.
The next theorem gives an extremely useful technique for establishing
consequences of weak convergence.

SKOROHOD REPRESENTATION THEOREM. Suppose Xh = %bgg S. Then there exist,

on_some probability triple, random elements X{, Xbyooan; ng such that
(1) I(X;l) = x(xn)) n=1,2,...;

(i1) Xﬁ - X' a,s.

See Billingsley (1971) for a proof. An example of its use will be given shortly,



APPROXTMATING MEASURABLE FUNCTIONS

In measure theory, one often verifies identities involving measurable
functions by the following technique:
(i) verify the identity for simple functions
(i1) prove thst the class of functlons satisfying the identity is closed
under pointwise convergence.

Tn the context of weak convergence, it is more natural to start with
continuous functions. Then we need the following result (Halmos:(1950) p. 241).

(1.2) IEMMA. Let #:S>R be measursble, |#] £ 1, and let X be a random

element of S. _Then there exist continuous ¢n=s-9 R, ¢ | 1, such that
Il

E|40) -4 (@] > o



UNIFORM INTEGRABILITY

Call a sequence (Xn) of real-valued random variables uniformly integrable if

(1.3) lim 1im sup E}JX |1 =0
K00 “exf o (X0 \)
Note that (1.3) implies
(1.4) E[lX| <e ,n2Zn
n (8

for some By The usual definition of uniform untegrability requires that (1.4)
hold for 811 n > 1, In the context of limit theorems, the distinction is

plainly irrelevant. Here are some of the basic facts about uniform integrability

(1.5) LEMMA. If (X ) is uniformly integrable and if P(An)—> 0 then E(xnl 1, 0.
n

(1.6) IEMMA. Suppose Xn—E’X a.3. Then the following are eguivalent.

(i) (Xn) is uniformly integrable;

(ii) EB|Xl<e a_ngElxn-xJ—a 0;

o,

(111) ElX| <o and E|X] > EIX{.

We now take the opportunity to illustrate the use of the Skorohod

representation theorem.

(1.7) COROLLARY. Suppose Xn Z> X. Then (i) _and (iii) of Lemma 1.6 are

equivalent.

Proof, Let X;, X;,...., X' be as in the Skorohod representation theorem.

Observe that condition (i) (resp. (iii)) of Lemma 1.6 depends only on the
individual distributions.lTX1), =2112),......,Jf(X). So if condition (i) (resp.
(1ii)) is satisfied by (Xh) and X then it is also satisfied by (XA) and X',

So by Lemma 1.6, condition (iii) (resp. (1)) also is satisfied by (X;) and X',

Using the initial observation again, condition (iii) (resp. (i)) is satisfied



by (Xn) and X,

Note carefully why we cannot prove (1) implies (ii)}: it is because
condition (ii) involves the bivariate distributions éf(Xn,X), and the Skorohod
representation theorem does not guarantee that any joint distributions of (X;)
should coincide with those of (Xn).

Readers unfamiliar with this technique practise by proving (B.5.1 and 5.5)
using the Skorohod representation theorem. Once understood, it is not
necessary to be as pedantic as we were in the proof of Corollary 1.7: instead,
we could simply write

Proof We may assume (Skorohod representation) that Xn~é X a.s.. Apply Lemma 1.6.

Let us record a useful variant of the definition (1.3).

LEMMA. (Xn) is uniformly integrable if and only if

(1.8) E{Y 11 0

(Y, >n)

for every subsequence Y = X, .
n Jn

In Chapter 3 we shall need to prove uniform integrability of seqguences of
stochastic processes, We shall see that natural stopping time arguments lead
to estimates of the type

3 — Z . .

(1) B[] M1(lxnl>>) Z CEVn1%,>\ i X2 2y n21; where

(1.9)(11) (Vn) is uniformly integrable,

(iii) P(a } 20 for any N —> o=
Dy g n

And we shall need to prove this implies (X ) is uniformly integrable. It is
n
generally easier to use (1.8) rather than (1.3) in such cases. For example,

from (1.9) we argue



%

lim sup ElX. |1

+ 1lim sup N\ P(1X.! > n)

4 lim sup E(IleiJl -})1(lxjn‘2n) 3n

4 lim sup C.EV, 1 by (i); the second term vanishes because
n jn,n

lim sup -E(an < oo by (i)

=0 by (ii) and (iii),



METRISATIONS OF CONVERGENCE
The space ¥ (S) of probability measures is itself a Polish space (B.Appendix
111), and so we may consider random elements § ofF(S). For such random
elements, one must think carefully about modes of convergence: thus
's"n—a ¥ a.s, means § @3 §n(w) - § () in ¥ (s)f has probability one;

§ 5% means £(5,) >J(§) in P(P()).

Tt is occasionally useful to have explicit metrics for convergence in
probability and weak convergence. of S-valued random elements. Many metrics are
known: the following suffice for our purposes.

d (X,I) = inf{e7 0:PA(X,Y)> ¢ ) £ € $.
(1.10)
p (pyv) = inf {do(x,y)z;f(x) =, Z(X) = V5.
(Recall that d is the metric on S). The proofs of the following facts are
left as an exercise for the reader interested in abstract theory.

(1) The infima are attained,

(1.11) (ii) do is a complete metrisation of convergence in probability.

(ii1) p is s complete separsble metrisation of F(s).



2 THE SPAGE D = D( [0,e),S).

Adopting a name suggested by Williams (1979), we shall call a function

Skorohod if it is right continuous with limits from the left. [B} discusses
the space D([O,ﬂ ,R) of real-valued Skorchod functions defined on fO,‘l] .
For many stochastic processes it seems more natural to use [O,w) as the time
interval; and later we shall need to consider functions taking values in a
Polish space S; we shall therefore consider the space D = D([0,=),S8) of
Skorohod functions £:[0,®)—> S, Fortunately the results developed in [ B]
for D({0,1} ,R) pass over with only the obvious modifications to our setting.
This section is mostly devoted to the statements of these modified results.,

Here is some useful notation from [DM].

udt means u-=>t, u t;

u™Mt means u—>t, u < t;
and analogously for u ¥ t and ullt. In this notation, a function f is
Skorchod iff

£f(t) = 1im( f{u): ud t) , 0 <Lt <=

f(t=) = 1im( f(u): ulTt) exists, 0Kt <,

The set of Skorohod functions has a natural s -field, i.e. thes -field
generated by the evaluation maps

(2.1) f -);f(to), 0 gto Lo

To define a topology, let Z/\ be the set of continuous strictly increasing
functions X :{0,<) >[0,=) such that A(0) = 0 and lim A(t) = ¢ ., Call

t>0
a sequence O‘n) in A a scaling seguence if

sup l) (t) -t| = 0, each L<eo,
t<y B

Here is the topology we use on D.
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THEOREM ([B,‘IA]; Lindvaal (1973)). There_exists a Polish topology on

the set of Skorohod funetions such that fn -» £ if and only if

(2.2) sup d(f (_(t)),f(t)) —> 0O, each L <>,
te, °OF

for some scaling seguence (,\n). The Borel ¢"-field of this topology coincides

with the natural o~-field generated by the evaluation maps (2.1).

When (2.2) holds, call ()\n) a scaling seguence for (f ).

The relation between D[0,1] and D[0,®) is the same as the relation
between C[O,‘l] ané the space C[O ,m) equipped with the topology of uniform
convergence on bounded intervals., For brevity we shall often omit the
quantifier "for each L<e " from assertions like (2.2): just think of L
as an arbitrarily large endpoint.

The first picture below shows two functions which are close; in the

other pictures the functions are not close.

Call a stochastic process X Skorohod if its sample paths are Skorohod.
Throughout this book we assume all processes to be Skorohod, except where
otherwise stated. Thus a S-valued process may be regarded as a random element
of D(S).

Call t a contiruity point of f (resp. X) if £(t) = £(t-) (resp. Xt =X _

a.s.); a discontinuity point if not. By convention O is a continuity point.

Tn contrast to the situation with continuous function space, the
evaluation maps on D are not continuous. Writing out proofs of the next two

lemmas (draw pictures first) will help the reader understand the topology on D.



We consider the map
(2.3) (£,8) —> £(t)
from D(8) x [0,»} to S.

(2.4) IEMMA. The map (2.3) is continuous at (fo,to) ;:to is_a continuity

point of fo.
By the Skorohod Representation Theorem any continuity result asbout D irmediately
gives a continuity result for processes. In this case, Lemma 2.4 gives

(2.5) COROLLARY. If (xn,'rn) = (X,T) and if T(w) is_a.s, & continuity

point of the sample path X(w) then )[; =y XT.
n

Here is what happens at discontinuity points.

(2.6) LEMMA, Suppose (i‘n,tn) - (fo,to) where t5 is_a discontinuity point

‘o-i fo.

(1) ffn(tn)f is precompact, and fo(to) and fo(to-) are the only possible

limit points,

(1i) There exist u -7 % such_that fn(un) — fo(to) and f (u,-) = fg(to-).

0
(iii) If tn—un\ir 0 then fn(tn) 4 fo(to),

if tn—un’l"l‘ 0 then i‘n(tn) - fo(to—).

As a convenient shorthand, we sometimes write tn—D t+ to mean " either tndw t
or tnTT t". Thus we could express (iii) more succinctly as

if t-u > 0+ then fn(tn) - fo(toi).
Here is a useful reformulation of the definition (2.2) of convergence in D,

(2.7) LEMMA. Let ()\n) be a scaling seguence, Let (fn), f be elements of D.

The following are eguivalent.

(1) £ > f and ()\n) js a scaling sequence for (fn).
n and

(i1) t —>tt implies £ O (e )) = £t+).



This shows that the topology on D depends only on the topology of S, not on
the particular metrisation used in (2.2). Here is a very simple illustration
of the use of Lemma 2.7.

(2.8) LEMMA. Let P:S>S' be continuous. Then for £ « D(S) the map

t = $(£(t)) is_Skorohod and so defines an element §°f of D(S'). The map

£ > Pof from D(S) to D(S8') is continuous.

Proof. Given f - f, choose & scaling sequence for (fn) and use {2.7)(ii) to
see that it is also a scaling seguence for ( o fn).
The next three lemmas state the fundamental convergence and compactness

properties of D, proved in CB] and modified here for our setting.

(2,9) LEMMA. Let (fn), £ be elements of D(8), snd let (X"), X be S-valued

processes. _let /> be_some dense_subset_of [O,OO).

(1) f (resp. X) has only countably meny discontinuity points.

(i1)_If f1(t) = fz(t) for all t €A then £, = f,. If I(X}c ,....,xl ) =
1 k
Z(Ki ,.....,J(:t2 ) for_all (t1,....,tk) e then I(X1) = °Z"(}(z).
1 k

(ii1) If (fn) is_precompact_and if f (t) —» £(t) for_all t € A then £ > f.

n
Ir (x®) is tight and if (x’;1,....,xtk) = (Xt1"""xtk) for_all (tyyeesasty)
/A  then > X
(2.10) Definition. For f ¢ D(S), Sy 0, L <co define

(£,5,1) = sup { d(£(t),1(t,)) ¢ £, < t5 €L, Ty £ 495,

w'(£,5,L) = inf{ max sup a(£(),£(t,)) £ 0=t < by <uneen <t = Ly
iotCt<t, 1 | I
tigq € 0y S §
W (£,8,L) = sup { A(£(t),£(2)) A al£(t,),£(t3)) t, < tp< b4, t35£1+cﬁz

Here a b denotes min(a,b).
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(2.11) LEMMA. F < D(S) is precompact if and only if

(c1) {ft): 2 4L, £ € F{ is_precompact in S;

(c2) lim  sup w"(f,dL) = O;
§Lpo feF

O.

"

(3) 1lim  sup sup d(f(t),£(0))
£LO feF t<d

As mentioned earlier, conditions like these are implicitly required to hold

for each L<e>,

(2.12) T2, (X°) is tight on D(S) if and only if for each £7 0 gnd L<°%,

(a) there exists compact K < S such that P(Xté K for a1l t £L) > 1-€3;

(b") 1im lim sup PW"(X%,&,L) > ) = 0;
&l o n-s

(¢) 1lim 1im sup P(sup d(X%,XE))s) =0,
o T = o t

In this result, conditions (b") and (c) may be replaced by

(b') 1im  lim sup P(w'(X",,L})>€) = O.
cr\lro -2 0o

If (X")_satisfies

(b) 1im  lim sup P(w(X ,5,L)>€) =0
dlo n »co

(d) {xgg is precompact_in S

then (In) is tight and every limit procegs has continuous sample paths.

As the reader probably knows, these compaciness conditions are hard to
verify directly. In Section 4 we shall give a more usable sufficient
condition for tightness. ~ In the Polish space setting, these conditions are
unsatisfactory because they involve a metric. Often, for example if S is
the space of probability measures on D(S'), we do not have any very tractable

metric on S. It is therefore useful to have conditions for compactness which
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do not involve the metric explicitly. Recall conditions (C1)-(C3) of

Lemma 2.11. Here are two more conditions on a subset F of D(8).

3

(c4) 1If (fj) c F and u“l]. < u? < uj are such that u§'-—>u . and 'fj(u:';f) -

S5 for each i, then either 8, = 52 or 8, = 53.
(cs) 1If (fj)é, F and Jj\(,o are such that fj(O) = 8, end fj(J;)——‘;»s.l,

then s_‘ = so.

(2.13) LEMMA, Suppose F < D(S) satisfies (C1), Then (C2) is_eguivalent to

(L), and (C3) is_eguivalent to (C5). Hence F is precompact if and only if

it satisfies (1), (C4) and (C5).

Proof. (C2) implies (C4) because

W

1 p 2 3 " _ 1
d(fj(uj)’fj(uj)) FAS d(fj(uj)’fj(uj)) £ v (fj’uj uj’L)

for L = sup u?]'. Conversely, suppose (C2) fails. Then there exist L<eo,

i,]
1 2 3 3 1
£ > 0, (fj)eF and Uy <uj< u. £ L such that uj -1u >0 but
J

ae. ()t (12)) ~a(f (W3),f () 2 & . By (C1) we can pass to a
S R i3 3

. X 1 i
subsequence in which uj -» u, say, and f’j (uj-HBi, say. Then d(s1,52)Ad(52,s3)
>¢ , so (C4) fails, The argument that (C3) is equivalent to (C5) is

similar but easier,



3 MORE ABOUT D
In this section we discuss some technical properties of the space D which

are not covered in B .

INCREASING PROCESSES

For increasing real-valued processes, weak convergence can be deduced
from convergence of finite-dimensional distributions with only mild exira
conditions, avoiding the usual need to establish tightness.

Let D+(R) be the set of "counting fuctions", i.e. functions of the form

= 2
f) 121 1(t2tiJ

where O <.t1C.t2-< veeses . Let A be some countable dense set in [O,«)
containing O.

(3.1) LEMMA., Suppose X, X1, Xz,.... are real-valued processes such that

(1111,)6;2,,,,,,1[‘;1{) = (xt1,......,xtk) for all (t1,...,tk)eA .

Suppose either

(i) each ¥® is increasing, and X is continuous; or

(ii) each X™ and X has_sample paths_in D+(R).

Then X© 2 X,
Proof. Consider first the deterministic case. Suppose fn(t) = f(t), ten,
and suppose either
(1) each f  is increasing, and f is continuous; or
(ii) each fn and f are in D+(R).
We assert that fn—a f in either case. In case (i) elementary analysis
gives uniform convergence on bounded intervals. In case (ii)

consider & scaling seguence (An) such that,kn(t?) = t;.



To prove the lemma, let A = {t_l,t sresse $ . Then

2
(Xz ,Xz yeseneos) T (Xt 3X yecee.) oD R, By the Skorohod
1 "2 1 2
Representation Theorem we may suppose (X2 ,32 ,eenees) 2 (XL X yacuees )
t1 t2 t1 t2

o0
a.s. on R . Apply the deterministic result.

JOINT CONVERGENCE

If U, V are random elements of spaces 31, 82 respectively, then the pair
(U,V) defines a random element of the product space S1x52. Weak convergence
on this product space

(Un,Vﬁ) = (u,V)
is the usual concept of joint convergence. So if X, (resp. Yt) is & S,
(resp. 32)-va1ued process, then X (resp. ¥) is & random element of D(S1)
{resp. D(Sz)), so the pair (X,Y) is a random element of D(S1) xD(Sz), and
so the usual concept of joint convergence is
(3.2) (%) 2> (1Y) on D(S ) x D(S,).
Tn the real-valued case we would naturally like to deduce, for example,
(3.3) ©+Y¥ > X+1Y.
But (3.2) does not imply (3.3). For consider fn(t) = 1(t S 1-1/n) ’
gn(t)_= 1(t > 141/n)? £(t) = 1(t > 1)° Here (fn,gn) - (f,f) in D(S1) x D(Sz)
but £+ g f £+

Fortunately there is snother concept of joint convergence which avoids
this type of problem. Given a pair (X,Y) of processes, the seample paths
t-4>(XtGw),Yt@»)) are S1x32—va1ued Skorohod functions, i.e. elements of
the space D(S1x82). So we can regard (X,Y) are a random element of D(qusz)

and consider weak convergence on this space:

(3.4) (,Y") = (4Y) on D(S.x5,).



In the real-valued case, (3.4) is sufficlent to imply (3.3), by Lemma 2,8.

The next lemma describes the relationship between D(S1)xD(Sz) and D(

(3.5) LEMMA. (fn,gn)-—zv (f,g) in D(S1x82) if and only if

S1x52).

(1) £ —=f in D(s,) , g > 8 in D(S?_); that_is, (fn,gn) -> (f,g) _'_n;_D(S1 )xD(S,).

(ii) whenever t is a discontinuity point_of f, and tn—; t is such that

£() > £(t) and £(t -) ~>£(t-) , then g (t ) —» g(t) and g (t -~

Note that (ii) holds if either f or g is continuous, or if their disc
points are disjoint (by Lemma 2.4).

Proof. Suppose (fn,gn)—% (f,g) in D(S1x82) with scaling sequence (An

) = g(t-).

ontinuity

).

Plainly (kn) is a scaling sequence for (fn) and for (gn), so {i) holds. For

t, (tn) as in (ii) we must have An(t) =%, for all sufficiently large

so {(ii) holds.

n,

Conversely, suppose (i) and (ii) hold. It suffices to show the sequence

(£,,¢ ) is precompact in D(s,x5,), since (i) identifies the limit. We shall

verify the conditions of Lemma 2.13. Conditions (C1) and (C5) follow

from

the same conditions on (fn) and (gn). To verify (C4) we need the following

observation.

SUBLEMMA. Suppose u 2 0. Then there exist tn—e>u such that

(a) fn(tn) - f(u) and fn(tn—) = f(u-);

(b) gn(tn) - g(u) and gn(tn—)%g(u-)-

Proof. Suppose u is a continuity point of f. By lemma 2.4 or 2.6, there

exist (tn) satisfying (b), and then by Lemma 2.4 they satisfy (a).

Alternatively, suppose u is a discontinuity point of f. By Lemma 2.6

there

exist (tn) satisfying (a), and then by hypothesis (ii) they satisfy (b).

To verify (C4) consider u, -»u, and let (tj) be as in the sublemma.
|



Lemrma 2.6 says:

if uj > t.j for all j then (f (u ),g (u )) = (£(u),g(u));

if u, < tg for all j then (f (u ),g (u }) = {(£{u-),g{u-)).
Given (f ) and (u ) as in (C4), pass to & subSequence in which (u;}} satisfies
one of ‘bhe requirements above: in the first case s, = 85 = = (f(u),g(u)), while

in the second case 84 = 8, = (£{u-),glu~)).

(3.6) COROLLARY. Suppese (x,Y") = (X,Y) on D(S,)xD(S,). If either X or ¥

is contimuous then (X%,Y") =  (X,¥) on D(8,xS,).

Proof. Use the Skorohod Representation Theorem and the remark after Llemma 3.5.

APPROXTMATING MEASURABLE FUNCTIONALS

Iemma 1., says that a measurable map #:D(S)—=> R can be approximated by
continuous maps pfn. Sometimes we need to know that when # depends only on
0<t £ v then we can choose gfn depending only on 0£t £ v, Lemma 3.8 mekes

this idea precise.

(3.7) Definition. Let ?2 be the ¢-field on D(S) generated by the evaluation
maps £ >f(u), u<t.
(3.8) TEMMA. let v O. Let #:D(S)>R be ¥ -neasurable, | 4| < 1. Let X

be a process_such that Xv =X a.s. Then there exist <:-F'];')r-—mezaxsuras.b}.e

continuous maps ‘dn’ “‘n\ < 1, such that EIﬁ(X) - gfn(]()l > 0.
Proof. Define av:D(S) —D(8) by
avof(t) = f(tav).
Then & is ??/?j—measurable. And a_ is continuous at f satisfying
(3.9) v is a continuity point of f.
Since ¢ is 3:3-measurable, g =4gde a_. Applying Llemma 1. to av(X), there

exist continuous ﬂfn, Ufnl < 1, such that



E‘ﬁ(X)—;ﬂoa(X)l-—aO as n-> oo,
n V
1t now suffices to prove the following assertion, for fixed n,
Assertion. There exist continuous??r—measurable maps \Pm, I tymlﬁ 1, such
that uym(f) = gfno a.v(f) as m >eo for all f satisfying (3.9).
To prove this, for 0 < u £ 1 define bu:D(S)-bD(S) by
bu° £{t) = £f{ut).
Then b is continuous, Also b is FD/ﬁD—measurable, and so a _eb_ is
u u v v v ou

(‘:FE/ ?Q? -measurable, So the definition

1
¥ m(f) = mf1-1/m (pfno a o b < f) du

produces & F P _peasursble map ¥ _:D(S)>R. If £ >f in D(S) then b « £ -
v m n u n
b of for each u, so & e b e« f>a eb o f for all u except perhaps the
u v 1 v u
countable set where buc-f fails (3.9): now since gfn is continuous it follows
that Yy is continuous. Finally, suppose f satisfies (3.9). As u7T 1 we have
b ef=>f, so a e bue f-> 2, f : now the continuity of § gives the convergence
n

u
part of the assertion.
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CONTINUITY OF OPERATIONS ON D
The compactness conditions (C1 )-(C5) of section 2 may be used to prove
continuity of operations involving elements of D. We illustrate this

technigue by proving two technical lemmas needed later.

(3.10) 1EMMA. Suppose f -» £_ in D(S), t >t, in [0,0), ga_a_fn(tn)_-» £ (t,).
Defipe h_(u) = £,(u+ t ). Then b ->h,, in p(s).

Proof. If u is a continuity point of h_, then hn(u)—‘-';hm(u) by Lemma 2.4. So
it is sufficient to prove (h,) is precompact. Conditions (C1) and (C4) follow
from the same conditions for (fn). To verify (C5), suppose c); L 0, hj(J:_]) >S5

hj(O) s, That is, fj (tj+5j)-—» 8,5 fj (tj)-—? 8ye Now sy = £ (t ) by
hypothesis, end s, = fw(tw) by Lemma 2.6(iii},

(3.11) IEMMA. Suppose f = £, and g, > €, it D(S), and t_-» t, in [0,).

Define hn(u) = fn(u), u <t

gn(u"t'n): uz tn'
If either
(a) £ (t,) =g, (0); o
(b) t,_ >0 and fn(tn-) —> fm(tw-)
then hn_z; h in D(S).
Proof. If u is a continuity point of h_ =and u ¥ t,, then hn(u) —>h (u) by
Lemma 2.4. So 1t suffices to prove (hn) is precompact. Condition (C1) holds
for (hn) because it holds for (f ) and for (gn).
n
If t, > O then (€5) holds for (hn) because it holds for (f ). If t_ =0
n ol

then



1

jmplies hj(é'j) fj({]) - £ (0)

0 < étj
t.¢48 Lo g (F-t )> g (0)
J 3733 o

]

P

1 (S
inplies h;( j)

and now hypothesis (a) establishes (c5).
Tt remains to prove (C4). Suppose (hj) is & subseguence of (hn),

. i_ . iy _ - -
l;_un v.j = u, l;_.m h (u)) = s;. We must prove s, = S, OF S, = S,. If u § t..

this follows from (C4) applied %o (fn) and (gn). So suppose u = t_ . By
passing to a further subsequence, we reduce to three cases.

2
(1) t, < uj

j

(i1) u?_{-_t‘d 2
]

oy 3

131 ..

(113) 5

In case (i), s, = 85 F gw(O).
Tn case (iii), the condition holds because 1t holds for (fn).

In case (ii), we must treat hypotheses (a) and (b) separately. Under (b),

17 %
Lemma 2.6{1),(iii), -the only way to have s, = s, is to have s, = £ (t,-)s

s = fw(too-) by Lemma 2.6(iii). Under (a), sy = ga)(O) =£ (t). By

s, = i;o(tm): but then s, = 53.
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Z STOPPING TIMES AND TIGHTNESS

Because the basic criteria for tightness are in practice hard to check,
much effort has gone into finding more tractable sufficient conditions. There
seem now to be four classes of conditions known, Two of these {based on
maximal inequalities or moment inequalities) are discussed in (B). Strook
and Varadhan (1978) give conditions specially designed for diffusions. We
shall present a conditién specially suitable for martingales.

Recall the classical definition of & stopping time T on & process X:
(4.1) {14tle s(X_ir<t) t> 0.

Write J for the set of stopping times (on a specified process), and :T; for
the subset bounded by L.

We shall be concerned with the following condition on & sequence of

processes (Xn):

n —l
{(4.2) XI'I]‘n+8n - XT '—g 0 for each sequence Tne_) L and each segquence

: of constants J;\L-O.

Though the form above is more useful for applications, note that (4.2)
can be rewritten as
(4.3) 1im lim sup sup P(‘xlllwu - x;l >£) =0 ; each € 0.

JL0 n-sew _Téji _

0<ue &

Now if T were not required to be a stopping time, this condition would
just be condition ( . ) for the processes to be tight and subsequential
1limits to be continuous. The significance of this observation will become

clear later

Condition (4.2) is not quite sufficient for tighiness: consider



N

, where P(U>u) = e . But with mild supplementary

Xn n,1
t (t> 1)
conditions it becomes sufficient,

(4.4) THEOREM Suppose (X°) satisfies (4.2), end suppose (13) is tight on R.

Suppose either

(1) (4.2) holds with I? convergence;
or (ii) (x:) is tight on R, for each t.

Then (X") is tight on D(R).
The result is stated for real-valued processes, but the proof (under (ii))

extends to the general Polish space S (to make sense of (i) we need S to be
a Banach space).

Since Theorem 4.4 plays a major role later we feel obliged to present
the proof, although it is rather technical. The reader may well omit the
rest of this section,

4 few remarks about stopping times are needed, That T = inf{t:xt}_ a}
is a stopping time is obvious - until you try to prove it! (see Williams
(1979)). On the other hand the time
(4.5) T = inf{t:Xt> at
is easily seen to be at least a weak stopping time: that is,

(4.6) {T1< tfef{xrar_é_ti ; t20.

Now a weak stopping time T is a 1limit of ordinary stopping iimes T+6 , and
so condition (4.2) extends automatically to weak stopping times. In the
proof below we shall use week stopping times like (4.5). Chapter 2 has a
more definitive discussion of stopping times,

Proof of Theorem 4.4. We first show that (i) implies (if), by showing that

(1) 1 plies lim sup E[X] - X | < for each t. For if the latter condition
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n
fails, then for any 0 = ¢t < ... <t =t we have lim sup E(x" -X

0 n->w
for some i, and follows that (i) fails for certain (non-random) stopping
times.

Our strategy now is to verify, using (ii), the basic tightness
conditions of (B,15.2), Fix L and £ > 0. By hypothesis (4.2) there exist
> 0 and no such that
(47) B(xy, -Xpl2€) < € TeJ7, ug 26, n3n.

Fix an integer q > 2L/§ . Then similarly there exist J2> 0, o, > n,
such that

(4.8) (g, -Xlre) < €/a; TeT, uc28, n2n.

Next let Bc be the set of t such that

sup P({X[>e) £ €5/L.

By hypothesis (ii), |J Bc = [0,). So we can choose ¢ such that
[0,2L} has Lebesgue measure less than €3 /L, We shall prove later that

(4.9) P( sup ]XI:;|>c+E) £ 3¢, n>n ,
t <L 1

Consider now the process Xn for some n_>_n1, and drop superscripts "n",
Define stopping times Ti by: ‘I‘o = 0,

T, = LT X, - xTip 2ef A L 5oi=T.a.

We shall prove later that

(4.10) P(Tq<L) < 16¢

(4.11)  B(T, < (T, _+ Jz)ALj_for some 1) < 8e.

These inegualities are sufficient to establish tightness on D[O,L] s from

which the Theorem follows. For let w' be the modulus of (B.equation 14.6),
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modified for D[0,L] by taking the infimum in (B.equation 14.6) over

0= t0<_., <tr = L to give a modulus w'(f,5,L). From the definition of w'

and (4.10), (4.11),

P(w'(X,6,,L) > 4g) £ Rhe-
This and (4.9) are the hypotheses of (B.15.2), which establishes tightness.
Proof of (4.10) end (4.71). Let © be independent of X, distributed
unifornly on [0,28]. Consider f& D(R) and 0Lt €%, £ Lo If

t, -t <&,

P(lf(tj +0) - f(tj)l <g) S>3, §=1,2,

then there must exist some constant QO in [t1+J,t1+25] such that

If(go)-f(tj”( 3 s J = 1,2,
and so lf(t2) - f(t‘i)) < 2¢. In other words, the set

{(f,t1,t2)= (£(t,) - f(t1)] > 2¢ and t,< b+ §}
is contained in the set

{(f,t1,t2): P(If(tj+0) - f(tj)l‘;s) >, forj=10r2f.
Applying this to the process X, we have for each 1 = 1,...,q9

- <

(4.12) P([X(Ti) X(Ti_.l)l > 2¢and Ti<Ti_1+6) < P(a,) + (8, ),
where A, = {P(lX(Ti-l-G) - x(1y)]2 € Ixys 1, ¢.
But P(Ai) £ A.P(IX(T5_+Q) - X(Ti)l > ¢ ), and by averaging over u in (4.7)
we find - ¥
(£.13)  P([X(T+0) - X(T)2£) <€ ; T<T .

And by definition of T, we have |X(T;) - X(Ti_1)l >2g on {1,<15.

i
So (4.12) implies
(4.13) P(Ti< L, Ti<Ti_1+ ) £ 8g; 1i=1,...,q.

The same srgument using (4.8) in place of (4.7) shows



P(Ti< L, T,< T, .+ a’z) < Be/fq ;3 1=15.0e,4,
which gives (4.11). To get (4.10) we compute
L> E(Tq{ Tq <L)
=¥ E(T, - Ti_,lqu(L)
>IRT -1 424 qu<L)
g2 (- P(T, - Ty 4 < 3 qu(L))
> Jq/ (1 - 8£/P(Tq< L) } , using (4.13).

i

Rearranging, this gives (4.10) since we chose q Y _L/4 .
Proof of (4.9). Teke U uniform on [0,2L], independent of X. Then for
£ in D(R) and 0<%t <L we have, by considering densities,
(4.14)  POE(0)] 2 ) < 1/ PULE(U)] 2 e).
So for the stopping time T = inf{t: ‘X(t)] ?c+'if Al ,
POR(T)] > c+e) ¢ £ + PUIX(T40)] > o) by (4.12)
¢ €+ /5. B({X(U)] 2 ¢) by (4.14)

< € +L/5. (§/L +P(UEB)) £ 3¢

by definition of B .
c



5 WEAK CONVERGENCE OF MARTINGALES

Here we are concerned with theoretical properties of wesk convergence
of martingales, not with conditions for convergence to occur,

We first want to show that a week limit of (sub)martingales is itself
a (sub)martingele, The alert reader will instantly see that this isn't
quite true, For if P(Vn =n) = 1/(n41) , P(Vn = -1) = n/(n41), then
X, =V

t n‘1(tg1)
Pursuing this line of thought, it is not hard to see that any process is a

is a sequence of martingales whose limit is not a martingale.

1imit of martingales. The problem, of course, is that the martingale
property involves integrability: the natural solution is to impose uniform
integrability.
Some care is needed with definitions. We have in mind the classical

definition of submartingale:

E(su|sr:rgt) > s,c a.s., t<u.
But sometimes we will have a bivariate process (Xt,St), and then we want
the submartingale property for St to be:

E(Su‘xr,sr:r_ét)z st 8.8., t<u.
Similarly, we want fT-to denote the stopping times for the bivariate process.
The result is stated for submartingales -~ the martingale form is an
immediate conseguence.
(5.1) PROPOSITION Suppose (X',S") = (X,S) en D(S) x D(R), znd suppose

(S:) is uniformly integrable for each t. If each s® is a submartingale,

or alternatively if

A e 5 pdd
CL—-lnf?_ESU

then St js a submartingale.

- ESp s T,UeT; , TEUE 7 0,




Proof. Let t<u and Ge& d‘(XI;,S::rg t). By considering

T=t%t on B; = u outside B;
U=nu,
we find that E(S:: - S:)1G > C?J (where Cz = 0 in the submartingale

case). It follows that for any K(Xﬁ,sz)-measurable random variable &
with 0<¥"< 1,
n n,.n n
E(S".1 - St)X > Gy -
Let t.1< t2 cese &E L tk< u, where (ti) are continuity points of (X,S).
k _k n n
For g & C(Sx R°) with 0<g<1 define ¥™ = g(I® ,..,X; ,S, ,...5S, Je
ty Tty b
By weak convergence and Corollary 1.4,

- > .
E(Su stk)b’ > 0

By Lemma 5,2 below (for R xw(Skx Rk)), this inequality extends to all

bounded positive ¢ (X, ,..,X ,S, ,...,S_ )-measurable random variables Y,
Y Y by ty

and thence all (]{r,Sr iré tk)-measurable variables, proving

ir &
E(Sul Xr,Sr.r_tk) > St'k 8.5

Letting tk decrease to t establishes fhe submartingale property.
In the course of the proof we appealed to the following variation
of a standard fact (Halmos (1950)).

(5.2) LEMMA Let s~ be a probability measure on a product (S x S', £ x .8')

of Polish spaces., lLet f be positive bounded and .£'-measurable. Then

there exist positive f & C(8') such that Jlf - f\ d/u. = 0.,
m - m



OQur second project is to show that weak convergence of martingales to
& continuous martingale follows automatically from convergence of finite-
dimensional distributions., Again it is plainly necessary to require
uniform integrebility. This is in fact sufficient, but there seems no
easy proof of this (see remark later)., Fortunately, in the application we
need ( ) the martingales are bounded, and for this
case the proof is easy.

(5.3) PROPOSITION Let (M) be a sequence of martingales such that (M%] <1,

and suppose_the f inite-dimensional distributions converge to those

of M. if M~ is continuous then M = M7,

Proof. First verify the inegquality
if 04V<2 and 0< €<1 then P(V>EV -£)> €/2.
Repiacing V by V-1 and conditioning, we get the inequality below.
(5.4) If \v[<1, 0<€<1 and F is anyo-field, then
PV E(VIF) - [F )2 €/2 a.s.

Now £ix 0 = t <t, .. &t =1L. Let Mbe any martingale with|M} £ 1.

1
We assert
(5.5) P(max M -M > £ ) > £/2 P(max sup M -M > 2¢).
1 biy W 1 t<tst, ¥ W
i i+
To prove (5.5) consider the stopping times
S = infft: M -~ M 2g, t <t £
0 4 t ti> ! "ti+1§
S = SOISL
T=t,, on {ti< sgtiﬂg .

v

Applying (5.4) to M. end Fg = O’(Mr ir< S),
P(MT 2E(MT|?-TS) -519%) > £/2 a.s.

Using the optional sampling theorem we find



- < <
5 £, So__L)_>_ £ /2 P(SO__L)

and (5.5) follows.

P(M_ 2 M
T

By convergence of finite-dimensional distributions
o
1im sup P(max sup Mrtl - M: > 2¢) £ 2/¢ Plmax M, 3
n-y o it <t<t, i i i+1 i
i i+
But M® is continuous, so the right side tends to zero as mex Itiﬂ ti] -2 0.

This establishes tightness

. . o 4
Remarks. The result is not true for discontinuous M - conslider

M, =V, .1

. P =+ %) = %,
" 1 43 1) +V21(t>‘l_1/n),where (Vi + %) =%

For the record, we state a sharper result, which implies that Proposition
5.3 remains true when only uniform integrability .is imposed: conceivably
this may be useful elsewhere.

(5.6) PROPOSITION Let (X®) be_a sequence of processes whose finite-

dimensional distributions converge to those of a continuous process X.

Suppose (1) {X,nr. Téj'i, n>1% is_uniformly integrable;
n
(i1) Ex;h+5n -EX} > 0forall (T)e T, s v o.

n

Then X = X,

The proof occupies six pages of Aldous (1977). Note that (ii) is
essentially a weaker form of ( . ). Here is an instructive example which
shows that some condition like (ii) is necessary. It also shows that
Proposition 5.3 is not true for submartingeles (where does the proof bresk
down?)

.7) EXAMPIE ILet X = tal X = (t -1

where P(UD> u) = e 2.



fig here

Here X0 and X are submartingales, the finite-dimensional distributions

converge, but wesk convergence fails.
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CHAPTER 2 - THE GENERAL THEORY OF PROCESSES

This is intended as & gentle introduction to the concepts in the
general theory needed later. For the full story see Dellacherie and Meyer

(1975,1980) - abbreviated (DM).

6 BASICS OF THE GENERAL THECRY
Given a process X, write
[=]
To= o (X rgt) £20.
Think of ‘}’: as representing what can be learned by observing the process

over time [0,t], and call F°€ = (?E)wo the natural filtration of X, The
classical definitions of “martingale":—“Markov process", "stopping time on
a process® refer to this netural filtration. In the general theory we adopt
a different view., We suppose there is one filtration F - that is, an
increasing family Cﬁ;) of o -fields - which is fixed once and for all. Think
of'?ft as representing what can be learned by observing the entire universe
over time [b,t]. When we consider a process X we assume (unless otherwise
stated) that the value Xt is knowsable at time t, i.e. X is adapted in the sense
Xt is ?t—measurable , t 20,

We now define concepts like "submartingale®, "stopping time™ in terms of the
fixed filtration F :

E(Xt] F) 2 X, a.s., s<t

{r<t}teF,,

For technical reasons we assume F satisfies certain regularity conditions

t> 0.

(the usual conditions):

?rt=f\"37

u>vt u ?

the o-field ;3 of the underlying probability triple is complete;



g"t contains the null sets of % .
We shall not discuss the significance of these conditions, save to observe
that a weak stopping time

{r<tteF,  e.f. (4.6)
becomes a genuiné stopping time. Write “T for the class of stopping times;
‘j’L for the subclass bounded by L.

Given a process X, there is & minimal filtration which satisfies the
usual conditions and to which X is adapted - call this the usual filtration.
When we construct & process X as & weak 1imit, we give it the usual filtration.
The reader may verify that a Skorohod process which 1is a submartingale with
respect to its natural filtration remains a submartingale with respect to its
usual filtration.

A simple yet elegant concept which arises from the general theory 1is

predictability. The times of accidents or radiocactive disintegrations ere

inherently unpredictable, so when we model such events by a Polsson process
(say Nt is the number of events occurring before time t), the time of the
k'th event
(6,1) T = inf{t:Nt = k¢
should be "unpredictable®™. On the other hand a hitting time for EBrownian
motion
(6.2) T = inf{t:W = 1}
should be"predictable“. The intuitive idea here is: can we tell whether
T = t by looking at what happens strictly before t7 Unfortunately the obvious
formalisation

{T=tée s (F:s< t)

turns out to be unsatisfactory. Here is the right formalisation,
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(6.3) Definition. A stopping time T is predictable if there exist stopping
times T, < T such that T T1T on {T» 04, Say (T,) snnounces T.

How do we tell if this is so? The time in (6.2) is predictable, being
snnounced by T, = inf{t:W, =1 - a1}, What ebout (6.1)2 Let us take this

opportunity to define a Poisson process_of rate A as a simple point process

N, such that N_,, - N, is distributed as Poisson () s) independent of e«

t
Then the strong Markev property implies that NT+s - NT is also Poisson (\s)

for any stopping time T. So if T is predictable then by considering an
announcing sequence we find that N(T+s)— - NT- is Poisson Cks). So letting

s~» 0 we see NT = NT— 8.8, So the time in (6.1) is not predictable., In fact,

a little more is true.

(6.4) Definition. A Skorohod process X is guasi left continuous if XT = IT

a.s, for each predictable stopping time T.

The argument above shows the Poisson process is quasi left continuous,
and suggests that strong Markov processes might be quasi left continuous in
general, This is true under wide conditions - see Blumenthal and Getoor (196 ).
Remark. Of course in conditions like (6.4) we really mean “XT = XT— a.8,
on {0< T<w{®, since X, and X, are not defined. But we shall reserve such
meticulousness for the occasions it is really important.

We omit various elementary facts about stopping times where the claésical
theory goes over unchanged (e.g, closure under limits and lattice operations;
the pre-T 6 -field ?F&). Liptser and Shiryayev (1977) Section 1.3 has a

concise account., Here is a non-elementary fact.

(6.5) LEMMA Suppose X is Skorohod and B measurable. Then T =

inf{t:xte B} is_a stopping time.

That follows from (DM.III.44). One elementary fact deserves explicit mention.
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(6.,6) LEMMA Let T be_a_stopping time. Then there exist discrete-valued

stopping times (Tn) such that Tn‘l’ T.

Proof. Put T =k/27 on fx-1/2"" £ T </ L

For Skorohod processes we have XTn-—-‘:r XT, and this gives the fundamental
technique for extending results from discrete to continuous time (e.g. the
proof of the strong Markov property of Brownian motion in Breiman (1968)).
As another example, consider the optional sampling theorem for Skorohed
submartingales.

(6.7) E(XT] ?s) > X, ; 0£SZ2T, §,Te¢ j;

To prove this, approximate S,T by discrete Sn, Tn as in Lemma 6.6. The

S for n < n, Letting n e ,
n n

discrete time theorem says E(XTmI‘?FS )> X
then m»« , gives (6.7) - see (DM.VI,10} for details.

Though primarily interested in Skorohod processes, we must occasionally
leave this class. Temporarily think of a process X as a map (t, ) _»Xt(w)
defined on [0,«)x (1.

(6.8) Definition. A process X is optional if it is measurable with respect
to the s-field on [0,«) x() generated by the class of Skorohod processes.

For example, measurable functions h(Xt) or limits lifll_::ip Xz of

Skorohod processes are optional, but in general are not Skorohod., This

"peasure-theoretic® view of processes leads to a concept of predictable process.

The intuitive idea is: can we tell the value of Xt by looking at what heppens
strictly before t? Again the oﬁvious formalisation

X, is c‘Gﬂ'—s:s< t )-measurable
turns out to be unsatisfactory. But a left-continuous process should be

predictable, hence
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(6.9) Definition. A process X is predictable if it is measurable with
respect to the ¢-field on [b,aﬂ x ) generated by the class of left-continuous
processes, In particular, a continucus process is predictable.

(6.10) LEMMA (DM.IV.67) A predictable process 1s optional.

Warning. Since any Skorchod process X is the pointwise limit of the left-
continuous processes x(t+5)-’ it is tempting to believe that any Skorohod
process is predictable. This is wrong. For by "process" we implicitly mean
"adapted process®, and in general X(t+5)- is not adapted.

So what does it mean for a Skorohod process to be predictable? (DM) is
not explicit here., Informally, il means that . any stopping time T picking
out a discontinuity (XT 2 X a.s.) is predictable and the value X, is
determined by what hsppens strictly before T (i.e. XT is ?ﬁ&_-measurable).
See
Again informally, predictability is the opposite of guasi lefi continuity,
where discontinuity times are unpredictable.

We conclude by quoting several technical lemmas.

(6.11) IEMMA (follows from DM.IV.85). If X is a predictable Skorphod process_ then

T, = inf{t=xt>_a§,
T, = infit:X, - X _2 €%

are predictable stopping times.

(6.12) LEMMA (DM.IV.86) Suppose X and Y sre optional (resp. predictable}

processes and XT = YT a.s, for each (predictable) stopping time T. Then X

and Y are sndistinguisheble, l.e, P(X, = ¥, for all t) = 1.
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7 MARTINGALE DECOMPOSITIONS

We assume the reader is familiar with basic results about discrete-~time
(sub)martingales — convergence, maximal inequalities, optional sampling. In
the continuous-time setting, the fundamental fact is that submartingales may
be assumed to be Skorohod, in the following sense.

PROPOSITION (DM.VI.4) Let X be a submartincale, snd suppose the map t—> EXt

~
is right-continuous. Then there exists a Skorohod process X such that

P(Xt = %;) = 1 for each t,
This indicates why D is the "right" function space for much of probability
theory. In this section all processes are assumed to be Skorohod, and
adapted to the fixed filtration F. In (6.7) we saw how the optional sampling
theorem extended to continuous time, and other results extend just as easily
(DM.VI). We record two maximal inequalities.
(7.1) LEMMA For_ eny martingale X,

Pleap (X 152 ) £ >7 Elx ]

E(%IEL X%) < AEXi.

The rest of the section is devoted to the Doob-Meyer decomposition.

Consider first an integrable discrete-time process Xn adapted to Cag). Define
a martingale M by:

My =0, M - Mpr X - xn-1 - E(Xn - xh—1|€F;—1)'

Then Xn
Ay = Xos By - A = E(Xh - In-1r3§-1)°

Call X = M + A the Doob-Meyer decomposition of X. HNote that if X is a

Mn + Ah’ where A is given by:

submartingale then A is an increasing process.
Here is a mental picture the author finds helpful. Imagine you are

engaged in some hazardous enterprise, and Xn represents your accumulated losses



N

at time n. If at time n-1 you wish to insure against the brospective loss
Xn - Xn_1 to be incurred over the interval[}pJ,ﬁ], then the fair insurance
preniun is B(X - xn;11j:n_1) = A - A 4. So if you elways insure, then
A.n represents your accumulated insurance premiums at time n, and Mn represents
the accumulated losses of your insurance company.

The continuous-time version of this decomposition lies much deeper. We
discuss only the submartingale case.
(7.2) Definition. A process X is class (pL) if {ngTe:T£§ is unifermly
integrable, for each L oo .

In particular, a positive submartingale is class (DL), because
0&X, £ E(XLl‘_:FT) and the family E(xng.rT:Tej'L is wniformly integrable.
(7.3) Definition. A submartingale X is regular if EXT = EXT_ for each
bounded predictable T.

So regularity is a property somewhat weaker than quasi left continuity,
Here is the continuous-time Doob-Meyer decomposition.

(7.4) THEOREM (DM.VII.8,10) Let X be a class (DL) submartingale., Then there

exist unigue processes M, A such that

X= M+ A

M is a martingale with MO =0

A is a predictable process;

The process A is increasing; it is continuous if and only if X is_regular.

Remarks. (a) "Unique™ means unique up to indistinguishability.
(p) The normalisation MO = 0 is convenient for our purposes. Other authors
use A = 0.
se A,
(¢) Actually (DM) work with supermartingales. To convert, note that if X is
a class (DL) submartingale then E(XIJEFt) - Xt/\L is a class (D) potential in

the terminology of (DM).
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Call A the compensator of X. Applying the optional sampling theorem to

M gives the next result, which is the main way of exploiting the decomposition.

(7.5) COROLLARY let X, A be as in Theorem 7.4, and let 5 £ T be bounded
stopping times., Then

EXp = BAp

E(X, - X\ Fg) = ElAp - ag|Fg)-

There is a partial converse.

(7.6) LEMMA Let X be s submartingale and A a predictable process. _If

XO = AO and EXT = EAT for each bounded stopping time then A is the compensator

of X.

Proof. IfM:X-AthenM():OandEMT

taking values s, t only (s<t), we find EM 1, = EMt1B , Be Fg, and hence
E(Mt|?s) = Ms'

Point processes provide an illustration of the decomposition. Let N be

= 0 for each T, By considering T

an integrable simple point process. Suppose EN, = j; m{s) ds. Then m(s)
is the "intensity" of the process: informally, m(s)ds is the probability of
a point in [s, s+de:_-l. Now let A be the compensator of N, and suppose
A, = jg a(s,o) ds. Then a(s) is the "conditional intensity®: informally,
a(s,w)ds is the conditional probability of a point in [s,s+ds] given ?F'S. For
the Poisson process of rate X\ we have E(Nt+s— Nt}?t) = E(Ni o - N,) = Ns,
and it follows that the compensator is A =Xs, The converse is true, but
more difficult.

(7.7) THEOREM., Let N be an integrable simple point progess whose compensator

is A = Ns. Then N is a Poisson_process of rate h.
This result and systematic development of the martingale approach to point
processes can be found in Bremaud and Jacod (1977) or Liptser and Shiryayev

(1978) Chapter 18.



Lofmr b

.

Square integrable martingsles provide a second, and more important, use
for the decomposition. ILet M be a square integrable martingale. Then M% is
a submartingale, and its compensator has acguired a special name <M>t {or
<M’M>t)‘ As an exercise in using the tools of Chapter 6, we prove scme simple
facts about <M.

(7.8) LEMMA Let M be a sguare integrable martingale.

(a) E(<M>T - <M>S) = E(MT - MS)2 for bounded stopping times S < T.

(b) E(Q - My ) = E(My - M, )® for bounded predictable T » O.

(¢) Outside a null set £ the ssmple path Mt(m) is_constant on each

interval on which the sample path <M>t is constant.

EQZ - Ma) by (7.6)
E(M, - MS)2 since E(Mj - MS\ FS) = o.

Proof. E( <M>T - <M>S)

This is (a), and (b) follows by considering a sequence announcing T. To

prove (c), fix a rational r < L., Define

s, = infftd>rafM, - M| > a1 }

S =infltor: M, § M }

U, = inffeyr: <MY > <My 4 n AL
U = infft>r: <My >(M>r} ~ L.

We must prove S > U a.s.. For any stopping time T with r<{T<1L,

EM
(SAT

2 _
} =M )T = E(<KM), o -<3D) by (a).

n

Now Uy is predictable by (6.11). So by considering an announcing sequence,

v =) - <M>r)

2 _
E(MSnA(Um") - Mr) - E(<M>Sn/\( n

e by definition of U -

So P(Sn< Um) -~ 0 as m -y, by definition of Sn' Since UmJ,U, we have

P(Sn(U) = 0, But Sn‘l' S, so 8 > U a,s..



Although Theorem 7.4 gives no method of calculating <{M>, one can in
practice find it whenever M has an explicit definition. For Brownian motlon
W, simple computations show that W% - t is a martingale, so (U}t = t. And
this characterises Brownian motion, in the following sense.

(7.9) LEVY'S THEOREM (Liptser and Shiryayev (1977) Th.4.1). Let M be a

continuous square integrable martingale such that <M>t = t, Then M is

Brownian motion: more specifically, for each t the process (M - M)
t+u t'u> 0

is distributed as Brownian motion independent of cjr\;.
As another example where <M, is manifest, let (fi, ?F'i) be & discrete-
time square integrable martingale. Given constants 0<f‘|:.1 <t2 € wessey form

a continuous-time martingale by

(7.10) M, = 2. .
)M irb <t i
Then <MY = 2  E{ 2 ).
- 1, ¢ RER

Remark. The notion < M> can be extended from square integrable martingales

to a rather more general class of processes, the semimartingales (DM.VII).

From the theoretical viewpoint, semimartingales provide the natural setting
for the theorems of the next chapter. We stick to square integrable martingales:
the generalisations require greater technical skill with the general theory,

but the same weak convergence ideas can be used.
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CHAPTER 3

We now haﬁe the tools for a systematic technigue for establishing weak
convergence theorems:
(1) find a mertingale characterisation of the desired limit X;
(i1) prove tightness via Theorem 4.4;
(iii) identify subsequential limits via Proposition 5.1.
The purpose of this chapter is to illustrate this technique by proving

simple weak convergence theorems for a variety of types of process.

RBecause we combine ideas from the wesk convergence theory and from the
general theory of processes, let us explain carefully the set-up we adopt
for the rest of the book. By a process (X,F) we mean & Skorohod process X
adapted to a filtration F. When we have a sequence (Xn,Fn) of processes,
the filtrations F* and indeed the probability spaces O will in general be
different for different n. By the device of forming a product space, there
is no loss of generality in assuming & common probability space @,3,p).
Rut the filtrations remain different for different n: for example, it would
be quite unnatural to iry to discuss convergence of random walks to Brownian
motion with reference to a single filtration. When a process X is constructed
as a weak 1limit, it is given its usual filtration.

In practice we shall often be less formal and just write "a process X ',
leaving the filtration implicit.

In this chapter we consider only real-valued processes.



8 THE MARTINGALE INVARIANCE PRINCIPLE
We shall consider martingales satisfying
(8.1) Mo =0, E(Mt)2 <« e , for each t,
For in most practical settings we can reduce a given martingale M to one
satisfying (8.1) by first considering Mt-Mo and then truncating.
Levy's theorem suggests that for a sequence (M) to converge to Brownian
motion W, it should suffice to show
(i} the discontinuities become small
(i1) (Mn,Mn7t approaches t.
write A® =<MP,M"> . Note that the following formalisations of (ii) are
equivalent, by Lemma 3.1.
(8.2)(a) AI; 2 for each t.
() &%= t.

In the special case of continuous martingales, this is sufficient for convergence.

(2.3) PROPOSITION. Let (M”) be_a_ sequence of continuous martingales satisfying

(2.1) and (8.2). _Then M > W.

The proof is based on the well-known representation of continuous
martingales as time-changes of Brownian motion. The following crude version
of this representation is all we need.

(8.4) LEMMA., Let M be a continuous martingale satisfying (8.1). Let A = {M,M>

and suppose there exists to such that

(8.5) At.?"t’ —t’o .

Let < be_the_inverse of A (that is, Ty = :I_nf{s:AS> t} ). LetW=Me<

(that is, W, =M ), and let 4, = "'J_F(t Then (W,G) is Brownian motion.

%
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Proof. We verify the hypotheses of Levy's theorem., W 1s continuous by

Lemma 7.8(c). Assumption (8.5) implies ‘L't <t + ¢ So for s < t the

O'
optional sampling theorem implies

E(th%s) = E(Mectl"%_cs) = M(CS =W

8

E(Wi - Wil!;.}s) = E(szt - Mfcs\cits) = B(A*tt" A-’cs\?cts) = t-s.

e Fal
Proof of Proposition 8.3. Replacing Mt by Mil,\n + “(t-n)vo , where W is an

independent Brownlan motion, we see there is no loss of generality in
assuming M satisfies (8.5) for to =n., Let W= Mno*‘cn, in the notation of
lemma 8.4. By (8.2), (W) = (W,t). So M  =Woia' = Wet =W,

using a simple result on the continuity of random time changes EB, eq. 17.9].

Remark. Discontinuous martingales also can be embedded into Brownian motion
(see e.g. Drogin (1972)), and this leads to the "Skorohod embedding"
technique for proving martingale invariance principles. However, our aim 1is
to illustrate the technique outlined at the start of the chapter.

Here is a simple result (exercise) about convergence of arbitrary
processes.

(8.6) IEMMA. Suppose Xn => X. The following are equivalent.

(1) X is_continuous.

(ii) tSI_i_pL \XE - X:_\ —pa 0.

(iii) sup [Xil - Xn\ — 0. for each sequence 4 L O.
s,t ¢ L " p n
Ls-t!fé’n

In seeking to prove the invariance principle for discontinuous

martingales, {ii)} is a natural necessary condition to impose. However, (ii)



end (8.2) are not sufficient: we need integrability conditions also. In the
1? setting it is natural to be interested in convergence of moments, and then

we obtain a definitive result.

(8.7) THEOREM, Let (Mn) be a sequence of martingales satisfying (8.1). TIhen

(1) and (II) are eguivalent,
(a) A St
(1) (b) EA, —> t;

(e) E sup (Mi - )2 - 0.

(@ ¥ => u;

(I1)
(e) E(M:)Z—-?o t.

Proof. Here is a technical lemma whose proof 1s deferred.

-



(8.8) IEMMA, The following ere equivalent.

(1) {(Mi)zznz 1% is uniformly integrable, for each t;

(i) {A:- n> 1+ is_uniformly integrable, for all t;

n.2
(i1i) { sup (M) :nx 1%  is uniformly integrable, for all t.
st

Hypothesis (1I) implies the first assertion of the lemma; hypothesis
(1) implies the second assertion., Hence all three assertions &are true under
either hypothesis. Observe also that E Al:: = E (M:)z, so conditions (b) end
(e) are equivalent. Also, (c) follows from (d), Lemma 8.6 end Lemma 8.8(iii).
So we need only establish the "weak convergence" conditions (a) and (d).
Proof of (d). To prove (M") is tight, let T <€ L be stopping times end let

Jn J, 0. Then
2

(8.9) E(M?,n_i_gn—M;) = B( A&, 5 - A -

n n n n



._)('_;,

But by (a) and Lemma 8.6, A% 5 A; —> 0, and uniform integrability
n"%n

n P
extends this to IJ convergence, o0 (M™) is tight by Theorem 4.4. Let M be
a subsequential weak limit of (). We must show M = W. Passing to a
subsequence
(8.10)  (f",4%) => (M,t) on D(R) x D(R).
Proposition 5.1 and Lemme 8.8 show that M is a martingale. By (8.10) and
Corollary 3.6,

T A S SR '
Proposition 5.1 and Lemma 8.8 show that Mi - t is a martingale, And M is

continuous by (¢) and Lemma 8.6. Levy's theorem identifies M as W.

Proof of {a). The proof that (A®) is tight is precisely the same as the proof

sbove that (Mn) is tighk, using (8.9) in the other direction. Let A be a
subsequential weak limit of (Ap). First, we assert that A is continuous.
To see this, apply Lemma 7.8(b) to stopping times of the form

T = infft: A - A 25F AL
and use (c¢) and Lemma 8.6, (We have already seen that (c¢) follows from (II)).
Next, passing to a subseqguence,

o, 8%) => (W,A) on D(R) x D(R).
Using Proposition 5.1 and Lemma 8.8 as in the proof of (d), we see that W
and Wz ~ A are martingales with respect to G, the usual filtration of (W,4a).
Thus A = <W,W? , where < , > is interpreted with respect to G. But
Proposition 7.11 shows that <W,W does not depend cn the filtration, so

At = t as desired,.



Proof of Lemma 8.8. ILet M be a martingale satisfying (8.1), A =<M,M> .

(11) implies (i). Fix X\>0, t<®. Let T = inf{s:|M | >, The
2
elementary inequality %{a+b)2 < 8% + b gives
2 2 2
2 - -
(8.11) B -N71 (g ) € B - M) g gy O EMG - X104

The first term on the right equals E(At - AT)1 by (7.8), and this is

(T< t)
bounded by EAt1(T <ty The second term on the right is bounded by

E sup (i - M 5. Since {T <t} = (ML >>? >dMi>>t
8< s 5— T t

2 2
(8.12) EQ4! -X) g3 ) < Wdgssy * 2 E g M- )
o2 -2 =2
and P(M,>> ) £ EM. £ X EM:; = >,

Apply this to a sequence (M°) satisfying (I). Using (c) and the uniform
integrability of (a"),

lim sup E({M | -2

n > 0 as XD
n-» oo (lMtl })-)

2
This implies that (Mg) is uniformly integrable (recall discussion in

Section 1).
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™
{\)

(1) implies (4i), This is very similar. This time, put T = inf{s: AS‘3>J .

Now

E(A, -1 (> ) E(A -2 0 4

(8.13) £ E(A A)1(T£t) + E(Ap - A V(g 2 4y
By (7.5) the first term on the right equals E(Mi - Mi) (T £t)" 4nd since T

so {T<th= {a 2>

is predictable by (6.11), by considering & sequence announcing T,and using (7.5),

AN = E(NE M2 n
E(Ap = Ap Mpcgy =BV - Mo Mg, gy
Now (8.13) gives
2

- < .

(8.14) E(At >)1 (A 2>) = E Mt1(T_-i_ t)
-1

But P(T ¢ t)} = P(A =>2) £ » EAt = X EMi So uniform integrability of

a seguence (Mt) implies uniform integrability of (Ai).



(1) implies (3ii). Fix ¢, and set S5 = gtiptl,M; Let ™ > 0. We shall prove

2
(8.15)  E( (8->)v0) £ AEIEt‘l(-lMtl?_%) ,

and the result follows. Actually, for X = 0 (8.15) is a well-known
inequality of Doob (see e.g. Williams (1979) ), and our argument below
is just a slight modification of the usual argument for A = 0.

Fix eY) . Let T = inf{s:lMs[ > cf, so
(8,16) E({Mtl | T<€%) > e

Putting 2 = lMt“([Mt[2>~) we can rewrite (8.16) as

£ -
E(Z] T€t) > ¢ E([Mt]‘l(mtt <x) | T<t)
} C - > L]
Since 1T < tt={S>c§ , this gives
(8.17) (c-)\)P(S>c) £ EZT (5> o)
We now compute o
B((s=-2 02 = -J (e-2)? ar(5 2 o)
c=
2 .
= 2 J (e->) P(8> ¢) de - 1lim ¢” P(S>c) (integration by
¢ parts)
£ 2J EZ‘I(SE ¢) de by (8.17)

= 2 E Z({8->)v0)
< 2 {EZ;?’FaL . LE((S-> )vO)zf% (Cauchy-Schwarz}.

Rearranging this, we get (8.15).



Iet us see what Theorem 8.7 means in the classical case of a square
integrable martingale difference segquence (fi), that is where E(Sfi \37\_1 1) = 0

for ?i = (50005 Ei). Set

S=§:}§ ,Mn=ndL

%8
n i t [nt]

3
Then <Mn,Mn>t = o g E(E?l‘}\ ) , and the conditions of (I) become
1 1 i
1 n 2
(a) o7 T EY | ) > 0;
(8.18) 1 i i-1 P
L] n
(b) n’1§1 ES'?; > 1

{c) n1 E max “5'2 - 0.
ij<n 1

Note that {c) is weaker than
24 &
(¢') sup E\Ei\ =K <o , for some oS0,
i

For (¢') implies
~(1+4 8/2)
Kx .

IN

n-1P(max Ez > x) £ omax P( _52 > x)
i€dn % i<n 1
If one is interested only in proving wesk convergence M® = W, without
caring asbout convergence of moments, it is natural to suppose that some of the
integrability hypotheses in (I) could be removed., The next example shows one
cannot go far in this direction.

For each n 1et{}‘n ;12 1} be i.i.d. with
2

- _ _ 3 3
P , = =P = -n) =1/2n" ;3 P =Q)=1-~1 .
(5, ,=m) =2(§,  ==m) =1/27; P(E ,=0) /o
(nt}
Let MI; = n"%_ > §n ; - Then M® = 0. But conditions (a) and (b) of (8.18)
1 H
hold, and also
n 3
sup | M - M = n“fmax]‘?‘ - 0.
té,,L\ v - Y igny + P



Thus to deduce M" = W in Theorem 8.7 we cannot replace (¢) by the (necessary)

condition sup |M] - V' | > 0. The classical central limit theorem for
t< L TP

independent variables suggesis that we need Lindeberg-type conditions, but

we shall not pursue this topic.
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CONVERGENCE TO DIFFUSICONS

The technique used to prove convergence of martingales to Brownian motion
can also be used to discuss convergence of arbitrary processes to diffusions.
The ideas are exactly the same, though the details become more messy. We must
first discuss the analogue of Le’vy's theoremn for diffusions,

For Brownian motion W and constants a ™ 0, b, call the process Yt =

L
aQWt + bt Brownian motion with drift b and varisnce a. Levy's theorem shows

that Y is characterised amongst continuous processes started at 0 by

Mt = Yt - bt is a martingale
(2.19) 2
St = Mt. - at is a martingale.

Now let a(x) > 0, b{x) be bounded continuous functions on the line. Informally,
we can construct a continuous Markov process X such that, conditional on X = X,
t

the incremental process ¥ = Kt o X Dbehaves like Brownian motion with

0
drift b(x) and variance a(x) over an infinitesimal time interval 0<t < €,
Such a process - which we call a diffusion with drift b(x) and variance a(x) -
may be defined formally in several ways, but the formal definitions need not
concern us. The informal description of X and (8.19) suggest the properties

M

t
X —J b(X ) ds is a martingale
(2.20) 0 s

_ w2 _ (t X .
S, = M‘t - jO a(XS) ds is a martingale.

t
(we interpret "martingale® with respect to the usual filtration of X). Let us
guote the following facts from diffusion theory.

(8.21) PROPOSITION, For each x <& R there exists a continuous process X

satisfying (8.20) with XO = x, The distribution Ax of this process is unigue.

The family (ax)xéR constitute a strong Markov process.

This result can be found in Stroock and Varadhan (1979) Exercise 4.6.6.; there

does not seem to be any simple proof.



For our purposes, the important fact is that (8.20) characterises the
diffusion amongst all continuous processes. We can now use our technique to
show that a sequence of processes whose discontinuities become small and such

that (8.20) is more and more nearly satisfied will converge to the diffusion,

(8.22) THEOREM. Let a(x)» 0, b{x) be bounded continuous functions, and let

x, € R. let X be the diffusion with drift b(x) ané variance a(x), and X, = %5
Let (Xn,Fn) be a sequ nce of processes., Suppose
(a) Xg = %y
(b) E sup (Xi - X:_)z - 0 agn->w®,
t<L

Suprose also that for each n there exist N® and Nn adapted to F* such that

t
(c) (Mn,Fn) iz a martingale, where M: = Xi - ‘j b(Xg) ds = N:
0

(d) (Sn,Fn) is a martingale, where Sg

t
(MI‘;)Z - jo a(xns) ds =~ Nrtl

(e) suir‘n_n E(I\ll‘%)2 —= 0 ag n—>«© ,

Te 1L
(f) sup, Eanl -> 0 _ag n->e ,
TeT T
L
Then Xnﬁ> X. ‘

Remarks. (i) Note that there is no assumption that M, s" be similar to X, S
in (8.20).

(ii) The case a(x) = 1, b(x) = 0, Xy = 0, N' = 0 is essentially the:

main implication of Theorem 8.7,

(iii) These conditions are not necessary for weak convergence, But they turn

out to be essentially necessary and sufficient for extended weak convergence

( )



Proof of Theorem 8.22., Suppose we can prove

2
(2,23) LEMMA. {(x’;) : n>1} is uniformly integrable, for each t.

(8.24) LEMMA. (X') is tight.
Then passing to a subsequence SupposSe X" = Y, say. Then YO = X, a.8. by (a),

and Y is continuous by (b). By the continuous mapping thecrem &nd (c)-(£),

t
X, - Jo b(¥ ) ds

1

(x* M%) = (¥,Q), where Q

t
(Xn,sn) = (1,Q'), where Q) = Qi - jo a(YS) ds.

By Lemma 8,23 we can apply Proposition 5.1 and deduce that Q and Q' are
martingales (with respect to the usual filtration of Y). So L(¥) = X(X) by

the uniqueness assertion of Proposition 8.21.

Proof of Lemma 8,24, For fixed L<Loe define

b = sup |b(x)‘
a
a = sup a{x)

n. 2
¢ = sup_ E (NT)
o orey?

L
~n
d = sup, ElN |

n  Te T
TL
n

iy and 0< 3 < 1,

We shall prove that, for TeJ

(8.25) E(XI%+5- 1(‘%)2 < i(zd + 24+ 5252 + 2cn).

2

2 ¥ = o0

Then for a seguence Tnec.\' 11’

§ L O ve have E(X . =X
n T‘l‘g T
n n n

by (e) and (£), and so (X') is tight by Theorem 4.4.
To prove (8.25), fix n and omit it. By (c)
' [ . 1 ) : !

H \' - . - ‘
v & i
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+ X,

Proof of Lheorem 8.22. Replacing X by X1 & R
UXy - %, €¢) (X = x 1> )

for ¢ o O suffiviently slowly, we may suppose (a) is strengthened to
n

2
(at) E(Xg - xo) — 0.

We shall prove

- <M - b
(8.26) X, ¢ xT[ <, ;- M+ DS N, o+ INTI .

From the elementary inequality
- 2 2 2
(8.27) (Z y,) £ n(Xy;)

we deduce



et olementary incauekit 22y 2 2Y e ded
1 i - 1 i
2 2 -252
- - 2 -
E(XT+J xT) < A(E(Mﬂg MT) +b + 2c)

But M is a martingale, so

2
E(MT+5'MT) - EN%H' 'mi

and this gives (8.25).
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Proof of Lemma 8.24. We keep the notation of the lemma above, and introduce

n 2
e = E sup (X-—Xn).
n +t 2L t t-

Fix X <so. We shall derive the following estimate.

(2.28) E(| X?,‘ -).)21 < 16(cn+dn+en) + 8 >\'71 (EL2 + La)m

(X (>N)
- h -4 2 %
where = = BL+co + (24 +a°L+2(c + E(Xg) <.

By hypothesis ¢ , d and e converge to zero, so0
n n n

2
lim sup E([XI;! VAN - 0 as M- o

n
n-3co (le' >N)
establishing the lemma.
To prove (8.28), fix n and omit it, Set T = inf{u(xtla>} , 80
{[XLl 2} e{T £ L} . Consider

2 2
E(IX -2 « B([X -x |+ (l )1
g (T< L) Xy =% (gl =3) (T<L)

2
2( BE(X_-X_)"1 ,
( B(X X)) (r 1) + e)

using (8.27) and the fact IXIJ - 5(XT—XT | . As in (8.26) we can write



el

]XL—X

Z - bL 4 (N[ + <L}.
LR N (Mol + [N on {T£ L3

So using {8.27)

2 2 -2 2
X - %) EM - M )1 + BL7p(T2 .
(X, - X)) LB - M) g (T<L) +2c¢

(T £L)

But M is a martingale, so

2 2
E(ML - MT) 1(T£L) E(Mi - MT)‘I(TS L)

< LEP(T £ L) + 2d by (3).
It remains only to estimate P(T £L). Observe that {T<L$ C{\XT | >2f
A

L

=1
and so P(TZL) £ X where n=E X . Now
( ) L B " TAL

1
E{X - BL - ¢® £ EM by (e
fTALl - y(z)%
< -
2 BM | < (B M)
nd EM £ ES. +alL+d by (d)
ES = ES
L 0 5
ES -4 <E(X +N by (d
0 (02 0) y (a)
£2(EX] + c) by (8.27).

Putting together our estimates gives (8.28),
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Notes on Chapter 3. The literature on weak convergence is so vast that we dare

not attempt tl give complete references. Here is a brief history of the martingale
technigue. Stroock and varadhan {1969) used it for proving convergence of

Markov processes to diffusions; Grigelionis (197 ) observed that the technique
could be used more generally; Rebolledo (19 ) gave a systematic treatmeni from

the general theory of processes viewpoint. Bul the latter two authors, not

having Theorem 4.4, were forced to use more complicated tightness arguments.

Notes on Section 8. Hall and Heyde (198 ) discuss the central 1limit theorem

and invariance principle for discrete martingales., For the continuous case see

Rebolledo (198 ), Helland (198 )

For recent work on convergence to diffusions see Helland (

Rebolledo (19 ),



9 POINT PROCESSES

Our technique readily applies to convergence of point processes to the

Poisson process,

(9.1) PROPOSITION. Let (N') be a_sequence of point processes such that

E NIE <a for all n,t. Let (An) be their compensators. Let 0 € A<« and let

N denote the Poisson process with rate \. Suppose

(9.2) An —> >t, for each t.

v P
n

Then N = N.
Proof, By Lemma 3.1, (9.2) implies

n
(9.3) A => Xt.
Let us first assume the extra hypothesis
(9.4) {N“:, Artl: nzil § is uniformly integrable, for each t.

Tet T < L be a sequence of stopping times, and let Jn"’ 0. Then

n
_ n n
E(Ngn"'gn ) NIT[l‘n) B E(ATn+Sn B ATn)

—> 0 by (9.3) and Lemma 8.6.
So (c¢.f. Remsrk 4, ) we can apply Theorem 4.4 to (Nn,An) and deduce
(",A%) is tight on D(RxR).
Passing to a subsequence we may suppose
(9.5) (P4 5 (,40), say, on D(RR).
By (9.3), Ag = M2t. So by the continuous mapping theorem
Nt > o0, <),
Now N© - A" is a martingale, so Proposition 5.1 and (9.4) imply that Ng -2t
is a martingale. But W is a point process, since the set D+(R) of counting

functions is closed in D(R). Theorem 7.7 identifies a° as the Poisson process



of rate X,

This proves the Proposition under hypothesis (9.4). 1In the general case

we use a truncation argument. Let
n
T = infjt: t + 1f.
= dnfft: Ap> At 4+ 1
n

= . : ~n
By (9.3), Tn *-: e, let Ni = NtATn’ which has compensator At = AtATn.

It suffices to show that T, A® satisfy (9.4), for then N° =y N and so N° =>
Fix t, and note
n
B2 4 2t 41 +sup (A - AT ).

t'\Tn s s S—

From (9.8) below we see
(¢.6) {Aﬁ:: n>1 ! is uniformly integrable.

Now for fixed ¢ define U = inf{s: B > cfAt. Then
n

s~
+ o~
E(ﬁ:—c—1) 1(51112(:) £ E(Nrt1 NE)
~T1 "n
= E(At AU)
N
(9.7) < E & 1(-1@ o)

But P(N] > ¢) £ ¢ 'EN; = ¢ EA, —> ¢’ At by (9.6) and (9.2). So (9.7)
and (9.6) establish the uniform integrability of{‘ﬁltlf.

Finally, we used the "obvious" fact that the compensator A of any point
process N satisfies
(9.8) sgp (AS - AS_) < 1 a.s.

To prove this, let V = inf{s: As -A 2> 14£$ . By (6.11) V is predictable,

and by considering an announcing sequence

But A, = Ay > 12Ny =Ny om {Veew! , and so P(V<eo) =



By enalogy with Theorem 8.7, one might expect condition (9.2) tec be
necessary as well as sufficient. The next example shows it 1s not: however,
we shall see in section 21 that (9.2) is essentially necessary and sufficient
for extended wesk convergence.

(9.9) Example. Let U, be uniform on (0,1), and let Ug = {nu,{ , vhere

{x} =x - [x] denotes the fractional part of x. Then Ug is uniform on
(0,1) and (U1,Ug) = (U1,U*) where U" is independent of U;. DNow let

T1 = ~ log U1 ’

T - log B,

n
2
T3, TA""" be i,i.d. independent of T1 with exponential (mean 1)
distributions,
n I n P
Ny = maxfis Tp + Ty # T+ o0 + T, £ tf.
Then N° converges weakly to the Poisson process of rate 1, but (9.2) fails
because Tg is a function of T1 and so
A=A, T, Lt T,

1 2

Proposition 9.1 can be generalised in several ways. One can remove the
integrability condition; treat convergence to time-dependent Polsson processes
or to doubly stochastic Polisson processes (i.e. mixtures of time-dependent
Poisson processes). Alternatively, for processes with conditional intensities_
(i.e. if Ai = .f; an(s) ds ) we can seek conditions under which wesk convergence
is strengthened to convergence in total variation. References may be found in
the Notes.

We should, however, point out an inherent limitation of our technique. To

use the technigue for convergence to a general point process N, we would need to



£ é

know that the distribution Z(N) was determined by the distribution ZL(A) of
its compensator. But this is false in general.
(9.10) Example. Let N be the Poisson process of rate 1, so P(N1 =0) =

1

Let N% =N, oo Then N° has compensator Ai = tATj. So here Z(&°) = I(A1)
AT .
J

P(N,l =1) = e~1. For j =0,1 let Tj =1 if N, = j; Tj = o otherwise.

bt 20°) 2 £@).

Actually, it is not hard to show that doubly stochastic Poisson processes
are the only point processes which are characterised by the distribution of

their compensator.



Notes on section 9. Brown (1978) gave a rather complicated version of Proposition

9.1. Brown (1981) and Kabanov, Liptser and Shiryayev {1980) give generalisations.

Since processes with independent increments are sums of Brownian motion
and Poisson processes, it is natural to suppose that Theorem 8.7 and Proposition
9.1 can be combined to give conditions for convergence to such processes: this

project has been carried out by Jacod and Memin (1980).



10 WORKED EXAMPLES

The results given so far in this chapter have been rather abstract, and
have involved processes plainly related to martingales. To demonstrate that
our technique is more widely applicable, we shall jn this section re-prove
two results in [B}, as "worked examples" of the technique (We do not claim

our proofs are substantially simpler than those of [B}).

SAMPLING
Let X yeees x be real numbers such that
— 2
(10.1) Sx =0, Zx, = 1.
i i
Tet ?1,..., ?k be a uniform random permutation of {1,..., k}. Define a

random element Y of D[O,ﬂ by

Cxt3
(10-2) Yt —1:21'- xii

(10.3) PROPOSITION [B,24.1) Suppose for each n the seguence X . ,e«s<sX .
’ n,

catisfies (10,1), and define Y bg (10.2),__If

(10.4) mr;x \xn,il ~ 0 asn —>o0

then T = W°, uhere W° is the Brownian bridge.

Proof. To simplify computations, we shall replace the Y defined in (10.2) by
an asymptotically eguivalent process X defined below. Let U1, U2,...., Uk

be independent, uniformly distributed on (0,1), and let
k

(10.5) X = 21 Xi1(Uié- L) -

Now writing U.,..., U_for the order statist] & putts -

0 g 1? » U o e er statistics, and putting '-‘[t U[kt]’
then the time-changed process Xo<T is distributed as the process Y of (10.2).
Since cT.'I_; = t by the Glivenko-Cantelli theorem, it suffices to prove

(10.6) X = W



P

' d .5). t = 1 .

Consider a process X defined by (10.5). le Sy in (U, £)
Given a subset A of {1,...,kJ and 0 €t £1 write

2
X = in, = 2 %, _(?_0={w:{i:Ui£t}=Af.
igA ieh

Conditional on _ﬂ-o the random variables ‘[‘Ui:i ¢ Af are independent, uniformly
distributed on (t,1). Easy calculations give, for t £ u <1,
-1
- = ={u-t)(1-t) x
E(X_ xt]ﬂo) (u-t)(1-t) .
var (X - xt\_ao) = (u-t)(1-u)(1-t)""(1-07).
Hence

E(X -X I?X)
(10.7) u ottt

var(Xu - X \?‘}:)

1

-(u—t)(1—t)-11(t

(ut) (1-0) (1-6) (1= 5,).

Consider now a seguence  of procésses, each of the form (10.5), and suppose
(10.8) S, >t in o

(10.9) {(X:)2:n21} is uniformly integrable, for each t;

(10.10) (X%) is tight on D[0,1}.

Let Z be a weak limit of (X). Then Z '= Z =0, and Z is contimuous by (10.4).

Proposition 5.1 and (10.7)-(10.9) imply

-(u-—t)(1-t)'1 Z,
} 0 £t <u<«

(u-b) (1-a}(1-t)™

1l

z
B(z, - ztl%t)

2
var(2 - Z_|%
(3, - 2,1%)
These properties characterise Z as the Brownian bridge. For the process
— . . . .
W, = (1+t)Zt/(1+.b) is easily seen to satisfy the hypotheses of levy's theoren,

and hence is Brownian motion: then Zt = “"t)wt/ﬁ-t) is the Brownian bridge.



It remains to verify conditions (10.8)~(10.10). First, we compute
Ty _
E(s?) = t
n 4
var(St) = t(i-t) Z xn,%
< t(1-t) max x_ 4 by (10.1)
i 0
> 0 by (10.4).
This proves (10.8). To prove (10.9), we can follow [B,p.211] to get a
uniform bound on the fourth moments of X ; alternatively, stopping time
arguments analogous to those in Lemmas 8.8 and 8,23 may be employed. To
prove (10.10), observe first that (10.7) extends to stopping times. So for a
stopping time T £2/3 on a process X satisfying (10.7),
2 2

_ I -1, 12
={1l0-n7x ¢

> X/9
2

2 N 2 i
and so B X, < 9L . Now consider T < /3 s Jn¢, 0. From (10.7)

n 2 2 -2 -2
50y 5 - xlen) = S2E (1T) xﬁn + S E(- 8 1)) (-5 )

- 0, using (10.9).
So Theorem 4./ shows that (Xn) is tight on D[0,2/3]. By symmetry, the process
X2 has the same distribution as the process Xr(i1_t)_ , and so (Xn) is also
tight on D[1/3,1]. Using the description of tightness in Lemmas 2.11 and 2.12,

we see that (X°) is tight on D[0,1].



MIXING PROCESSES

As our second worked example we consider g-mixing processes. Let ?1, ?2,........

2 b
be stationary, EEI =0, E ?1 c0 ., Let /’La o‘(?ﬁ, ?aﬂ""" ?b). Recall

that (?n) is called g-mixing, for a sequence g = (g(n)), if
(10.11) | P(E,JE,) - B(E )| € #(b-a); all Ee A3 Eze/{:, P(E,) > 0, a< b.

Suppose this holds for some # satisfying
1

(10.12) 2 #f(n) < oo

Then [B,p.174] we can define

2 2 < :
(10.13) & = EG]) + 21;2:2 E(3,,)

n
where the series is absolutely convergent. OSuppose & > 0. Let § = Z' ?
n i

1

1
and define processes % in D0, =) by X: = o n—QS[nt] .

n
(10.14) PROPOSITION [B.EO.‘I] Under the hypotheges above, X =7 W.

Proof. Our proof, like that in (8], falls into three parts: establishing
(10.15) { n-‘lsf1 ¥ is uniformly integrable; E(n_1Si) - 4‘2;
(10.16)  (X') is tight;
and then deducing the conﬁergence. We refer the reader to [B] for the proof
of (10.15), but will use our martingale techniques to give proofs of the other
two parts.

Suppose that (10.15) and (10.16) have been esteblished. Fix L << . Then
(10.17) sup |x2 - X: | = 5-1nd%— sup ¥

N
t< L - i<l 1

L
Now P(n"? sup Ifll >¢) £ nL.P([S".I | >&n%) ~> 0 because ?1 has finite
i < nkL ‘

second moment; so

1
(10.18) n™% sup I?[ = 0.
i<nL p



Consider a subsequential weak limit X of (X°). By (10.17) and (10.18), X is
continuous, We want to use to show X is Brownian motion. We
need a simple conseguence of (10.11) [B,p.‘l?‘l]

(10.19)  |E(6w) - EB.Ex | £ 204(b-a); © e/{:, lol £ 1,~Qe/{:: ! < c.

Let t £t

1 2(1.‘.

3 and let G:D[0,«) -> R be ?{'E ~measurable, |G| < 1. Then
1

< C)

EG(XD)(XEB - )(112)1(1)(23 _ x;‘zl c¢) - E. E(Xfcl3 - X22)1(lx§;3 x|
£ 20 g([n(t,-t, ¥) by (10.19)
- 0.

By (10.15), {Xz { is uniformly integrable. Ietting ¢ —> ¢
i
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It remains to prove the tightness assertion (10.16). Let T < nL be
n
stopping times on (?1 ,‘5’2,...... ) end let d be positiove integers, n_1dn—3 0.
n
Theorem 4.4 will give tightness if we can show

-+
Tn+dn Ty ol

Now by (10.18) we can find k = o= so slowly that

-+
k .o ©. sup \?il - 0.

i<n(1+1) P
We may now assume dn s kn’ and it suffices to prove
=3
(10.20) n (S -5 ) — 0.
Tn+dn Tn+kn P

t
Consider first »< @ and integers k,d,t with t© <t+k < t+d. Let Eé/L1,
P(E) > 0. Then

P(Ist+d - St+k |>X [E)

I~

glk) + P(lst - st+k| > M) by (10.11)

Jk) + 634,

(AN

where C = sup j—1ES§ < <o by (10.15). By putting E = {Tn:tj‘, = dn®
3
we find
P(|s S | >5n%) < gk ) +¢C 254 > 0
-5, < —
T+, T, kn _ n n

which gives {10.20).

Remarks., (a) It was not really necessary to use , since the
weaker results concerning asymptotically independent inceements B,19.2 would
suffice. We just wanted to display the machinery,

(b) Note that hypothesis (10.12) is used only for (10.13) and (10.15); the rest

of the argument requires only that g(n) —> O.



Notes on Section 10. Proposition 10.3 is the prototype for results about weak

convergence of exchangeable processes, €.g8. [B,24.2]. For more recent work see
Kallenberg (1973), Eagleson and Weber (1978).

Proposition 10.14 is now an anachronism. Under g-mixing hypotheses it is
possible to obtain much better conclusions of the "strong approximation™ type -
see Berkes and Phillip (1979). And weak convergence cau be obtained under less
restrictive types of mixing - see Ibragimov (1975). However, the argument for
Proposition 10.14 would probebly be effective under the "mixingale" type of
hypothesis considered in Mcleish (1975).

We should admit that there are several other areas of weak convergence
theory where our technique does not seem effective, e.g.

empirical distributions

celf-similar processes - Tagqu (1979).



CHAPTER 4, -~ THE PREDICTION PROCESS
11 LIMITATIONS OF WEAK CONVERGENGCE

Suppose & sequence of processes is converging weakly to Brownian motion
(11.1) e
By definition, if $(X) = EF(X) for some bounded continuous function # on D,
then
(11.2) FEH > .
Does (11.2) remain true for more complicated functionals of processes, such as
_ﬁm=wﬁwmgﬂe$§ (g € C(R));

(11.3)
:‘fz(X) = E :u£1 P(X1> 2|f_-'[4;) ?'

(Recall our convention from Chapter 3: each process X is associated with some
filtration F). Here is a simple example to show that, for functionals like
these, (11.2) does not fellow from (11.1).
(11.4) Example. Let f., f,5.0c.-. be continuous functions on [0,o2) such that
(11.5) {t:fi(t) = fj(t)i has measure 0, i F j.
For each n define a process = by picking one of the first n functions at
random., Formally, Xg = fI(t), where I is uniform on {1,...,nf. By (11.5)
each process 1s essentiall? deterministic, that is

© is ?g-measurable,_where F® is the usual filtration.
Now it is possible to choose (fi) such that (11.1) holds; in fact, this is
achieved by picking (fi) independently from the distribution of Brownian
motion.(B.Ex.4.4). Despite (11.1), the deterministic processes X® are really
totally unlike Brownian motion so far as probabilistic structure is concerned,
For the functionals in (11.3),

24 (@) =Esup g(Xy) —> Esuwp glW) > $. (W) in general;
£41 ° t£1 b 1

1



/¢

5,07 =PIy 2) > P> 2) < B (W).

Of course this example is artificial, but that is the point. When we
encounter processes satisfying (11.1) in practice we do not expect them to be
so pathological, and we can hope to be able to prove convergence of functionals
1ike {11.3). But to make a systematic theory, we must use something stronger
than weak convergence.

The rest of this section provides some background and motivation for later
definitions, and can be omitted.

Looking at Example (11.4) intuitively, the correct limit of X is
deterministic Brownian motion, that is W with the filtration G where.égo
contains o (W). With this limit, the functionals (11.3) do converge. So if
we want a theory of "convergence in distribution" which can handle these
functionals, we first need a notion of "distribution® which distinguishes
between deterministic end ordinary Brownian motion. The next examples show
that the need for distinctions may arise in more natural settings.

(11.6) Example. Consider the simplest queue model - single server, Poisson
input, exponential service times. Let Qt be the length of the queue at time t,
and Dt the number of departures by time t. It is well known (see e.g. Kelly
(1979)) that the inter-departure times are independent exponentials, end so

D is a Poisson process with respect to its usual filtration. But if G is the
usual filtration of (Q,D) then the process (D,G) is not a Poisson process in
the gense of Chapter 6, because Dt+uﬁ Dt is not independent of %it (consider

v small and Qt = 0), In studying D it does matter which filtration we use to
represent the past.

(11.7) Example. Consider two types of model for automobilé accidenté. In the
first, the accident rate varies between individuals but is constant in time; in
the second, the accident rate depends on the individual's history of accidents,

but in the same way for each individual. These models are logically distinet,
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but ray produce point processes Nt with the same distribution on D(R) - see
Cane (1977). The distinction is seen only when the associated filtrations are
described;

Mathematically, we are faced with the following problem: when to regard
two processes (X,F) and (X',F') as being essentially the same. For another
view of this problem see (DM.IV.A). The examples above show that the function
space distribution is too crude a characteristic. As discussed in Chapter 3,
in the context of "convergence in distribution® it is unreasonable to suppose
all processes are defined on the same filtration, so we cannot use the concept
of indistinguishability. One could borrow the idea of isomorphism from ergodic
theory, end call (X,F)} isomorphic to (X!,F') if there is a function @:
such that 9(X) = X' and 6, o are‘gifgi -measurable for each t. But this
seems rather strong. We propose the following answer.

(11.8) Definition. Call processes (X,F) and (X',F') synonymous, and write
(x,F) = (X*,F'), if
Z (¥h, (Xu1|‘37t1),......,Ehk(xukl?l:tk)) = X(En, (X;1|?t1),.....,mk(xukl?tk))

for a1l k>1; all ti, uié EO,OD); and all bounded measurable hi:S -~ R.

Informally, if an algorithm for assigning numbers to processes is built
up from the basic operations of taking measurable functions and conditional
expectations, then the algorithm will assign the same number to synonymous
processes.,

Definition (11.8) is rather unpleasant to work with, and will shortly be
replaced by a more elegant and sophisticated reformulation. Meanwhile, note
that (X,F) = (X',F') certainly implies Z(X) =L(X'). The following easily

proved facts may give some feeling for the definition.



(11.9) LEMMA. Let (X,F) be_a process with usual filtration.

(a) Suppose X is_slso adapted to G. Then (X,F) = (X,G} if and only if for

each t < u, Xu and %t sre conditionally independent given F ; that is,

E(h(Xu)l%t) = E(h(Xu)I'?Ft) for bounded measurable h,

(b) Llet (X',F') be_another process with usual filtration. Then (X,F) = (X',F!')

1f and only if X(X) =JL(X').




12 REGULAR CONDITICNAL DISTRIBUTIONS

Before reaching the subject of this chapter, the prediction process, wWe
must digress to discuss regular conditional distributions.

Let V be a random element of the Polish space (s,K), defined . on U),g,P).
Let %O be a subo-field ofg. For fixed A € 8 we can define conditional
probabilities in terms of conditional expectations:

P(Ve 4|8, = E(1,MIB,)-
But some care is needed in putting these conditional probabilities together
as A varies. See Freedman (1971) for proofs of (12.1) and (12.3).

(12.1) PROPOSITION. There exists a function ¥(w,A) such that

(1) for each w ithe map A > E(w,A) is a probability measure_on (S,4);

(1i) for_ each A the random varieble w —> ¥(w,4) is_a version of P(Ve& Algo).

Write ¥(w) for the probability measure in (i). From (ii), the map

w ~» ¢ (w) defines a go-measurable rendom element of F(S). We shall call

this random element & regular conditional distribution (r.c.d.) for V given BO'
When 30 is finite we have an elementary construction:

T(w,a) = P(Ve AlB), where B is the atom of 30 containing w.,
The rest of this section describes technical facts about r.c.d.'s. Let h be
a real-valued function such that E|h(V)‘< o, If P(B)» O we can compute
E(h(V)IB) in two ways. First, by considering the random variable h{V) and
taking its conditional expectation given B. Or second, by considering the
conditional distribution of V given B, and integrating h against this measure.
This suggests:
(12,2) J-h(s) f(w,ds) is a version of E(h(V)lgO).
We state below a more general result. Throughout., ? is a r.c.d. for V

given 3 o



(12.3) LEMMA, let U be ago—meagg_rable random element of S'. let h be
a real-valued function on S x S' such that Elh(v,u)f < oo . Then

Jh(s,U(w)) f(m,ds) is a version of ‘E(h(V,U)lﬁ 0).

The main use of r.c.d.'s is in computing conditional expectations via (12.2)
and (12.3).

When handling r.c.d.'s, one piece of sbstract wesk convergence theory
not discussed in Billingsley (1968) is useful. Call a subset H of C(S)
convergence-determining if':

Jh den -—?Jh d/u , heH, implies /».n-?/.k .
In particular H is separating:

jhd/_;. = |hdv , heH, implies pm=v.

(12.4) LEMMA (Parthaserathy (1967) Th.6.6) There exists a countable

convergence-determining subset HO of C(s).

Let HO denote such a subset. The first two lemmas below are cbviocus,

(12.5) LEMMA. Suppose ¢' is a go—measurable random_element of P(8). Then

g‘ is a r.c,d, for V given %O if and only if

jh(s) Flo,ds) = E(a(V)|B,) a.s., he& B

So if ¥, §' zre both r.c.d,’s for V given %0 then §=E' a.s.

(12.6) LEMMA. Llet g:5S—>S' be measurable, end let Z:P(S)> P (S') be_the

induced map in the sense of (1.1). Then E(f) ¥s a r.c.d, for g(V) given $O'

(12.7) LEMMA. Let (Bk) be an increasing family of finite ¢"-fields whose

union generates EO' Let ?k be the (elementary) conditional distribution
of V given %k' Then E’k(ou) i~ ?(w) in P(8) a.s..
Proof. For fixed h € C(5) the martingale 1imit theorem says

E(h(v)[‘gk) = E(h(v)[go) 8.5,



So by (12.2),
jh(s) 7‘g"k(c.:,ds) —-‘-')J’h(s) ¢ (wyds)
Apply (12.4).

«Se
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13 THE PREDICTION PROCESS

let (X,F) be a process, fixed throughout this section and the next.
Consider X as a random element of D(8). -For each t there exists a regular
conditional distribution Zt for X given i;;. As discussed in the previous
section, we regard 2, as & random element of P(p(s)). Write [ for the
space P(D(S)), and think of TI as the space of &ll possible distributions
of processes. The important fact is that the random elements Zt’ t>0, can

be put together to form a Skorchod process.

(13.1) THEOREM, There exists_sa Skorohod process 2 = (2,), Edapted_to F,
1 adapved Lo

with 2, taking values in TU , such that Z, is a regular conditional

distribution for X given '31, for each t > 0. This prediction process is

unique up to_indistinguishability. Moreover ZT is a regular conditionel

distribution for X given i?%, for each stopping time T <<,

Now % can be regarded as a random element of D(TT). It turns out that
the distribution of the prediction process describes the underlying process
up to synonymity (in the sense of (11.8)).

(13.2) 1MMA  (X',F') = (X,F) if _end only if Xz') = X(z).

This is the reason for our interest in the prediction process, But we
defer this topic until Section 15, after we have looked at the prediction
process in its own right.

Proof of Theorem 13.1. By Lemma 12.4 there is a countable separating subset

of G(D(8)); call these functions (h2i 1). Since a single random element is

tight, there exist compact subsets Ki of D(S) such that Ehzi(x) P 2-21,

where h. =1 .
2i D(S)\ K4

x = (.[hi Y5 o0

Give R the product topology.

Now define a map *: 1T - R> by



1
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13.3) LEMMA. If * v = (v gnd if 1im v_ =0 th
(13.3) If (p )* > {vy) if Yo v, hen
(1) /Mn—-»-/'\_ (5321_111: _ _ﬂ- 3

(ii) Jh21_1 d/_A. = Vs 4 for each i.

Proof. The set {/M—zg is precompact because

- n

lim (D{S)\K,) = lim jh A = V..
n->oc /*n 1 - oo 21/’5 2i

Now any weak limit point s must satisfy (ii). But (h2i-1) is separating,
so (ii) determines some unique distribution,

Returning to the construction, define Z{:_O. = R by

2 = (B (XD[F )y o0
using & Skorohod version of each martingele. For each rational r let Zr be
a regular conditional distribution for X given EF‘;_. Lemma 12.5 implies that,
outside some null set 2 17

(Zr(w) »* = Z;‘(a.)) for each rational r.
Now by the meximal inequality (7.1),

Pl Bl (01T ) > 27) ¢ Fm @

< 2

The Borel-Cantelli lemma implies that, outside some null set _f).z,

1im sup (2!(«)) = 0.
i»e t t 21

Now let r = t+. Then Z;.(w) - Z%_*'(W) for each «v, Applying Lemma 13.3
we see that for w outside _Q1U 2,
(a) Zr(w) 4 Zti(w) , S&Y;
. - '
() [ny, 4 4z () = (@), .
For fixed t, (a) and the "usual conditions" on F imply that Zt is '"‘djt—measurable.

By definition (2}),; 4 is a version of E(h,, (x)]?t), so {b) and Lemma 12.5
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show that Zt is a regular conditional distribution for X given 1;;. And by
redefining Z on 131{J LN, e obtain a Skorohod process.

The unigueness of the prediction process follows from the uniqueness of
r.c.d.'s (Lemma 12.5) and the Skorohod property. It remains to prove that
for stopping times T,

ZT is a r.c.d. for X given cj'r-T.

For discrete T this follows from the case T = t. In general, approximate T
from above by discrete stopping times (Tn) as in Lemma 6.6, Then, arguing as
in Lemma 12,7, for h e ¢(n(s))

Jh(s) Z_ (e,ds) = E(h(X)i?F ) 7 E(h(X)‘?F ) a.s. (martingale convergence)

Ty n

jh(s) 7 (w,ds) a.s..(2Z is Skorohod)

and we can apply Lemma 12.5 again,

Theorem 13.1 gives no insight into the form of the prediction process.
The simplest case, unsurprisingly, is when X is Markov, so let us briefly
discuss this case. Write tX for the post-~t process tXt = Xt+u. The Markov
property for (X,F) is equivalent to the assertion: there exists a function
g:[0,09 x § > such that for each t,
(13.4) ﬁ(t,Xt) is a regular conditional distribution for by given ?Ft.
Of course we think of g(t,s) as the distribution of the Markov process started
from position s at time %. So what is Zt? Informally, given ?F£ we know the
semple path X(w) over time‘b,é], and ve knﬁw the post-t process has conditional
distribution ﬁ(t,xt@v)). This suggests putting
(13.5)  Zi(@) = O(XE),t,B(t,X ())),
where 0: D(S) x[0,®) xTT =T is defined by:

(13.6)  o{f,t,u) = X(Y), where X
Z (*1)

f(u)s udt;

/JL .
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To prove Z' is indeed the prediction process we must show

(a) Z{ is a r.c.d, for X given EF;;

(b) 2'is Skorohod.

The proof of (a) from (13.4) is an exercise in manipulating r.v.d.'s. To

prove (b) we need a regularity condition.

(13.7) Definition. Call X a Feller process if the map g in (13.4) may be

chosen to be jointly continuous,

(13.8) PROPOSITION If (X,F) is a Feller process then (13.5) defines the

prediction process, Moreover

{2, +2,_@§ < {03 X, («)§ a5

The proof will be given in Section

(13.9) Remarks. The idea of the prediction process comes from Knight (1975),
where it is used for quite different purposes. Knight considers a process X
assumed only to satisfy measurability conditions, so X can be regarded as &
random element of the space M(S) of measurable functions [0,e0) 7 5 with the
topology of convergence in measure. Then Zt becomes a random element of
PM(S)). Knight shows that Z can be made Skorohod even though X is not, and
this is his motivaetion in studying Z: "its potentiael utility derives from the
fact that it is possible to iméosa a greater degree of regularity in an
auxiliary space than one would be justified in assuming a priori", This is

not relevant in our setting, where X is assumed Skorohod.



14 PROPERTIES OF THE PREDICTION PROCESS
Here is some useful notation, For s é& S let .S e P (s) be the

distribution degenerate at s: 5 (4) = For each t > 0 let

(s e A)’
Tr ~> P (8) be the map mduced in the sense of (1.1) from the evaluation

mapf = £(¢), so W (X(V) = LX), Similerly, 0, (L)) = Z(x ).

let (X,F) be a process with prediction process Z. Intuitively, for fixed
t, @ the distribution Zt(w) describes a process which evolves deterministically
as X{w) over time [O,t]. This idea is formalised in Lemma 14.2 below.

By definition (12.1), if V is %O—measurable then 5‘.’ is a regular
conditional distribution for V given %0. In particular for r £ t,

3 is & r.c.d, for X given EJR

X. T t

But by lemma 12.6,

1rth is a r,c.d. for Xr given 3'.1:.'
So for each fixed pair r<t,
(1441 z = & a.s.

) N X
But more is true.

(14.2) LEMMA Outside a null set,

(14.3) -n'th(w) =& for all 0<r<t <,

X )

Proof. Certainly (14.3) holds for all rational pairs r4t, outside a null set.
Fix w outside that set. First observe that for /xe—lT the map T T (1) is
Skorohod. So by approximating a real r from above by rationals, {14.3) holds
for {(r,t): T real, t rational, r<tf. Next recall that s -7 implies
T (}?1) > L 9;) provided r is a continuity point of s . So by approximating
t from above, (14.3) extends to '{(r,t): r,t real, r£ t, r is a continuity
point of Zt(a:)i . But continuity points are dense, so repeating the first

argument shows that (14.3) holds for all real pairs r £ t.
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To complete the proof we must show
P(-rrtzt = §, for allt) =1.

X

Both processes*lrtzt and ;xt, are measurable functions of Skorohod processes,

and so are optional; by Lemme 6.12 it suffices to prove

(14.4) TTTZT = SiT 8.8,

for each stopping time T. By Theorem 13.1
(14.5) 2, is a r.c.d. for X given ?FT.
We could prove (14.4) in the way we proved (14.1), but that requires a more
general form of Lemma 12.6. Here is a different argument., Let d be a
bounded metric on S, and put

h(f,t,s) = da(f(t),s)

h*(/u,t,d) = jh(f,t,s) pdaf).
Since T and XT are ?T—measurable, (14.4) and Lemma 12.3 show

n*(Zp,T,%,) = E(BXLE)| Fy) e

= 0 a.s.

But h’(};.,t.,a) = 0 implies Trt(/.L) = é's, so (14.4) follows.

In view of Lemma 14.2 we can and will choose Z so that (14.3) holds
for all w . BRecall the idea behind (14.3): that -u'th is the conditional
distribution of X given 'E—Ft, and for r £ t X is determined by ?7,0.
Similerly we may regard (for example) T, 2, _ as the conditional distribution
of Xr_ given events strictly before t. The same intuitive idea suggests

(14.6) w, 2, = m 2 (@) = ‘er_(a:) for all @, all r < t;

(14.7) -rrZ_t_(w) for all w, all r< t,

éi&_(aa

These identities follow from (14.3) by eesy continuity arguments.



Our results about the prediction process so far have been dull
technicalities. Here is a more interesting idea. Consider the process
o and interpret this as the conditional distribution of It given events
strictly before t. Now the intuitive idea of a predictable process is that

ﬂ%Z

Xt should be determined by the events strictly before t, so

t
And the intuitive idea of guasi left continuity is that discontinuities are

LIS Sy

unpredictable, so that given events strictly before t we predict Xt =X _» s0
2, = 8 .
T e X,

It turns out that these intuitive ideas are correct, The result helow will
be proved in Section

(14.8) PROPOSITION (i) X is predicteble if and only if Pcnizt = <§k for
- t —

all t) =1.

(i1) X is quasi left continuous if and only if P(nizt = 53{ for a1l t) = 1.

In particular, predictability and quasi left continuity for a process are
sample-path properties of the prediction process.
(14.9) Remerk., We could define 2, (@) = 5&1a%, end then ZT is & r.c.d. for
X given ?Fﬁ for all stopping thmes T<® . This leads to an alternative
construction of 2., Start with 2,, as above, and define Zt as the distribution-
valued martingale E(%xsiﬁt)' This approach seems to be envisaged in Schwartz
(197 ). Actually the difference in approaches is only superficial: the proof
that a distribution-valued martingale has a Skorohod version is essentially

*

the same as the proof of Theorem 13,1.



Here are some more technicalities.
(14.10) IEMMA For_bounded measurable #:D(S)-» R define T -=>R by
f@3=jdv~ Then
(a) ﬁ*(zt) = B(§(X)|F,) e.s., for each t.
() |4z - Az |2 £ Bl @ - 4,00]
(¢) if #  C(D(S)) then #" < CGT) and £ (2,) is a Skorohod version of
E@EF,).

Proof. (&) is a special case of (12.2), and (b) follows because for any

variable EIE(V l% )'2 < E V°. The continuous mepping theorem and the fact
that a continuous function of a Skorohod function is Skorohod establish (c).
(14.11) Remarks. A more delicate argument shows that even for non-continuous
¢ the sample paths of ﬁ*(zt) are a.8. Skorohod. In particular, for measurable
A = D(S) the process Zt(w,A) is an a.s. Skorohod version of P(XeAf"m"t).
However, there is a limit to the amount of "tidying up" of Z which is
possible. It is pot true that, outside a null set,

the map t -5 Zt(w,A) is Skorohod for all A.
For example, let X be Brownian motion and let Ay = {f:f(y) =0, £»0

over some interval (y,y+£)}. Then
Zolrhy) = Txw)e A) (£ > ¥)
and the sample paths are left-continuous.
The reader may have wondered why we did not define the prediction process
using only the future in the conditionel distribution, i.e. why not
(14.12) /it is a r.c.d. for *x given ?t’,

where UX is the post-t process Y (tX)u. There are no a priori grounds

P
for preferring 2 or Z , since either can be derived from the other. But it



P
turns out that the analogue of Theorem 13.1 for Z is not irue in general,

(14.13) PROPOSITION. The following are equivalent.

el ~
(i) There exists_a Skorohod process Z adapted to F such that ZT is a

r.c.d. for Ty given fﬁT , for each finite stopping time T.

(i1) X is guasi left continuous.

Remark. Knight (1975) uses TZ\ and gets a Skorohod process in general, but this

is because he uses a weaker topology on function space - see Remark 13.9.
Proposition 14.13 is not used in the sequel. We give the proof because

it provides a nice introduction to the techniques used in handling the

prediction process. Recall from Section 3 the shift map oo :D(S) = D(s),
o't(f)(u) = f{0wv(t+u)).

Lemma 3. extends to the following result for processes, by the Skorohod

representation theorem,

(14.14) 1L2MMA Suppose t -» 1t and Y2 =Y on D(S). Either of the conditions

below is sufficient to show o ) => o‘t(Y).
n

(a) t £0.

(b) t is a continuity point of Y.

(¢c) for eachn, t >t and Y{ = Y, = 5, a.s. for some 5, €& S.

Proof of Proposition 14.13. Suppose X is quasi left continuous. Let Z be

N ~ —
the prediction process. Put Zt = o’t(Zt), where o, is the map from |] to T

induced by o7. By Lemma 12.6,

= t

(14.15) Zt is a r.c.d. for o‘t()[) = “X given ?t'
.

We shall show Z is Skorohod; the extension of (14.15) to stopping times is

then straightforward. Fix w. By Proposition 14.8 we may assume

(14.16) w2, (@) = Sxt (o Tor el



For each t let Yt', T denote processes with distributions Zt(w), Zt_(ua).

Because Z is Skorohod,

. tn td
(14.17) tn—%ti implies Y® = Y~ .
It suffices to prove

t
(14.18) t -> t+ implies cs*t (¥ ?)= o"t(Yti).
n n

t
But this follows from Lemma 14.14. For when th/ t then (Y n)t = (Yt)t = It(w)
by (14.3), so condition (c) holds. And when tn’f’[‘t then (b) holds: for t is

a continuity point of Yt- because

¥ = Sy ) by (14.16)

t-

= -rrt_Yt' by (14.6).

e

Conversely, suppose there is a Skorohod process Z as in part (i) of the
Proposition. For d > 0 define

¢§é—(f) = sup d(f(u),£(0)) ;

ug

where d is a bounded metric on S. It 1s easy to check

ﬁé-(f) > 0 as d4-50;

if £ ->f and S is a continuity point of f then ,da_(fn) - ;Ja.(f).
Define fy as in Lemma 14.10. Then for pu, s+ in'Tl,
(14.19)  £L§) > 0 as §>0;
(14.20) if Ma ~» 4 and § is a continuity point of/.a then ﬁ}(}vﬁ) — gg_()u—).
Now consider a predictable stopping time T (0<T < <¢o), and suppose (Sn) is

&.5.. So for J outside some

-~ g
a sequence announcing T. Then ZS - ZT

n
countable set A we have by (14.20)

p!;.(/z\sn) - d:.(ZT_) 8eSe

Fa
By hypothesis %5 is a r.c.d. for o (X) given H_ . So
n Sn Sn
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E(g (x)) ) by (12.3)
$ ""sn |':31:sn y

= B( sup a(X, X ) |F. ).
ugcd Sn+u Sn Sn
So

E sup d{X ) = Eé;(ZT_) , J-¢A.

+u?
u<d Sn Sp

But lslufg d(XSn_‘_u,ISn) > %d(XT,XT-) on the set {T > 5, > T—Jf, and so

letting n»> @ we see

BNz, ) 2 dma0gXp) . SEA.

Letting g 0, (14.19) implies XT = XT &.S., so X is quasi left continuous.
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Finally we give a proof of Lemma 13.2.

(14.21) LEMMA. Let V, X be random elements of D(S), and let Y, Z be random

elements of D({IT). Suppose
*
(14422) x(v,g(yt1),....,pf'k(xtk)) = of(x,ﬁ1(zt1),....,ﬁ;(ztk))

for all (pf.l) £ G(D(S)) and_all (ti)e [0, )NTg, where T, is_countable.

Then Z(V,Y) = X(X,2).

Proof. Fix (ti)é EO,GB )\To. It suffices to show that the finite-dimensional
distributions :f(V,Yt seser ¥y ) and af(X,Zt seeerdy ) coincide. By

1 k 1 k
hypothesis, these distributions agree on subsets of D(8) x 'ﬂ'k of the form

o 15@{51{)’ £, <ol xex 1Q531{A‘5;,1(>‘) < a5t

where G is open in D(S). But these form a base of open sets for the topology

on D(S) x Trk, and hence generate the Borele -field.

Proof of Lemma 13.2. We must check that (14.22) holds for (V,Y) = (xr,24).

But definition 11.8 says that (14.22) holds for g!i of the form hye-w
i

h, & €(S)., The extension to general ﬂi is routine, since{*n'uz u>0}

generate the Borels -field on D(S).



CHAPTER § - EXTENDED WEAK CONVERGENCE

15 EXTENDED WEAK CONVERGENCE

Given a seguence (Xp,Fn) of processes, consider the mode of convergence
defined by weak convergence of their prediction processes
(15.1) 22 = 2%

In this section we discuss why this seems a sensible mode of convergence
to consider: the rest of the book develops the mathematics.,

The fundamental idea underlying weak convergence theory is that a
process can be essentially described by its function space distribution.

For many purposes this is true. But as we saw in Section 11, there are
natural examples where the function space distribution fails to distinguish
between essentially different processes, When we use mode (15.1) of
convergence, we are assuming only that processes are described by the
distribution of their prediction processes. In other words (Lemma 13.2)

we regard two processes as being essentially the same if and only if they
are synonymous in the sense of (11.8). This is the viewpoint we shall adopt.
. Of course we do not assert that synonymous processes are similar in all
respects,

We saw in Section 14 that certain structural properties of X (quasi
left continuity; predictability) are sample-path properties of Z; though
they are plainly not sample-path properties of X in general. This is true
for other properties. For example, it is easy to check that X is a martingale
if and only if outside some null set

evrzt(w) = Xt(w) , allr2>t,

where e: P(R) =¥ R is the expectation map. Now when {15.1) holds, the
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Skorohod representation says that the sample-paths of 2% and 2%  can be
nearly matched; thls suggestis that X° and Xa) will have nearly matched
structural properties. This nstructure-preserving® feature of (15.1) 1is
one of its main advantages: we saw in Example 11.4 that weak convergence
does not have this feature.

For technical reasons we use a slight variant of (15.,1) for the
formal definition.
(15.2) Definition. Let (X®,F") be processes with prediction processes 2n,
yrite (3,F) = GSF) if (X7,20) = (¥,2°) on D(S xT). Call

this extended weak convergence.

Here we are regardeng (X,Z) as the SxT -valued process t-JP(Xt,Zt).
Usually we shall suppress the filtrations and just write ) 57 X.

In the rest of this chapter we develop properties of extended weak
convergence, The question of how in practice to esteblish extended wesak
convergence is deferred to Chapter 6.

Remark., The concept of extended weak convergence is new, although independently

Helland (1980) has described & closely related form of convergence - See



16 TECHNICAL PROPERTIES
Most of these technical lemmas do not require much comment, The
reader will recognise several analogues of standard weak convergence results.

(16.1) I@MA. Let (&,F%) = (5,F).

(a) Suppose h:S-» 8' is_continuous. Put Yﬁ = h(fg). Then (Yn,Fn) = (Yo:;Fw).

(b) éugpose H:D(S) ~>D(S') is a continuous mapping such that:

if £(u) = glu) for u £t then (HE)(t) = (Hg)(t).
Put Y0 = H(X®). Then (Y",F) =y (Y ,F ).
Proof. Plainly (a) is a special case of (b). To prove (b), note first that
Y@ is indeed adapted to F°. Let H:TT->TT* be the map induced in the sense
of (1.1). By Lemma 12.6, 'I;IJ(ZE) is a regular conditional distribution for
Y? given "3:2. Since H is continuous, the process E(Zil) is the prediction
process of Y*, By hypothesis (,2°) = (x‘”,zm) on D(SxIT ), so by the

continuvous mapping theorem ('I_-I(Xn),ﬁ}?(zn)) = (H(Im),ﬁ(f)) on D(5'xT(').

(16.2) TEBMA. Let X' => X. Let u be a continuity point of the prediction

process Z of X. Let #:D(S)-7R be a measurable function such that

(a) (£(x*)) is uniformly integrable;

(b) P{Xe Cﬁ) = 1, where GF{= {f: # is continuous at £f .
Then E(F(XM)IF D) = E(BX)|F ).
»

Proof. By truncating, we may assume § is bounded. Define 4 il > R as at
(14.10). We must prove

%
(16.3)  £(z2) & £ (2)
By hypothesis 7B = 7, and since u is a continuity point we have

n

Now (B.5.2) says that p" is continuous at distributions A such that X(Cﬁ) =1.

And zu(m,c’;) = P(Xe cg{\%u) =1 a.,s. by (b). So
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P(eo; ;f' is continuous at Zu(w) ) = 1.

Now (16.4) implies (16.3), using (B.5.2) again.

Ve state for later use a multidimensional version of Lemma 16.2, The

proof is the same,

(16.5) LEMMA. Let X" => X. For each 1> 1 let u,, ,51 be as in lemma 16.2.
Then (E(4, (xnnz;;), E(;rz(x“nﬂz),........ ) =

o>

(E(:!1(X)\?ru1), E(ﬁz(XJl?’*uz),-- ------ ) emR .

(16.6) LEMMA, For_ a seguence (X°,F%) of processes, the following are eguivalent.

(a) (X®) is tight on D(S).
(b) For each £ > O there exists a compact_subset A4 of 1| such that

P(z’gé AL for alit) > 1-€ ;n21.
{c) (Zrol) is tight on1] .
Proof. Suppose (a) is true. Fix £ . Choose compact subsets Kj of D(S)
such that P(X € KJ‘.’) < 27 for each j,n., Put
M o= {):}-(K;) £ 2=4 for all jf.
Then A is compact. So

P(Z; € for all t)

"

P(de/"i for rational t)

1 - 3 P(#,k) > 27 for some rational t)
3

1 - 23— P( P(X"e K; lcj‘r:) > 279 for some rational t)
1-5y €29 = 1-¢
by the martingale maximal inequality (7.1).

Plainly (b) implies (c). Now suppose (c) is true. Given € » O there

exists a compact subset A of T such that P(de/"i } > 1-¢ ,n21.,
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Now there exists a compact subset K of D(S) such that M) < e, NeA,
So P( zg(w,x") >e ) <€ . But Z0(wK°) = P(X" € K°|??g), and s0

P(X® e k%) ¢ 2e.

(16.7) LEMMA, Let (x*,F") be_a seguence_of processes such that 5 2™

Then (X%,2%) = (£,2) on D(S) x D(M.

Remark. But not necessarily on D(sxT). 1In other words, (15.1) is strictly
weaker than extended weak convergence - see

Proof. Using the Skorchod representation theorem, suppose y A Z?ga.s.;

it suffices to prove

(16.8) 2 =17 a.s..

Iet L be a continuity point of the process Z . Then

(16.9) 20 > I a.s..

Fix w in the set where (16.9) holds. Let t0'< L be a continuity point of

the distribution zL(w). By (14.3) the distribution zi(w) coincides, on the

interval [O,té], with the degenerate distribution § . Now (16.9)
)

oS
implies X*(«) > X (@) in D([0,t]). Since L and t, may be arbitrarily

large, we deduce (16.8).

The next sequence of lemmas lead up to a technigue (16. ) for proving
extended weak convergence. For a space S and a subset H of C(8), consider
the property:
(16,10) if 5, £ s, and s, 2 8 then there exists h & H such that h(s;) £ h(sy)

and h(sz) ¥ h(sj).
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(16.11) 1EvMA, {(a) There exists e countable subset H of C(S) satisfying

(16.10).

(b} Moreover if S = P(s') then we may tske H = {ﬁ* : § & H'f for some

countable subset H' of C(S'), where # (\) = Jgf(s') an .

Proof., Since S is separable there is a countable subset HO of C(S) which
separates points, that is:

if s, £ s, then there exists h &€ H, such that h(s1) ¥ h(sz).
Then H = HDU {h_1+h2: h; € HO} satisfies (16.10), proving (a). To prove

(b) let H) < C(S') be as in Lemma 12.4, and construct H' similarly.

(16.12) LEMMA. Let (X) be_a seguence of processes in D(S). Suppose
Suppose

(a) for each L<e , £ > 0 there exists a compact subset K of S such that

1i§infp(xfc’exfora11tﬁr,)z1-g;

(b) the set of processes { h(X,rbl): n¥ 1} is tight on D(R), for each h in

some countable set satisfying (16.10).

Then (X®) is tisht on D(S).

Proof. Suppose H = (hi) satisfies (16.10). Let A be a subset of D(S) such
that

(a') {f(u):ugl, £f< A% is precompact, for each L;

(b') there exist compact subsets K, of D(R) such that hief € K; for
each 1> 1 and each f € A.

We shall prove A is precompact; the lemma follows, in the same way that the
more familiar tightness conditions (B.15.2) follows from conditions for

compactness in D(R).



(16.13) PROPOSITION. Let (x,F"), 1< n<e, be processes, and_suppose

2% is continuous, If (ZE "'“'Z:k) = (Z::,.....,Z:;) for all (t.l,...,tk),

then (X°,F") =5 (x7,F).
Proof. We shall prove (z°) is tight; then 2° > Z, and the result follows
from

We shall show that (Zn) satisfies the hypotheses of Lemma 16.12.
Hypothesis (a) follows from Lemma 16.6., To check (b) it suffices, by Lemma
16.11(b), to show that { ¢ (z0): n21f is tight on D(R), for each § & G(D(S)).
But Lemma 14.10 says that g (z2) 1is the bounded martingale B(SO|F D),

and so 5*(22) = ﬁ'(zt) on D{R) by hypothesis and Proposition 5.3.

(16.14) Remark., This gives a useful technique for establishing extended
weak convergence, Suppose X = X, and suppose X and Z are continuous.
By the Skorohod representation, we ray assume -> X a,s.. So XE-%? Xt
a,s., for each t. Suppose we can prove Zg —= Zt a.8, for each t. Then
(221,.....,221{) =y (zt1,....,ztk), and so X =y X by Proposition 16,13.
Thus to improve weak convergence to extended weak convergence, when X and

Z are continuous, we need only consider the behavicur of the prediction

processes at a fixed time t.

In the spiri£ of Lemma 13.2 there is a reformulation of extended weak
convergence which is more elementary, in that it does not explicitly use
prediction processes.

(16.15) PROPOSITION X* =y X if and only if, for all B,s---,8, in C(D(S)),

(22, B4, ENFDeeenes, BAONIFD ), o =

(K, By () | Fo)yenveees BAGNTFY ), , o8 D(SRY).



Remark, In this form, extended weak convergence appears closely related
to the type of convergence discussed in Helland (1980).

Though the prediction process form is usually more tractable, (16.15)
is occasionally useful; for example, to prove the following analogue of a
standard week convergence result (B.4.1).

(16,16) LEMMA, Suppose (Xn,Fn) = (X,F). Suppose (Y?) is a sequence_of

processes such that

(a) Y is adapted to F

:¢3 N .
(v) B d(Xt,YIé) — 0 in probability, L <.,

Then (¥,F') =5 (X,F).
Proof. By (b) and (B.4.1), (Y%, X%) = (X,X), and so 4(¥") - #(x") — 0
in probabiligy, for g € C(D(S)). So by (7.1),

spp | BEC | R Y) - E(ﬁ&“)l?i’)l -> 0 in probability,

Now use Proposition 16.15 and (B.4.1).

Proof of Proposition 16.15. Consider the continuous map“_{ s sx1]—~ sxRE

defined by
*
(s p0) => (8,83 ()seeensby(p))s
Let L :D(sxT) > D(Ska) be the map derived from § in the obvious way.
Applying the continuous mapping theorem to. A, we find:
(16.17) if (x*,2%) = (V,Y), say, on D(SxTT) then

(x5, B, (NFD), e, BAOONFD) S
(Vs #1(%),eeeens £i(T,))  on D(SKRS).

This establishes the "only if" part of Proposition 16.15. And to prove

the "if" part we need only show that {(xn,zn)= ny1$ is tight on D(Sx[T),



since (16.17) and Lemma 14.21 show that eny subsequential limit must
be (Xazzaj. Thus it suffices to verify the hypotheses of Lemma 16.12
for the D(SxTIl )~-valued processes (x",2"). Since X® = X , hypothesis (a)
follows from Proposition and Lemma 16.6, To check (b), observe
first that by lemma 16,11 there exist countable sets H1 < C(s), H, < c(D(S))
such that
H, satisfies condition (16.10) for S;
Zr;f*: = H2§ satisfies condition (16.10) for IV .
Define Hy < C(sxT) by H, = [h,(8) + 3650 4, € By, §2 0f. It is easily

checked that H satisfies (16.10) for Sx1l. Thus to get (b) it suffices

to show
n . ny _s .
$,(K2) + 365(Z0) =7 (X)) + iFy(2,) o DIR).
But this follows from the continuous mepping theorem, since ﬁ*(zt) =

EBOIF,).

For the rest of this sectien we reconsider condition (4.2). Call a
sequence of processes (Xn,Fn) taut if that condition holds for stopping times
in the set T of stopping times on F', That is,

1
(16.18) d(erln"‘n’xgn) <> 0 for T.eTy, §, 4 o.

Of course this implies (4.2), since any natural stopping time on X2 (i,e. one
satisfying (4.1)) is a stopping time on F*., We saw in Chapter 3 the use of
tautness in proving weak convergence. Now tautness is not necessary for

weak convérgence, but Proposition 16,20 below says that tautness is necessary

for extended weak convergence to a quasi left continucus limit,



(&g

(16.19) 1WA, (X°,F) is teut if end only if a(Xj ,Xg
n

) = 0 for_all
n b

n < < .
T» Uy e‘J‘L such that T < U < Tn+{1, JnJ/O

(16.20) PROPOSITION. Suppose (X°,F°) =» (X,F), and suppose (X,F) is guasi

left continuous. Then (X*,F°) is taut.

The proof of these results is deferred until Chapter 7, though we derive
some consequences below. First, we record an obvious conseguence of the
definition of tautness.

(16.21) 1EMMA., Suppose (x®,F?) is taut on D(S1), and (¥*,F?) is_taut on D(Sz).
Then ((x*,1*),F") is_taut_on D(S1x52).

As mentioned earlier, D(S1x82) is often more convenient than D(S1) x D(Sz)
for handling bivariate processes. Lemma 16,21 says that when we establish
tightness via tautness, we automatically get tightness on D(S1x52). Indeed,

we have already used this technigue in the proof of

(16.22) COROLLARY. If (X",F°) is taut then d(Xj ,X5 ) —> 0 for
n n

oredictable stopping times U € TI;.
n
Proof. Given (Uﬁ) we can choose ?ne:jﬁi such that
T < U, on{U > 0f;

P(U, - T, > n™1) < n7;

PEGE 8 ) >a7) ¢ .
n n

Now apply Lemma 16.19 to T, and U A (Tn+n"1).

(16.23) COROLLARY. Suppose (¥%,F") is taut. Suppose (I_,X") & (V,¥) en

n
R x D(S), where TneTn. Then (Tn,XTn) = (V,YV) on R x S.
Proof. The Mprocess" form of lemma shows, without using any hypothesis
about X* or Tn:
(16.24) if (T,X%) = (V,Y) and if V() is a.s. & continuity point of Y()
then (Tn,x,‘;n) > (V,X).

Now for & outside some countable set, V{) 4& is a continuity point of Y{w),



and for such é we have, by {16.24),
(Tn+S,x‘;n+g) =7 (WS,Y, o).

Consider a seguence JnJ’ 0 and use (16,18).
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17 OPTIMAL STOPPING

Exsmple 11.4 showed that weak convergence X® => X is not sufficient
for convergence of the optimally~stopped values sup,Ar Eg(xg): Téj—?}
of the processes. To handle this type of problem within weak convergence
theory it seems necessary to impose very restrictive conditiocns - e.g.
each X* is Markov and the generators converge. Theorem 17.2 says that
extended weak convergence is sufficient, under mild conditions. This
suggests that extended weak convergence provides a natural framework for
discussing robustness of optimal stopping procedures.’

et ¥ :[0, %) x S ¥R be bounded and continuous, Given a process
(X,F) define

{(17.1) [:'(L) = sup{E Y(T,XT): 'I‘(:TLL

(17.2) THEOREM. Suppose (X°,F*) => (X,F ). Suppose (X ,F ) is_quasi left

continuous, and suppose

[-»] =)
(17.3) F is the usual filtration for Z .

Then [ (L) - (L),

Remark. Of course we could replace boundedness of ¥ by a suitable uniform
integrability condition. Note also that (17.3) is & consequence of the
simpler condition |
(17.4) F® is the usual filtration for X s

Here is the idea behind the proof. For a process (X,F) let K(X,F) =
{I(T,XT): TG‘T} be the set of stopped distributions. We want to say:
(17.5) (X,F) = (¥,G) implies A(X,F) = .5(Y,G),
and then to say that extended weak convergence implies convergence of
A(xB,F0)  to /g(Kw,Fa;) in some sense. The next” example shows (17.5) may fail

without condition (17.3).
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(17.6) Example. Let U be a random variable with P(U>u) = e1_u, u>1.

Let B, C be events with P(B) = P(C) = %, and suppose B, C end U are

independent. Let Xt = , and let F be the usual filtration of X,

1
(+>0)
Define filtrations G and H by

%t = «(B,C) t <1

#, = «(B) t <1

4, = #, = (8,0, F,, cn{U £2f) 1<t

(X,H). Now we can define a stopping time T on G by

i}

Plainly (X,G)

T=0 onC°
=1 on CN{U Y 2}
= U on CA{UZ 2f.
But there is no stopping time S on H such that I(s,xs) = I(T,XT). Further,
defining ¥ by

¥(t,1) =1

Y(t,0) = st t&2,
then E X(T,XT) > 0 vwhereas E ‘K(S,XS) £ 0 for every stopping time S £2
on H. Thus the optimally-stopped values (17.1) of synonymous processes may
differ.

Remark. There is & simpler but less interesting counter-example to
(17.5). 1Iet X = 0, F the trivial filtration, and G a general filtration.
Then (X,F) = (X,G), but F has no non-constant stopping times whereas G may
have. This example is not significant, because in optimal stopping problems
we may use randomised stopping times (see below), and then A(X,F) does equal
A(X,G). Example 17.6-15 more subtle, and the problem cannot be circumvented

by considering randomised stopping times (the set B was included to show this).



We now start the proof of Theorem 17.2.

(17.7) 1EMMA. Suppose Y' = Y on D(S). Let F° be the usual filtration

r. -]
for Y., Then given T, & T there exist Tne T2 such that

1Yy ) 7 (155 ).

Proof. We may assume (Skorohod representation) that Y ¥V a.s.. By
approximating T, from above, Wwe may assume that T_, takes values in a
discrete set (ti) of continuity points of Ym, and that the set Ai = {T = t’i§
is in G'(Yr:r < t’i)' Fix € > 0. By lemma there exist bounded

continuous c:FIt) -measurable functions ‘di such that
i

A

(17.8) E\;!i(x“")-ui] < e.27%

Define T_& T% vy
- 3 - A
T, = mln{ti. yfi(Y.n)7 gf.
Now ﬁi(Yn) > gfi(Yw) 8.5.. S0
(Tn = T for sll sufficiently large n) a.s. on q 0

i
where

o c
But T,, is a.s. a continuily point of Y7 s SO

ad
(Tn,an) - (Tm,YTw) 8.S. on /\_!?.i.

Now (17.8) implies P(n_{li) > 1 - 3g. The result follows,

(17.9) IRMMA. Under the hypotheses of Theorem 17.2, [(L) £ lim inf [ (L).
Proof. Fix T € T I“:’ Applying Lemma 17.7 to (X7),  there exist T eJ"
such that

(1,3 ) % (T,X7).

n <o



Since T, <L we see that TnI\L - '.1'n _1? 0. So by Proposition 16,20 and

Lerma 16.19, d(x’;,nAL, x’T’n) 20 This implies
(T AL, fanL) > (ToXg )

and the result follows.

lerma 17.9 is one half of Theorem 17.2. The other half, Lemma 17.
below, requires the idea of randomised stopping times. Given a filtration F,
a randomised stopping time on F is a stopping time on some enlarged filtration
"-:F: = o’(":Ft ,UY), where U is independent of c:Ev. The next lemma is well-known;
(b) says that there is nothing to be gained by using randomised stopping times
in optimal stopping problems.

(17.10) 1EMMA (a) Let (X,F) be a _process, lLet V2 0 be a random variable

- N

such that iv< £§ and"?E} are conditionally independent given B2 £ Then

there exists a randomised stopping time T on F such that of(T,IT) = I(V,XV).

(b) Define F*(L) es at (17.1), but using randomised stopping times.
Then r*(L) = ['(L).

Proof. Let At be & Skorohod version of the submartingale P(V<£ ‘t.l?;;). Then

A is increasing, since for s<t we have A, 2 P(V< sﬁ?t) =P(VLs 1‘3"‘;)

= AB, where the first eguality is a consequence of the conditional
independence. Let U be distributed uniformly on f0,1] , independent of ‘3“",._, .
Define

(17.11) T = infft: A > Uf.

Then T is a randomised stopping time. For each t,

P(T < t|3H,)

p(a, > TIF)

A

p(V< tIE).

1



——
o

~
——

So P(T € t]X) = P(V € t|X) for each t. Thus X(T,X) = L(V,X), giving (a).
To prove (b), let V £ L be a randomised stopping time, and define T as
at (17.11). By (a), E X(v,xv) = E ¥(T,X;). For 0 < u< 1 let T =
ini‘{'t:At > uf. Then T, eT . 4nd
BY(nx) = fo BT ) e £ ().

so I'™(r) < I'(L), giving (b).

(17.12) IEMMA. Let (X°,F"), 1<n<eo, satisfy the hypotheses of Theorem 17.2.
Let T € I be such that (T ) is tight on R. _Then there exists a
- n n T — e m —e i m——— e v . -

_ e i ey et ——

randomised stopping time T_, on F*and subsequences Y° = XJn, Sn = T. such
In

that (sn,an) > (T,Xp ).
Remark. When we have only = single process (X,F}, this "compactness of
stopping times" result can be improved ~ see Baxter and Chacon (1977),
Meyer (1978).
Proof. Using tightness, we can pass to a subsequencé in which
(17.13) (x%,2%,1 ) = (£,2,V), say, on D(S)xD(MxR.
By Proposition 16.20 and Corollary 16.23,

(T ,%p ) > (V,X).
So by Lemman17.10(a) it suffices to prove
(17.14) <{V<t? and ‘37: are conditionally independent given ?:

Fix t2 0, Let u> t be a continuity point of Z Consider f € ¢(R)
and ¢, § & C(D(S)) such that y is rgrﬁ-measum&r.ble in the sense of
Define ¢ as in Lemma 14.10. Since gf'(zﬁ) = E(;!(xn)l?:i), we have

E §(2M).2(Tpu). (4 (2) - 4(3%) = o.

By (17.13)
B ¢(2).s(Vaw). (67(Z) - 4(57)) = o0,

This equality extends successively to:




LLe

(1) bounded measurable f, by Lemma
(ii) bounded measurable g, by Lemma and Lemma 14.10;
(iii) bounded ?szmeasurable § , by Lemma

So by hypothesis (17.3)

(=]

E 1ty o t).({(z‘;‘) -4 =0, aeF.

AT (v

Letting ul t,

[ =]

E 1yl (g ¢ gy BB [F) - 4@ = 0, ey

(ve
And this is equivelent to (17.14) (DM.II.45).
The proof of Theorem 17.2 1s completed by the next lemma, an inmediate

consequence of Lemmas 17.12 and 17.10(b).

(17.15) LEMMA. Under the hypotheses of Theorem 17.2, [(L) > lim sup [ (L),




18 CONVERGENCE TO MARTINGALES

Proposition 5.1 showed that a weak limit of submartingales, or of
 processes which are approximately submartingales, is itself & submartingale.
In this section we discuss the converse problem: if a sequence of processes
converges to a submartingale, then are the processes themselves approximately
submartingales {in some sense) 2 Example 11.4 showed this is not so under
weak convergence, but Propositidn 18.2 below gives a positive result under
extended weak convergence.

Recall the definition (7.2) of & class (DL) process.

(18.1) Definition. A seguence of processes (Xp,Fn) is uniformly of class (DL)

if {Xg ‘I‘effi, n 2 1} is uniformly integrable, for each L <oo .,

(18.2) PROPOSITION. Let (Y,F) be a quasi left continuous (sub)martingale.

Let (Xp,Fn) be a sequence of processes, and let 1 £ p <o, Then_the

following are equivalent.

(a) (Xn,fn) =5 (Y,F) &and (IXp‘p,Fn) is uniformly of class (DL).

(v) There exist processes Yn adapted to Fn such that

(1) (Yn,Fn) is & (sub)martingale;

| (ii) (Yn,Fn) = (Y,F) and (lYn|p,Fn) is uniformly of class (DL};

n
(1ii) Cy. =12?%]?3l1? - Xglp - 0, each L<e |

Temma 16.16 and the elementary inequality
(18.3) WP £ 2PUslP + [yxIP)
show that (b) implies (a). The opposite implication is more interesting,
since it shows that x° may be approximated by a submartingale Y® on the same
filtration. For example, in the martingale case with p = 1, we obtain (from

the optional sampling theorem for )



Il ol ol
ElE_(x’T‘I?FS)-xg( < 20, s<1, 5,TT%.

This expresses the sense in which X° is elmost a martingale: it elmost
satisfies the optional sampling theorem.

Proposition 18.2 is the prototype for a class of fgtructure-preserving"
results about extended weak convergence. These results take the form: if
(Xn,Fn) converges to a limit with a certain structural property, then for
large n the process x® almost satisfies this property. Proposition 16,20
is of this form, for the property of quasi left continuity. Analogous

results can be obtained for the Feller property and the predictable property.

Proof of Proposition 18.,2. As observed ab ve, we need only prove (a)

implies (b). The proof is & rather straightforward use of discrete
approximation. We treat the subrartingale case, and indicate the modifications
needed in the martingale case.

Consider first a single process (X,F) of class (bL), For m>1, k>0

define
D, =EX,  _p-X | = )
im 2 (51327 (j-1)2~"
(18.4)) [ k - _
3 (b. )~ , where (x)” = max (0, -x)
k2 =1 dm
m
k2 k2 k2

Then (5" _m » 2 —m) , k> 0, is a discrete-time submartingale, so we can
k2 k2

define a continuous-time submartingale (]Im,Ful ) by
PR |F), (k2T Lt<rT.
t K2 4



Fix an integer L and & stopping time T e‘TL. Then
!’; = g(s®

r ]?T), where rm(t) = min {kE-m:'k2—m'7 tf,

(1)
By Jensen's inequality,

(18.5) E|tp - leP < ElsII'fm(T) - le P,

From (18.3), (18.4) and the fact that A" is increasing, we get the estimate

(18.6) Elsfm(,l,) _lep < 2p{ElA1EIP + E[er(,r) -lepg .

Now consider a sequence of processes (x®) satisfying bypothesis (a).

We shall prove

(18.7) 1lim 1lim sup sup E|x° (1) - x’;lp = 0
n-yoo n-yco TeTL Tr
m
(18.8) 1lim EIAn’ ‘ P =0, for each m.

n-=>oo L

Then putting Vn = Ymn for some seguence (mn) converging to e sufficiently
slowly, we have from (18.5)-(18.8)

su Vn-Xn - 0,
20 Tl

This is condition (iii) of (b), and (ii) follows by Lemma 16.16 and (18.3).

To prove (18.7), consider I,€ 'Tg and m > 2, We must prove

P s
Elxnrmn(Tn) - X;n] > O,

Now this sequence of random variables converges to zero in probability, by
Proposition 16.20 and Lemma 16.19; convergence in IP follows from the uniform
integrability hypothesis in (a).

To prove (18.8), let s<{t be continuity points of the prediction process

of (Y,F). By Lemma 16.2,



U«

n Tl
E(xy - %, 1F0) & B(Y, - ¥ IF) > o.

So ( E(Xg - Xi\?FZ) )" —> 0 in probability, and also in IF¥ by the

uniform integrability hypothesis, Then (18.8) follows from the definition
of A", provided that {k2™™: x> 0} are continuity points. If not, we can
carry out the entire construction using continuity points (tk,m) in place

of (k2™),

Remark. In the martingale case we alter (18.4) to:

X

s = X - D,

k™ k™ 3221 J,m
X

o |

A = 2 {po, |1

k2 i=1 ! J,0

and the argument is essentially unchanged.



19 THE DOOB-MEYER DECOMPOSITION

The Doob-Meyer deccmposition, Theorem 7.4, can be regarded as a
transformation taking submartingales to compensators. In this section we
discuss the continuity "in distribution" of this transformation.

Observe first that the distribution of the compensator is not
determined by the distribution of the submartingale. For example, the
Poisson process Nt has compensator At with respect to its usual filtration
iFt’ but with respect to {;t = 3 its compensator is N, -
object that this is artificial: why not restrict attention to processes with

The reader may

their usual filtrations? But to discuss convergence we are forced to allow
unusual filtrations, as the next example shows.

(19.1) Fxample. Let P(U>u) = e , and let F be the usual filtration

fOI' 1(t_>__U). Ifetf
n =1
= 1 +
o= %sm Tz

Then (X",F) is a submartingale with compensator
n _ -1
A = n AtAl) + 1(t2U+1) .
Now X* 2 X and A" 2 A, where

X, = A 7 Yo x o)

And A is the compensator of (X,F). Now F is not the usual filtration of X:

with respect to its usual filtration, X has compensator (t-1)*AU. But F

is plainly the "correct™ filtration for X in this situsation.

Perhaps the fundamental reason why weak convergence is unsatisfactory
here is that the Doob-Meyer decomposition is not a sample-path transformation:

there does not exist a map 0:D(R)-YD(R) such that ©(X) is the compensator of



X for each class (DL) submartingale. The next results show that extended
weak convergence is more satisfactory.

(19.2) LEMMA, let A be_the compenssator of the class (DL) submartingale

(X,F). Suppose (X,F) = (X',F'). Then (X',F'} is a cless (DL) submartingale,

and its compensator A' is such that X(a') = Z(4).

(19.3) THEOREM. Let (x*,F®) , 1< n<<«, be a seguence of submartingales

uniformly of class (DL), in the sense of (18.1). Suppose (X°,F) = (x5, F ).

<
Then (X*F) is a class_(DL) submartingale: if it is guasi left continuous

then A" = £
Before the proofs, we give two counter-examples to plausible strengthenings
of these results.

_ -u _ -
(19.4) Example. lLet P(U>w) =e™, T, =1+ U/n, 32“1(t_>_'rn) and

Xp =1 With usual filtrations, X° =% X.” But X® has compensator

(t 21)°
Ail = n(t=1)tA U ,

and X has compensator At = 1(1;}_1)’ so A" does not converge to A in any

"distributional™ sense. Thus to ensure wesk convergence in Theorem 19.3,

some restriction must be placed on the limit submartingele. In fact,

the hypothesis of quasl left continuity cen be weakened to regularity (see

Definition 7.3), though we shall not prove this.

(19,5) Example. In Example 17.6, the compensator of X with respect to

both G and H is

ao= (-1)'A T oncf

(t—2)+/\U on C N{U>2}

=j'°"” o1-u du  on CA{U< 2},
1 1-—1.1 —1
e e
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Now (X,G) = (X,H), but (4,G) * (A,H) because, for instance, E(4 |’£”o
does not have the same distribution as E(A3] ﬂro). Thus the conclusion

of Lemma 19.2 cannot be strengthened to (A',F') = (A,F).

We now start the proof of Theorem 19.3.

(19.6) IEMMA. Under the hypotheses of Theorem 19.3, (A®) is tight and

P(suE A S g ) > 0asn->on,

Proof. For any bounded stopping time T on Fn,
n
(19.7) EX = By + EXj -
Consider T_& ‘j'lll', cfn\[,, 0. By Proposition 16,20,

n .
X% +s. " XT —> 0 in probability,
n “n n
and then we have convergence in LT, since the processes are uniformly of
class (DL). Applying (19.7) to (T,) and (T +§ ),
n n
E - E % 0.
ATn*' Sn ATn

But A" is increasing, so AIII. +5 A,III, —» 0 in L1. Now tightness follows
n “n n

from Theorem 4.. The other assertion follows from Corollary 16,22 applied

to U_ = ninft:& - £_2<} A L, which is predictable by Lemma 6.11.

Remark. Now the obvious method of attacking the proof of Theorem 19.3 is to
consider a subsequential limit (2%,5°,80) of (2%,X°,4%). It is not hard to
see that A~ is continuous increasing, and X¥? - 4" is a martingale with
respect to G, the usual filtration of (Z,X,X - 9. Thus A% is the
compensator of X with respect to G. But we do not know how to show that

A~ has the same distribution as the compensator of waith respect to F%

Instead, we adopt the more pedestrian technigque of discrete approximation,



as in Section 18. Murali Rao (1969) has given a proof of the Doob-Meyer
decomposition using this technique, and we use some of his estimates, For
typographical convenience we write X(t) for X, .
Given an integrable process (X,F}, define a process Am(t) by
Am(o) =0
(19.8) A ((4+1)27") - & (127) = E(x((141)27) - x(227) | F_ )
| A (t) = Am(iz'm) on 2@ £t ¢ (i+1)27",

(19.9) LEMMA. Suppose (X,F) is a submartingale.

(a) E’(Am(L) )m 5 1 is uniformly integreble then X is class (DL).

(b) If X is class (DL) then (Am(L))m > 1 is uniformly integrable; explicitly,

E A (L)1 6 sup{E X(1).1, : Te T, P(B) < »E x(L)¢ .

<
(Am(L) S 22

(¢) Now suppose X is class (DL), with compensator A. Let w" be as_in

, and let 0< 3¢ < <1< A& . Then

-1
P(ius;?L A(t) - Am(t) v 29) £ 37m EA(L).1(A(L)>>‘) +

by iBE + P(w"(4,27,L)> e ) 4+ P(iuép A(t) - Alt-)>e )}%] .
<L

Parts {a) and (b) are a reformulation of Lemma 2 of Murali Rao (1969);
a proof can also be found in Chapter 3 of Liptser and Shiryayev (1977). Part
(c) is a quantitative version of Rao's observation that Am converges to A in
L1 when A is continuous. We shall prove (c) later.

Now let (Xn,_Fn) be a sequence of submartingales, uniformly of class (pL).
Let A! be their compensators. Suppose x,F) = (Xm,Fm). Define Ai as

P
at (19.8). We shall assums )‘:.’LZ'm : i,m » Of =re continuity points of



(x°,57), for otherwise we could use continuity points (¢_,) in (19.8) in

2

their place.
(19.10) LEMMA. K =7 A: as 1 ~» oo, for each m.
Proof. Fix m. Define h,:D(R) —» R by by () = £((i41)2™®) - £(i27"). Then
B((s41)27) - K127 = E(hi(xn) [F Lom)-
By Lemma 16.5,
(E(n (X)NF ), Elny ENFm)seeererens) =
(Elh, (X) I‘EF ), E(h, (X Y R _m),........ )
and so
(19.11)  (£(0), A;(2—m),..... ) > (£10), &) (27,00 0ee D)o

Since Am is piecewise constant, the lemma 1s established,

(19.12) 1BMA. (X5,F ) is e class (DL) subpartingele.

Proof, To prove £ is a submartingale it suffices to show A;1(1+1)2—m) -
A “(427) » 0. But this follows from (19.11). Since (X*) is uniformly
of class (DL), Lemma 19.9{(b) shows that {A (L): m>1, ‘l<n<oof is
uniformly integrable. Then by (19.11),

(19.13) {Az(L): 2> 1, 1<n<e«} is unifornly integrable.

Lemma 19.9(a) completes the proof.

) . . <l
Now assume (X ,F ) is quasi left continuous, so that its compensator
(24
A is continuous. Using (B.4.2), Theorenm 19.3 follows from Lemma 19.10 and

the next lemma,

(19.14) LEMMA. Let L<e, n <1, Then

(1) 1im 1lim sup P( sup ‘A () - A > 211) = 0
m-»c hn-»co t <L

(1) lim P( sup (A Pty - £ ()| »29) =0
moe bt <L



[2e

Proof. Fix 0 < € £ 11/3. By Lemma 19.6 and Proposition

P{ sup lAfhl- I;_be) - 0
t£L

lim lim sup PO (&%,27,1) > £ ) = 0.
m-Yer I oo

So by Lemme 19.9(c) the quantity in (i) is at most

=1 1 n
3 (3¢)° + E 4 (L).1 .
DG e A (&, (L) 7>~)§

But by (19.3) we can make this arbitrarily small, by first choosing X
sufficiently large and then choosing £ sufficiently small. This establishes

(i), and (ii) is similar.

Proof of lemma 19.9(c). Without loss of generality take m = 0. Write 2 in

place of A . Observe that definition (19.8) can be rephrased as

[ 3

(19'15)l B - By = By, - A1)

=0

ciP)E

+1
~ P
= i <
At. Ai on i<t < i#,

where we revert to writing times as subscripts.

Because ‘X is constant and A is increasing on each interval [i,i+1),

(19.16) P{ su A ~A|y 2 < P(max|A, -2,
) tﬁ.lt ol > 2 (imf.L‘l ;)

+ P{ max (A, - &, ,17m ).
iep + 1

By the maximal inequality for the martingale (A, - Ai,?‘ i)’
i

" -1 ~
(19.17) P(iméai la, -8 1>m) &= Eja, - A\

Now let B, = N Lo and define B, as at (19.15). Plainly B, < A . So

E{a

s~ ~ Py o~
.- ALI < (ea_ - EBL) + (EA, - EB,) + Els, -B|

"

2(EA, - EB}) + E[BL - %L[




(19.18) < 2 EA_.1 + {88, -B.)° ¥
L (a, >») 2R
Since (B, -fﬁi,%?i) is a martingale,
86 -B.)% = T E( (B -B, ) - (B -B, ) )
L™ "L 171 17 P11 3~ By
£ 2 E(B, - B, , )2
(19.19) < E S(B -3B, )7 .

An elementary argument shows that, for constants O <cy £ ¢y A B W
2
S ey -y 4)° £ »max(es - ey )

2
_4_ -3 + .1
A3e * (max(es. = ¢;_q) » 3€)

Applying this to (19.19),

(19.20) E(BL—%L)2 < 3xe + >\2P( max (B

- B' ) 7 BE)-
1<l i-1

i

We now assert:

(19.21) Plmax (B; - By 1) > 3¢) £ P(u"(4,1,L)> £ ) + Pmex (& - & )>¢€).

To prove this, fix e« such that Bi(m) - B, 4 {*) > 3¢£. Consider whether or
not there exists t € [i~1,1) such that B, () +€ < B (w) < B,(«) - €.
If so, then w"(B(w),1,L) > ¢ ; if not, then Bt(w) - Bt_(w) >¢€  for
some t in [i-1,1].

Finally, consider the last term of (19.16).

P( max (A, - A, _)7m) £ P(A >X) + Plmex (B; - B; ;) > ™)
i -
(19.22) < EAL.1(AL>>\) + P(max (B; - By ,) > 3€).
Inequalities (19.16)-(19.22) establish the lemma.

This completes our rather convoluted proof of Theorem 19.3: no doubt

the proof could be simplified. To end the section we prove Lemma 19.2.



ol
This requires familiarity with o‘(L1,L )-convergence — see (DM.II.24).

We need a streightforward technical lemma.

(19.23) LEMMA. Let Y be a random element, let (hn) be meagsurable real-

valued functions such theat hn(Y)-)V c-'(L1,L ). Suppose J(Y*) = ZL(Y).

Then hn(x')—»v' o—(ﬂ,L ), where ZL(V',Y') = Z(V,Y).

Proof of Lemma 19.2. Let (X,F) be a class (DL) submartingale, and define

Am(t) by (19.8). Let Z be the prediction process of (X,F). Then

Am(t) = Hm’t(z)
for a certain function Hm,t:D((T) —= R, Let (X',F') be some other process
such that (X',F') = (X,F), that is to say £(2') = X(Z). Then _T(AIL) = L(A;).
So A! is increasing, and this implies (X',F') is a submartingele. Lemma
19.9 shows (X',F') is class (DL). Let A' Dbe its compensator. Murali Rao
(1969) shows that, for each i,

A (tq) —> Alt,) (1,1 )

1
A,;l(t,‘) > a1(t,) «(1,L).
Temna 19.23 shows that I(Z',A!(t1)) ==2°(Z,A(t.1)). Repeating the argument

with t . ,tk gives

NIr
X(z',A'(t1),....,Ar(tk)) = o‘f’(Z,A(t.I),....,A(tk)),

Hence X(A') = X(A).



CHAPTER 6 -~ ESTABLISHING EXTENDED WEAK CONVERGENCE
In very simple cases where we have explicit expressions for the prediction
process, it is possible to give ad hoc proofs of extended weak convergence
dirextly from the definition: section 20 gives two instances of this. 1In
section 21 we show how weak convergence results proved by the technigue of

Chapter 3 can be improved to extended weak convergence,

20 AD HCC PRCCOFS
We shall first consider what extended weak convergence means for "single
point" processes, Let T be a random variable such that
(20.1) LT Lo  8.8., P(T> q) > 0 for each g<e .
Put G(t) = P(T £t), X, =1 and let F be the usual filtration. Call such

t (t =7T)
a process (X,F) a single point process.

{20.2) PROPOSITION., For a seguence (x") of single point processes, the following

are equival&nt.
1) =%

(11) G — G in D(R)

(11i)(a) T = T.; znd

(b) for each t guch that P(T = t) O there exist tn—a't such that

P(Tn = tn) —2 P(T = t).

Proof. (i) implies (ii). Let L be a continuity point of G _. Define h & C(D(R))

by h(f) = J:o (I£(t) <1l A1) et . Then

E(h(xn)l?il) = on 0 £t<£L;

a
ol 1
ey (<D
n
n A
where a_ = En(X ). By Lemme 16.2, E(h(xn)l?:) = E(H(x“)l?“z). Since
P(T_> L) = P(T,> L) 0, it is not hard to deduce

g 2o in Df0,L] .

‘|-GZ(t5 "_) 1-G_(t)



But & -» &, s0 G —> G, in p[0,L]), and (ii) follows,

{(3ii) implies (iii). Suppose G > G in D(R). If t is a continuity point of

G,, then by Lemma 2.4 Gn(t,):-;Gm(t): this proves (iii)(a). If t is a
discontinuity point of G,, then Lemma 2,6(ii) proves the existence of ('bn)
satisfying (iii)(b).

{iii) implies (ii) It suffices to prove that (Gn) is precompact in D(R).

Conditions (C1) and (C3) of section 2 are immediate, so it suffices to verify (C4).
So consider (u%‘) and a subseguence (Gj) such that uf]'.' ~» t and G.(ui) — sy
for each i = 1,2,3 : we must prove 8, =8, 0T 5, = 33. This is immediate if €
is a continuity point of G _, so suppose not, Fix € > 0. Choose v, <t < v2
such that v1 ,v2 are continuity points of G_, and

G vy) = G,lv,) < G (t) - G (t-) + £.
By hypothesis {iii)(b), there exist tj—-a t such that

G.(t) -G (t-) —» G (t) - G (t-), and so

J 3 “ @

lim sup {G,(v.) - G, (¢t )} +{G (t -) -G (v <g .

j-aoop{j 2) = 8 .3)L " J) i 1)f

- . . 1 2 2 3
For each sufficiently large j, either (uj W) < (v1,tj) or (uj,uj) < (tj,vz);
J

50 mm(52~s1, 53-32) < & , end the result follows.,



(1i) implies (i). We need rather a lot of notation. Iet a-be a probability
reasure with distribution function G. ILet G-1 be the inverse distribution
function G-1(x) = inf{t:G(t) ¥ x}k Let U be uniform on (0,1), and set
(20.3) T =6 (V).

Then T has distribution pr. Let ¥ ={m: T s . isfies (20.1)f < F(R).

For 0 £t < o let t* €D(R) be the function t*(u) = 1/, 4). For pre ¥
let )A* e T be the distribution of the process T¥, i,e. of the single point
process 1(t. > T) Clearly the map m —a/.f is continuous. For 0 £t < °°
define ¢ : ¥ >% by ¢ (X(T)) = Z(T|T>t). The map t —>c (49 is

Skorohod. We now see that the prediction process 2

+ of the single point

process Xt = 1(t 2 T) is

z, = (e () , t < T(w)

H

, t > T().
5(T(w>)*

Now consider a sequence (G ) satisfying hypothesis (ii). Define T by (20.3),
n n
using the same U for each n. To prove extended weak convergence, we shall show

(*,2%) > (X% ) a.s. in D(RxTN).

First, by easily~verified properties of inverse distribution functions,

(20.4) Tn-Ja T a.s.

- - —» - " -
(20.5) G (T -) G (T-) &a.s
Now (20.4) implies ¥* >X a.s. in D(R), and Z —> Z;,D a.s. in M . So by
Lemma 3,5 it suffices to prove z* > 2 in D{(fT) a.s.. Appealing to Lemma
it suffices to prove
(20.6) ctﬁ*}) - ct()%) in D@)
(20.7) cTn_guh) - cqx-gpk) in ¥ a.s.



From the definition of ct,

(20.8) ct(r-r-l) has distribution function u > Gn(uf/t) - Gn(t.)
i -6, (t)

Now (20.7) follows from (20.5) and the hypothesis Gn—) G . To prove (20.6),
let () ) be a scaling sequence for (Gn)’ so by Lemma 2,7
n
(20.9) b >tk implies Gn()n(tn)) - Gw(ti)-
It suffices to prove (X ) is a scaling sequence for (ct(f“ )); that is, by
n n
Lemma 2.7, to prove

b >t implies c>‘n(tn)(/);1) —> cti(ﬁw) in ¥ .

But this follows from (20.8) and (20.9).



FELLER PROCESSES

In section 13 we described the prediction process of a Feller process. We
now prove this description is correct, and then show that for Feller processes
extended weak convergence is essentially the same as weak convergence.

Recall some notation from section 13. (X,F) is Feller if there is a
jointly continuous map g:(0,e=) x 8 - T such that, for each t,

4(t,s) is a regular conditional distribution for tx given gEt
where tX is the post-t process tXu = Xyt

Define ©:D(S) x[0,<) x D(S) —>D(S) by

o(f,t,g) -is the function u—>f(u), u <t
(20.10) > g(u-t), u>t.
The results in this section are consequences of the continuity properties of 6
which were developed.in section 2. Lemma 2, says:

if fn—a £, tn-%>tm, B, 8.y then Q(fn,tn,gn) - o(f,,t,,e ) provided
either (a) ﬁn(tq) = g,(0);

or (b) t_> 0, fn(tn—) -agw(tm-).

Now consider the induced mapia:D(S) x[0,) x TT - ar
(20.11)  B(£,t,X1)) = Z(8(£,t,1)).

The Skorohod representation theorem gives the following result.

(20.12) IEMMA, _I£ £ > £, t >t i >m,, , and if either
(a) w (uy)= & ;_or

oM £ (t,)
(b) %y, >0, £ (t-)->1L(t-),

then G(fn,tn,/n.n) - 9(%’tq,’}"ao)'
Now for a Feller process X, set

(20.13) ztz'g(x,t,p!(t,xt)).



As mentioned in section 13, it is easy to check that Zt is a regular conditional
distribution for X given qml. To prove Z is the prediction process, we must
check that Z is Skorohod. But this follows from Lemma 20.12, using (a) when
t Lt and (b) vhen tn’]‘T t. Yote that the left limit Z,_ equals
D(X,t,ﬁ(t,xt_)), so that each path Z(w) is continuous wherever X(w) is continuous.
This establishes Proposition 13.8.

To state the convergence result, let P =°20(X0) be the initial distribution
of a Feller process X. For a sequence of Feller processes (Xn), it is clear

that Py feo and g{n(O,s) — ﬁw(o,s) uniformly on compacts imply > x%

(20.14) PROPOSITION. Suppose (Xn) is a seguence of Feller processes such that

o fo 2nd dn(t,s) -> gfw(t,s) uniformly on compact subsets of [0,00) x S.

Then X =y X%
Proof. We know X© = XCD, and so by the Skorohod representation theorem we

[ -3
nay assume X -» X in D(S) e.s.. We must prove

0 ou

(20.15)  (x4,2") = (X,2) in D(SxM a.s..
Fix e, write fn = X*( ), and suppose fn-:) £ in D(S). Let 0}1) be a scaling
sequence for (fn). We shall prove ()\n) is a scaling sequence for (Z-(w)).
By lemma 2.7 and the definition of Zn, we must prove:

iIf £ > t,3 then 6(f ,) (t ),4 (N (¢ )£ O (¢ ))))

(20.16) 0Lt B (4ot (5 14))) .
But ()\q) is a scaling seguence for (fn), so fn()n(tni)) - foe(tmi)). Now

(20.16) follows from Lemma 20,312, using (a) when th, t and (b) when tnT‘Pt .



(2.4

INDEPENDENT INCREMENTS

Say a real-valued procéss (X,F) has independent increments if, for each t,
the post-t process tX is independent of‘ii. For such a process, let
(20.17) 3, = 3(x,t,2(*x)).

We state without proof asnalogues of Propositions 13.8 and 20.14.

(20.18) PROPOSITION, (a) If X has_independent increments then (20,17)_defines

the prediction process.

(b) _Suppose Xpé> Xai where X hes independent increments_for each n.

Then X© => X"

The proof is rather tedious because here we do not have the continuity properties

of £.

Remarks. The results of this section are not useful, because when so much
structure is assumed we do not benefit from knowing that extended weak
convergence holds. Rather, they are intended to demonstrate that extended weak

convergence is not an unduly restrictive notion in several familiar contexts.
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21 THE BOOTSTRAP

let us formulate a heuristic principle: any weak convergence result proved
by the martingale technique of Chapter 3 can be improved to extended weak
convergence. Instead of attempting to prove any general form of this principle,
we shall illustrate it by considering two specific results, on convergence to

diffusions (Theorem 8.22) and convergence to the Poisson process (Proposition 9.1).

CONVERGENCE TO DIFFUSIONS

As in section 8, let X be a diffusion with drift b(x) and variance a(x),
and let (}x =.f(XlXO=x). Proposition 13.8 (proved in the previous section}
shows that the prediction process Z is continuous and may be written

(21.1) 2, = Q(X’G’t’AXt)

where © is defined as in (20.11).

(21.2) THEOREM. Under the hypotheses of Theorem 8.22, =y K

, t
Proof. Recall thet X denotes the post-t process (xt+u)u210' For each &, n
P
define zg by
n (ps : . : t n
(21.3) Z, 1is a reguler conditional distribution for X given gxt'
Then the prediction process 7" satisfies
(21.4) 2, = o(x%,%,2}) a.s., for each t,n.
Ry Theorem 8,22 and the Skorohod representation theorem, we may assume
(21.5) X' ->X in D(R) a.s.
and so in particular
(21.6) X: — Xt a.8., for each t.
Suppose we can prove

(21.7) ZE — lﬁxi in T , for each t.
P



{3

Then using (21.4) and (21.5) we cen apply Lemma 20.12(a) to Z% and deduce
Zn-—JD Zz in T}, for each t.
t p t

So for any ketuple (6.), (Z° yeesesZy ) =D (2, seeessyZ, ), end the theoren
i t1 tk t1 Ty

follows from Proposition 16.3.

Thus the main part of the proof is to establish (21.7). As a preliminary,
we need to abstract the concept fhypotheses sufficient to impl wegk convergence
to the diffusion®. Consider a map H: TT-{0,0) such that
(21.8) ifp T, ye Ry Hi,) > 0, o) 7Sy thenpy=> By in T .

Given such a map, (21.8) is & weak convergence theorem: conversely, given a
weak convergence theorem we can define H so that (21.8) is a restatement of the
theorem. Later (21.13) we shall define H so that (21.8) is Theorem .22,

The central idea is the following "hootstrap" technique. If (Xn,Fn)
satisfies the hypotheses of Theorem 8,22, the the future processes txn
conditioned on events Gn in ?FZ should alsc satisfy the hypotheses (because
a martingale conditioned on the past remains a martingale). So the conditional
distributions Z, of bx® given F . should spproach the distribubion of the
3diffusion. In making these ideas precise we shall approximaté regular
conditional distributions by elementary conditional distributions: this requires

the following technical lemma. Fix t for the rest of the proof.

(21.9) LEMMA. Suppose H:U->[0,00] satisfies (21.8). Let (§’n) be random
elements of 1| such that

(1) w,(5) 2 éxt in P(R).

Suppose that for each n there exist random elements (E; k) such that
L)

- > -

(i1) r;n,k —Bp ?n in I as k>»® ;

(1ii) 1im suwp EH(Y ,) =0
n->co k n,k

Then §, =2 4% in .
t



(722

Proof. Let o be & metrisation of Tl. By (ii) we can choose k @ guch that
- n

(21.10) P(\fn’kn, ‘En) -;: 0 as n>w@ ,

Since T, is continuous, (21.10) and (i) imply
. — 5 -

(21.11) -fro(fn’kn) 7> °x,

And by (iii),

(21.12) H(?n " ) _f? 0.
'n

By considering subseguences where convergence in (21.12) and (21,11) holds a.s.,

and applying (21.8), we deduce ?n " ';’ Axt Now (21.10) gives the lemma,
n

We shall apply this lemma to 5 = 1.; and elementary conditional distributions
n
(? k): once the conditions of the lemma are verified, (21.7) and the theorem
n,

follow. Condition (i) is immediaste, since Wo(fn) = 5}{:—75}{ a.s. by (21.6).
t

To construct \fn,k , choose for each n an increasing family Lgﬁ,k) of
n

finite 6—fields such that VvV & =o(§ ) # . For each G_&

k n,k n t J n,k

*
define €  to be the ordinary conditional distribution of Y¥® civen G ..
]

Define ¥ () = g"; on G;. Then condition (i1) holds by Lemma 12.7,

Next, we must specify H so that (21.8) is Theorem 8.22. Let @ Qenote
a collection (.Q-,?,P,F,X,N,N), where X, N and N are processes adapted to a
filtration F on a probabilily triple QQ,%,P). Call ¢ admissible if conditions
(¢) and (d) of Theorem 8,22 hold, Say @ represents m if #(X) =+ . Define
reT §

L
TeI, g

L (@,1) = sup{E(Ngﬁ
F(@,L) = sup{E]ﬁT‘
(21.13) ¥(®&,L) = E £ (x, - xt..)z

[ )

(@) =J e'LA{oa(@,L) + P(@,L) + Y(@,L)} aL

(=4

L1]

(13



H(}.»-) inf{g(@) : @ adnissible and representS/Ag .

Now if ﬂ(}»—)-‘a 0 then there exist processes 1 satisfying hypotheses (b)-(£)
of Theorem 8.22 and such that Z(X*) = % So (21.8) is indeed & restatement
of Theorem 8.22.

It remains to check condition (iii) of Lemma 21.9, and this is the
"pootstrap? argument. We are glven processes (In,Fn) satisfying the hypotheses
of Theorem 8,22, That is, we have admissible collections (_ﬂ.,ﬁ},P,Fn,Xn,Nn,Nn)
= " such that
(21.14) S(©@") > 0.

Fix n,k for the rest of the proof, and consider G, & % X Put

n 1
@5 = m’%’P('{Gj) c/iéfu u? o’(xt+u)u30’(Nt+u)u20’(ﬁgﬂl)u?-o)‘

Then E‘). ijs admissible (because a martingale conditioned on a past event
J
remains a martingale) and represents Fj {by definition of? ). Given stopping
n . n
times T‘1 £1L on @‘Hu)uzo , we can define a stopping time T <14t on F

by T=t+ ETJG . So using the definitions of &£ , £
94

3 P(ey) L(@,1) £ (@, I4t)
(21.15) ZR(G,) @51 £ R(@%,14t).
Similarly, Z P(G;) ¥(@;,1) £ Y(EF,14t).
Finally, -
EH(E, ) = ZP(G.) H(Ef)
£ Z’P(G )5(@ )
£ e 5(@“) by definition of & and the estimates (21.15).

Now (21.14) gives condition (1ii).




Theorem 21.2 gave sufficient conditions for extended weak convergence: we
shall now show these gonditions sre essentially necessary. We need a routine

truncation lemma, Define

h (x)

&k, x<-k
= x, -kdx £k
= k, k £X.

—

2
(21.16) LEMMA. Let V = V be real-valued random variables such that EV < .

Then there exist k = ve such that {lhk (V ) { is uniformly integrable.

(21.17) PROPOSITION. Let (Yn,Fn) be & sequence of processes, and X the

diffusion with drift b(x) and varisnce a(x)., In order that ¥ =5 X it is

n
necessary and sufficient that there exist X adapted to F such that

(1) sup [Xn Ynl ‘>0

t 2L

(ii) (Xn,Fn) satisfies the hypotheses_of Theorem 8.22.

Proof. Sufficiency is immediate from Theorem 21.2 and Lemma 16.16. So

suppose ¥* = X. Then, for fixed L,

2
21.18) su 2 =  sup X
( '3, 2% (xg) % é,pL t

2
Now E sup X, << , so by Lemma 21.16 we can choose kn-chﬂ such that
t£€L 2
(21.19) {k_~ e (Y:) }  is wniformly integrable.
By a diagonal argument, we can choose (kn) so that (21.19) holds for all L.
Define Xn hk (Y }. By construction,

(21.20) { sup (xn) is uniformly integrable.
t <L

From (21.18) we see that condition (i) is satisfied. Then by Lemma 16.16
0 .
(21.21)  (C,F) => (4,F).
We must show that Xp satisfies the conditions of Theorem 8.22. Condition (a)

is immediate, and (b) follows from Lemma 8.6. Applying the continuous



mapping theorem for extended weak convergence (Lemma 16.1),

+
(21.22)  (x2 - jb(x:) ds, ') =5 (M,F)
o

I

+

(21.23)  ((x; - f:b(xrs’) as)” - Lacé) ds , F) = (S,F),
for M, S as in (8.20). Because b(x) is bounded, (21.20) implies

((X: - gfb(xg) ds)z, Fn) is uniformly of class {DL)
in the language of Section 18. Now we can apply Proposition 18.2 (with p = 2)
to {21.22) and deduce that there exist processes Mp, N adapted to F" such that
conditions (c) and (e) of Theorem 8.22 hold, and such that
(21.24) {(Mn)2 zis uniformly of class (DL).
By (21.23) and lemma 16.16,
(21.25) ((Mfcl)2 - S:a(x’;) ds , F) =5 (s,F).
Apply Proposition 18.2 (with p = 1) to (21.25) and (21.24), and deduce there
exist processes s® and T adapted to F' such that conditions (d) and (f) of

Theorem 8,22 hold,



o)
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CONVFRGENCE TO THE POISSON FROCESS.

For the second iilustration of the bootstrap technique we consider
convergence of point processes to the Poisson process. The essence of the
argument is almost identical to the argument for Theorem 21,2, but some
preliminarles are different.

Ag in section 9, let (Nn) be sequence of point processes with compensators
(An), and let N be the Poisson process of rate \. Note that because N is an
inereasing process the assertions
(21.26)(1) (N°) is uniformly of class (DL),

(ii) (N:) is wniformly integrable, for each t,
are equivalent,

(21.27) THEOREM. Let (N") be a seguence of point processes satisfying (21.26).

In order that Nn = N it_is necessary and sufficient that A: —> At for
1%

each b,

Proof. Necessity is immediate from Theorem 19.3, so we need only prove
sufficiency. Proposition 9.1 establishes Nn = N. Before starting to prove
extended weak convergence, we make two observations.

First, by Lemma 8.6 sup (Ai -xt{ = 0. But (AE :n>1) is
t<L p
uniformly integrable because EA; = EN’E-—% EN = XL, and so

(21.28) sup{E[Ag-xT[:Te‘j"if > o.

Second, for y& R define Ay « Tl to be the distribution of (y + N‘b)t >0
Then the prediction process Z of N is given by

(21.29) z, = e(N,t,ANt)

for 8 as in (20.11), using Lemma 20.12 to verify this process is Skorohod.
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The prediction processes z" of N satisfy

(21.30) Zz = ’E(Nn,tfzzj a.s., for each t,
where 7P is a regular conditional distribution for ()
t e t+u‘u >

To prove extended weak CONVErgence, start by using the Skorohod representation

. n
o glven D £

theorem to suppose

(21.31) X' ->N ian D(R) a.s.

We want to conclude

(21.32) (Nn,zn)—p-a (¥,2) in D(RxT).

By analogy with the proof of Theorem 21,2, one night suppose it would suffice to

prove Z: - AN 3 but unfortunately Proposition 16.3 is not available here.
P t

Instead we use the following technical argument, which the reader may well omit.

1EMMA. It suffices to prove

(21.33) sup{/o(Zz,ANn) : t rational, t<£ L} —> 0
t P

wheref is a metrisation of 1.

Proof. By passing to a subsequence we may assume a.S., convergence in (21.33).
Fix w such.that convergence holds in (21.33) and (21.31). Let ()‘n) be a
scaling sequence for (Nn(w)): we shall prove (}\n) is also a scaling seguence
for (Z%(w)), and then (21.32) follows. Note that the definition (2.2) of
"fn—a f in {S,d) with scaling sequence ()sn)" is equivalent to:

(21.34) d(fn(tn),f()\:I (tn))) — 0 for any bounded sequence (tn),

and it suffices to verify (21.34) for rational t . So to prove (,\n) is a
scaling sequence for (z"(w)) it suffices, using (21.29) and (21.30), to prove

(21.35) p¢ B, 1,,2, (@), BEd X1, Nwy S T

n n

for bounded rational tn. Now omitting « for typographical convenience,



o
)

n
p @A VL plZAp) 4 pAn,A
n > (tn) n t'n tn .y (tn)
and the first term tends to zero by (21.33), th second by (21.31) and (21.34).
To prove (21.35), pass to a subsequence in which either A:I (tn) Lt or

): (tn) Tt, and apply Lemma 20.12.

Note that to prove {21.33) it suffices to prove
n
(21.36) (z, ,4 ) = 0
£ Tn N% p
n
for each sequence (T ) of stopping times on F' with Tn < L, Fix such a
n
sequence (T ) for the rest of the proof., Think of (21.36) as the analogue of
n
(21.7). The rest of the proof closely follows the proof of Theorem 21.2, so
we leave the reader to provide most of the details.

First, we need the analogue of (21.8). Let ‘ITO denote the set of

distributions of point processes. We shall define a map H:TI"OQ [0, «{ such that

(21.37) if (/An)eTf'O, y &R, H(/;)s)o, then M2 Ay.

Teo do this, let @ denote a collection (2 %,P,N,4,F), where At is the compensator
of a point process Nt. with respect to a filtration F on & probability triple
(£,%,P). Define

AL (®,L) = supr[AT - NT| s Téf]-L §

S(@) = fe“’*/\(;(@,m aL

Hp) = inf {J(@):XN) =pf .
Now (21.37) follows from Proposition 9.1, because hypothesis (21.28) implies
the hypothesis of that Proposition.

Here is the analogue of Lemma 21,9, with almost identical proof.



"2

(21.38) LEMMA. Let (¥ ) be random elements of T(; such that
n

i = A 8.5,
(1) o (5) W
' n
Suppose that_for_each n there exist random elements (?n k) such_that
2

(1) ¥, = T omTask2e;
P

(ii1) 1im sup EH(§ ) =0
noe  k n,k

Then f,(?n’aN% ) "';‘) 0.
n

To complete the proof of the Theorem, we must show that 5 =/ﬁ?
n n

satisfies the conditions of this Lemma.



CHAPTER 7

22 SAMPLE PATH PROPERTIES OF THE PREDICTION PROCESS

The purpose of this section is to show that, for Skorohed processes,
some of the abstract concepts in the general theory of processes can be
expressed more concretely in terms of the prediction process., In particular,
quasi left continuity end predictability are sample path properties of the
prediction process. These results are somewhat divorced from our main
theme of weak convergence. But, as observed in Section 15, the "structure-
preserving" feature of extended weak convergence is a consequence of structural
properties of X appearing as sample path properties of 2.

In this section we presuppose grester familiarity with the general
theory of processes than we suppose elsewhere.

Iet F be & fixed filtration. Suppose X is a measurable process
(DM,IV.3), not necessarily Skorohod or adapted. If X is real-valued and

bounded or positive, then (DM.VI.43) it has a predictable projection, that

is to say there exists a process Y such that

(a) Y is predictable;

() ¥, = E(xT \?T_) , T predictable,

This process Y is unique, up to indistinguishability, Unsurprisingly, there
is an analogue of this result in which "conditional expectation" is replaced
by "conditional distribution®.

(22.1) Definition., Let X be a measurable S-valued process. Call a

measurable P(S)-valued process (ft) an extended predictable projection of

X onto F if
(a) 'f is predictable;

(b) ‘iT is a regular conditional distribution for XT given ?FT—’ for



each predictable T.

(22.2) LEMMA. The extended predictable projection exists and is unigue,

up to indistinguishability. ind X is predictable if and only if

P, = th for all t) = 1.

Let us write e: $(R) >R for the expectation map. When X is real-valued,
and bounded or positive, then plainly the (usual) predictable projection ¥

is obtained from the extended predictable projection X by

Yt = e(ft).

Proof of Lemma 22.2. For each n partition 3 into setls (A2)1>1 of diameter

n

less than 27, choosing (AI;) to be a refinement of (Ai-1). Fix a 4 € ijl_
’

and define On(s) =8 for s ¢ A?.. We can define a *P(S)-valued process fn
?

i
by specifying

~'S'z(cu ,fan iﬁ) is the predictable projection of the process 1
H

(X, € AD)

onto F,
Clearly
(22.3) §7 1is the extended predictable projection of @_(X).
Let o be the metrisation of ¢ (5) defined by (1.5). Since d(gn(x),em(x))
< 278 for m» n, we can choose (¥") such that

o Ee), §2)) £ 27, m>a
So %™ - € , say, uniformly in (t,w). Since also Qn(X) —>» X uniformly in
(t,w), it follows easily from (22.3) that € is an extended predictable
projection of X,

Uniqueness follows from Lemmas 12.5 and 6.12. In the finel assertion

of the lemma, the "if" part is obvious and the "only if" part follews from



the fact (Dellacherie (1972) IV.T31):

if X is predictable and T is predictable then XT is c_’FT -measurable,

Let us now return to our usual assumptions that X is Skoroched and

adapted to F. Let Z be the prediction process.

(22,4) PROPOSITION. -n’t(Zt ) is the extended predictable projection of X.

From this and Lemma 22.2 we derive two immediate corollaries,

(22.5) COROLLARY. X is predictable if and only if P(ﬂ-t(z ) = cfxt_‘for all t) = 1.

(22,6) COROLLARY. If X is real-valued, and positive or bounded, then the

process eW, 2, is the predictable projection of X.

Proof of Proposition 22,4, The process Zt- is left-continuous and hence is

predictable, So the process —rrt(Z is predictable. Let T be a predictable

)

stopping time. We must verify condition (b) of (22.1), that is
. <L

(22.7) —TrT(ZT_) is a r.c,d, for X, given d“‘T_.

Since Z is Skorochoed, Zp_ is ?T_-measurable.

For 0 € a < b<e define T b T =F(s) by:
—rra,b(of(}f)) = cf(l‘f;{), where £ is uniform on [&,b] and independent of Y.
The following continuity properties can be established by the usual
Skorohod representation technique. -
(22,8) The map (®,a,b) ——B-n—a,b(®) is continuous at each point (®,a,b)
such that a < b,

(22.9) w b(@) —?-n-a(@) as bl a.

Let U be distributed uniformly on [0,1] » independent of F. Fix €7 0.

For each t,



1rt,t+e,(zt) is a r.c.d. for X£+U£ given ?F;.
So if R is a stopping time taking discrete values,

(22.10) TrR,R+€ (ZR) is a r.c.d. for Xp . given ?FR'

Since T is predictable, we can find a sequence (Rn) of discrete-valued

stopping times announcing T (DM.IV.77). Then‘?% 4“31T_, Z, —~ ZT
n n

-
and XRn+Us_-='>xT+Ue a.s.. So by (22.8) 1TRn’Rnf£ (ZRn) 1TT,T+E.(ZT-) 8.5e0

Using lemma 12.5, we obtain from (22.10)
T The (ZT_) is & r.c.d. for Xq ;. given %F&_.

Letting €£-> O and using (22.9) we obtain (22,7).

(22,11) COROLLARY. X is guasi left continuous if and only if

P(w (24 ) =6 for all t) =1,

X
Proof. Recall the definition of quasi left continuity:
XT = XT_ a.s., each predictable T,
Since Xp_ is ?FT_-measurable, this is equivalent to the assertion:

5

is a r.c.d, for XT given §¥T- , each predictable T.

Xo_

Since the process & is predictable, this is equivalent to the assertion:

X,

& is the extended predictable projection of X,

Xy

The corollary now follows from Proposition 2244



i

24

Finally, consider the following property for processes:
(22.12) if T is a stopping time such that X, = XT- a.s. then T is predictable.
This is a kind of converse of quasi left continuity. It is known that, under
wide conditions, Markov processes have this property (Meyer (1967); Chung
and Walsh (1974)). The prediction process throws more light on this result.

(22.13) PROPOSITION. let (X,F) be a process with usual filtration, and let

7 be its prediction process. Then Z has property (22,12).

From Proposition 13,8 we deduce the Markov process result.

(22.14) COROLLARY. A Feller process with usual filtration has property (22.12).

Proposition 22,13 could be deduced from the Markov process result,
since it is not hard to show that Z is Markov. But it is simpler to give

a direct proof.

Proof of Proposition 22,13. For g & C(D(S)) define ﬁ* as in (14.10).
Iet T bera fixed stopping time such that ZT = ZT- 2.8.. Then
(22.15) £ (2) =4 (3p) as.
We must prove T is predictable., By (DM,VI.62) it suffices to prove that
Mp = Mp_ a.s. fbr each bounded martingale (Mt)’ Since F is the usual
filtration, any bounded martingale is of the form M, = E(Q(X)I?Ft) for some
bounded measurable ©:D(S)->R. By Lemma there exist dn ¢ C(D(S)) such
that E[B(X) - pﬁn(x)l2 <z 27", so
sup [, - £,2)| = spp [EQMOIT,) - BHITF,) l
£ swp Efo(x) - £, [F)
—= 0 a.s. by (7.1).

Now (22.15) shows that MT = M;,_ a.s., as reguired.
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