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Gambling Under Unknown Probabilities as
Proxy for Real World Decisions Under

Uncertainty
David J. Aldous and F. Thomas Bruss

Abstract. The subject of decisions under uncertainty about future events, if lacking sufficient
theory or data to make confident probability assessments, poses a challenge for any quantita-
tive analysis. This article suggests one way to first look at this subject.. We give elementary
examples within a framework for studying decisions under uncertainty where probabilities are
only roughly known. The framework, in gambling terms, is that the size of a bet is proportional
to the gambler’s perceived advantage based on their perceived probability, and their accuracy
in estimating true probabilities is measured by mean-squared-error. Within this framework
one can study the cost of estimation errors, and seek to formalize the “obvious” notion that in
competitive interactions between agents whose actions depend on their perceived probabili-
ties, those who are more accurate at estimating probabilities will generally be more successful
than those who are less accurate.

This article is an extended version of the Brouwer Medal talk at the 2021 Nederlands
Mathematisch Congres.

1. INTRODUCTION. The general topic of decisions under uncertainty covers a
broad spectrum, from the classical mathematical decision theory surrounding expected
utility [19] to modern work (with the celebrated popular exposition by Kahneman [12])
on the cognitive biases exhibited by actual human beings in making such decisions. An
important practical point for any discussion is that, for perhaps the majority of real-
world decisions we face outside specific professional contexts, numerical probabilities
can only be guessed or crudely estimated. Where theory and data do not enable us to
estimate probabilities well, can one still seek to study the accuracy of human-estimated
probabilities and the effects of errors in such estimation?

Such questions have been discussed at sophisticated levels in various specific con-
texts (see Section8 discussion) but this article arises from thinking about how to in-
troduce the topic — what could one say in a single class as part of an undergraduate
course in probability?

To pose a starting question, consider the following two intuitive notions.

(A) For unique real-world events, such as “will Netherlands defeat France in their next In-
ternational Football match,” either there is no “true probability,” or there is some unknown
true probability, and we can never tell in any quantitative sense whether your guess of a 30%
chance was better than my guess of a 20% chance.

On the other hand, in sports betting or stock market speculation, some individuals
do better than others, perhaps more than by pure chance, and one can formulate the
following vague general assertion.

(B) In any kind of competitive interactions “under uncertainty” (such as betting on football
results) between agents whose actions depend on their perceived probabilities, those who are
more accurate at estimating probabilities will be more successful than those who are less
accurate.
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In isolation, either (A) or (B) seems very reasonable, but juxtaposed they seem con-
tradictory: do you believe in “true probabilities,” or don’t you? More pedantically, one
might say that (A) and (B) represent ends of a spectrum of views about assessment of
numerical probabilities for interesting future real-world events.

To the extent that the effects of different outcomes can be expressed within the
same quantitative units (as assumed in utility theory), any “decision under uncertainty”
model can be regarded as a gambling model. This article introduces the following gen-
eral framework within which assertion (B) above, interpreted as involving “gambling
under unknown probabilities”, can be studied mathematically.

Take a toy model of a situation where one has to make an action (like deciding whether and
how much to bet) whose outcome (gain/loss of money/utility) depends on whether an event
of probability ptrue occurs. There is some known optimal (maximize expected utility) action
if ptrue is known. But all one has is a “perceived” probability pperc. So one just takes the
action that one would take if pperc were the true probability. Now we study the consequences
of the action under the assumption that pperc = ptrue + ξ for random error ξ, where usually
we need to assume that ξ has mean zero.

As will be discussed in Section 8, this framework is reminiscent of Bayesian decision
theory, though with a rather different focus.

We will formulate and study three models within this framework, in Sections 4 – 6.
The reader may look ahead to Section 3 for brief descriptions of these models. But let
us start in Section 2 with the “fundamental example” of a context in which assertion
(B) is verified in a very clear manner.

We emphasize that the mathematics in this article is mostly quite elementary. Our
purpose is to show that it is indeed possible to devise quantitative models of various
contexts within which (B) is numerically verifiable. So we analyze the behavior of such
models and verbally discuss the results of the analyses, rather than proving theorems.
What these analyses indicate, in qualitative terms, is that if a gambler is unbiased (ξ
has mean zero), then the cost of a small error ξ in perceived probability scales as the
variance of ξ. And that in competitive contexts, gamblers with smaller variance will
in the long run outperform those with larger variance, providing examples of principle
(B). We call this the squared error principle. Our models also raise, but do not resolve,
another general question we call the allowance issue. In our basic setup, gamblers
act as if their perceived probabilities were the true probabilities. But if they recognize
this is unrealistic, and make some guess about the typical size of their error, should
they modify their action to make allowance for their errors? Here our examples do not
suggest any general principle, so it remains an intriguing issue for future study.

Further general discussion and pointers to the academic literature are deferred to
sections 7 and 8.

Model ingredients. There are 3 ingredients in most models that we have studied in
our framework. First, in gambling-like settings, it is convenient to use the terminology
(from prediction markets) of contracts rather than odds. A contract on an event will
pay $1 if the event occurs, or pay zero if not. In traditional horse race language, one
might bet $7 at odds of 4-to-1 against; that means you would gain $28 if the horse wins,
or lose $7 if not. This corresponds, in our terminology, to buying 35 contracts at price
0.20 dollars per contract. Here the price is the implied probability pimplied = 0.20 if
these were “fair odds”.

Second, we need to model the amount that is bet in any particular case. Of course
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in most circumstances you would bet on that horse only if your perceived1 probabil-
ity pperc is greater than pimplied. Intuition suggests that you should bet more if your
perceived advantage pperc − pimplied is larger, and we will use the simplest implemen-
tation of that intuition by modelling that the number of contracts bought is proportional
to pperc − pimplied. So the number of contracts bought is κ(pperc − pimplied), where
the “constant of proportionality” κ, measuring the scale of an individual’s gambling
budget (“affluence,” say), is unimportant for our analyses.

Third, recall our “unknown true probability” ptrue framework. Any instance of a
bet by an individual involves a triple like (pimplied, pperc, ptrue) above, and then our
model

pperc = ptrue + ξ for random error ξ

will allow us to study mean outcomes in terms of the distribution of the perception
error ξ.

This completes a framework for studying the “obvious” vague assertion (B): is it
true that, other things being equal, agents with smaller error ξ have better outcomes?
Often we will need to make the “unbiased” assumption that the error ξ is such that
the expectation E[ξ] = 0 — see Section 7 for discussion of whether this is realistic.
Writing σ2 = var [ξ], the “accuracy of pperc” can be expressed most usefully as the
RMS (root mean square) error σ.

Finally, throughout this article we are not envisaging unlikely events with large
consequences, for which squared error is clearly not the appropriate measure. In other
words, we are implicitly assuming that ptrue is not close to 0 or 1.

2. THE FUNDAMENTAL EXAMPLE. This example arises in two different, but
mathematically equivalent, contexts:
• (first): A prediction tournament
• (later): A gentleman’s bet.

The first context is more concrete, with substantial experimental data. The advantage
of the second context is that it suggests many extensions, which lead to the models in
the remaining sections of this article.

A prediction tournament. A prediction tournament (see [1] for an introductory ac-
count) consists of a collection of questions of the form “state a probability for a speci-
fied real-world event happening before a specified date.”2 Typical questions in a current
(August 2021) tournament at gjopen.com are:
• Before 31 October 2021, will the FDA and/or CDC recommend that at least some

Americans fully vaccinated for COVID-19 receive a booster shot?
• Will Haiti hold a presidential election before 1 January 2022?
• What will be the value of the October 2021 S&P/Case-Shiller Home Price Index?
• Before 1 January 2022, will North Korea detonate a nuclear device and/or launch

an ICBM with an estimated range of at least 10,000km?
• Will a bitcoin exchange-traded fund trade on a US exchange before 1 January 2022?
• Before 1 January 2022, will the UN declare that a famine exists in Yemen?

1Terminology is awkward: estimated suggests an explicit estimation rule, subjective suggests it’s just an
opinion. We use perceived as a compromise.

2In actual tournaments one can update probabilities as time passes, but for simplicity we consider only a
single probability prediction for each question, and only binary outcomes.

January 2014] GAMBLING UNDER UNKNOWN PROBABILITIES 3



Mathematical Assoc. of America American Mathematical Monthly 121:1 January 21, 2022 11:35 a.m. monthly˙final.tex page 4

• In 2021, will total fire activity in the Amazon exceed the 2020 total count?

These are unique events, not readily analyzed algorithmically. In the popular book [28]
contestants are advised to combine what information they can find about the specific
event with some “baseline” frequency of roughly analogous previous events. Scoring
is by squared error: if you state probability q then on that question

your score = (1− q)2 if event happens; your score = q2 if not.

Your tournament score is the sum of scores on each question. As in golf one seeks a
low score. Also as in golf, in a tournament all contestants address the same questions;
it is not a single-elimination tournament as in tennis.

If you state probability q on a question while the true probability is p, then the
expectation of your score on that question, under the true probability, is

E[ score ] = p(1− q)2 + (1− p)q2

= p(1− p) + (q − p)2.

So in a tournament with n questions and unknown true probabilities (pi, 1 ≤ i ≤ n),
if you state probabilities (qi, 1 ≤ i ≤ n) then

E[your tournament score ] =
∑
i

pi(1− pi) +
∑
i

(qi − pi)2.

The first term is the same for all contestants, so if S and Ŝ are the tournament scores
for you and another contestant in an n-question tournament, then

n−1E[S − Ŝ] = σ2 − σ̂2 (1)

where

σ :=

√
n−1

∑
i

(qi − pi)2

is your RMS error in predicting probabilities and σ̂ is the other contestant’s RMS error.
So we arrive at a key insight: in a prediction tournament, (1) implies

even though the true probabilities are completely unknown, one can determine (up to small-
sample chance variability3) the relative abilities of contestants at estimating the true probabil-
ities.

This elementary result seems curiously little-known outside the specific “predict prob-
abilities” community — we give some further discussion in Section7. A starting point
for this article is the observation that it can be re-interpreted as a gambling result, as
follows.

3We observe S − Ŝ rather than its expectation: by a law of large numbers argument, for large n the average
(S − Ŝ)/n will be close to its expectation E[S − Ŝ]/n. See Section7 for more details.
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A gentleman’s bet. Suppose two people (A and B) have different perceived probabil-
ities qA and qB for a future event and wish to make a bet. Then a contract (to receive 1
dollar if the event occurs) at any price between qA and qB is perceived as favorable by
each person. Suppose qA > qB , so A will buy and B will sell, and suppose the price is
set at the midpoint (qA + qB)/2 := r. Recall that the default strategy for A is to buy
κ(qA − r) contracts from B.

So A will get some monetary gain4 from B, via this bet. Now imagine that these
two people are also competing in a prediction tournament with the same event as a
question. So there will be a score difference for this question, which (because A seeks
a low score) we write as (score of B) - (score of A).

Consider the relation between the gain and the score difference. Suppose the event
occurs. Clearly

gain to A = κ(qA − r)(1− r)

and a brief calculation gives

score difference = (1− qB)2 − (1− qA)2

= (qA − qB)(2− qA − qB)

= 4(qA − r)(1− r).

One can check that this relation

gain to A = κ
4
( score difference )

also holds if the event does not happen. So this “gentleman’s bet” context is math-
ematically equivalent to the prediction tournament context. In particular, consider a
sequence of n such bets with arbitrary (qA(i), qB(i), p(i)), 1 ≤ i ≤ n, where p(i) is
the unknown true probability. Then as at (1) we can write

1
n
E[ overall gain to A] = κ

4

[
σ2
B − σ2

A

]
(2)

where σ2
A and σ2

B are the mean squared errors of that individual’s estimates:

σ2 = 1
n

∑
i

(q(i)− p(i))2.

Again we emphasize the remarkable feature of this result. In the long run, the gambler
who is more accurate at perceiving true probabilities will win, with no assumption
about the relation between true and perceived probabilities.

3. OUR THREE EXAMPLES. We will study three further models of different
gambling-like contexts, described briefly below. Alas the “remarkable feature” above
is atypical: for other models we will need a probability model of how the perceived
and true probabilities are related.

• The bookmakers dilemma: A bookmaker offers odds corresponding to different
event probabilities, say 64% and 60%, for an event happening or not happening.
How to choose these values, based on the bookmakers and the gamblers’ percep-
tions of the probability? (Section4)
4A loss is a negative gain.
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• Kelly rules: Adapting the criterion for allocating sizes of favorable bets. (Section5).
• How valuable is it really?: Unknown utilities when choosing or bidding. (Section

6)

In examining these models, it is worth keeping our two running themes in mind.
The error-squared principle that we saw in (1, 2) will turn out to hold quite broadly:
that is, the quantitative effect of inaccuracy of perceived probabilities scales as σ2,
the MSE of perceived probabilities. The allowance issue — could agents do better
by modifying their actions to make allowance for error in perceived probabilities —
will remain rather mysterious. We remark that in the fundamental example above, one
can show that there is no advantage in misstating your perceived probability, so the
allowance issue does not arise. But we suspect that this is another atypical feature of
that specific context.

4. THE BOOKMAKERS DILEMMA. This is our most elaborate model, and read-
ers may wish to skip to the subsequent simpler models. We include it here to illustrate
possibilities for more sophisticated models within our framework.

Bookmakers are more skilled at predicting the outcomes of games than bettors and system-
atically exploit bettor biases by choosing prices that deviate from the market clearing price.
Levitt [16].

Sports betting is the only [casino] game where you are, in fact, playing against the house .......
You’re playing against other people who are actively trying to beat you.5 Miller - Davidow
[18]

Levitt [16] gives a detailed account of actual bookmaker strategy in the U.S. sports
gambling context, and Miller - Davidow [18] describe the nuts and bolts of sports
betting from the gambler’s viewpoint. A recent example is discussed in [14] under
the title How offshore oddsmakers made a killing off gullible Trump supporters. Our
model below is very crude — let’s see whether it is qualitatively reasonable.

In our setup an idealized bookmaker announces a bid price x1 for a gambler wishing
to sell a contract, and an ask price x2 > x1 for a gambler wishing to buy. That is, in
the context on betting whether team T will win an upcoming game, you can bet on
“win” by paying x2 and receiving 1 if T wins, or you can bet on “lose” by paying
1− x1 and receiving 1 if T loses.6 In our model, a gambler with perceived probability
pperc > x2 will buy κ(pperc − x2) contracts, and a gambler with perceived probability
pperc < x1 will sell κ(x1 − pperc) contracts. How should the bookmaker choose the
spread interval [x1, x2]? If the interval is too wide,7 fewer gamblers will bet, whereas
if the interval is too narrow then the bookmaker may make too little average profit per
bet. Note that we are implicitly assuming a monopoly or cartel of bookmakers, so that
gamblers have no alternate venue; otherwise there would be other factors arising from
competition between bookmakers.8

5The point here is that in roulette, blackjack, slot machines etc there is no element of choice on the casino
side. In those games, you are not “playing against the house” because the house is not “actively playing,” in
the sense of making choices, merely following some prescribed procedure. The only situation where the casino
does make a choice is in setting the odds on sports results.

6This is equivalent to paying 1− x1 for a contract for the opponent to win.
7In U.S. sports betting, the width x2 − x1 of the spread interval is called the hold or the vig or the juice or

the take or the house cut [18].
8Gamblers of course want a small spread interval. Real-world bookmakers present odds in a variety of

ways, and (as [18] emphasizes) a prospective gambler should first learn to translate into our implied odds
format and calculate the spread.

6 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 January 21, 2022 11:35 a.m. monthly˙final.tex page 7

Assume that for a given event the bookmaker knows the distribution (over gamblers)
of perceived probabilities, and that this distribution9 is uniform over some interval, so
we can write this interval as [pgamb − L, pgamb + L], so that pgamb is the consensus
probability amongst gamblers. So for a given event10 the mean gain to bookmaker can
be evaluated as

κ(x2 − ptrue) 1
2L

∫ pgamb+L

x2

(x− x2)dx+ κ(ptrue − x1) 1
2L

∫ x1

pgamb−L
(x1 − x)dx

= κ
4L

[(x2 − ptrue)(pgamb + L− x2)2 + (ptrue − x1)(x1 − pgamb + L)2]. (3)

Note this is assuming

[x1, x2] ⊆ [pgamb − L, pgamb + L]; (4)

which is reasonable because a bookmaker obviously prefers gamblers to have a wide
range of perceived probabilities to encourage actual betting, as will be seen in (6, 7)
below.

In the case where the bookmaker knows ptrue, the bookmaker can optimize (3)
over x1 and x2, and the optimal spread interval is

[x1, x2] = [2
3
ptrue + 1

3
(pgamb − L), 2

3
ptrue + 1

3
(pgamb + L)] (5)

and the resulting profit is

E[ mean gain to bookmaker (known ptrue) ] = 2κ
27

(L2 + 3∆2); (6)

∆ := pgamb − ptrue.

This is assuming ptrue ∈ [pgamb − L, pgamb + L], to satisfy the constraint (4).
In an opposite case where the bookmaker does not know or wish to estimate

ptrue, the bookmaker could instead take the spread interval to be a symmetric interval
around pgamb. Applying (3) with [x1, x2] = [pgamb − x, pgamb + x] (or calculating
directly) we find that the gain is maximized at x = 1

3
L and the maximized value is

E[ mean gain to bookmaker (interval centered at pgamb) ] = 2κ
27
L2. (7)

Results (6, 7) are qualitatively what one would expect. Order L2 arises as the variance
of the gamblers’ perceived probabilities, and order ∆2 as the effect of the gambler’s
bias when the bookmaker is not biased. So the error-squared principle arises again.
Note also that the interval in the first case is not symmetric about either ptrue or pgamb,
but rather about a weighted average.

Using the bookmaker’s perceived probability. It is unrealistic to assume (as above)
that the bookmaker knows the true probability.. Instead, can we study a model where,
as in the Levitt quote above, the bookmaker is only more accurate than the gamblers
at assessing probabilities? In our framework we model the bookmaker’s perceived
probability as

pbook = ptrue + ξ

9One could analyze other distributions.
10κ here is the sum of the individual gamblers’ affluences κ, assumed independent of their perceived prob-

abilities.
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where here the error ξ has a symmetric distribution with variance σ2. This leads to
our first engagement with the allowance principle. Let us continue assuming that the
gamblers act as if their perceived probabilities were true probabilities, but let us not
require that the bookmaker does so. Note that the bookmaker could do so, that is could
use the interval (5) with pbook in place of ptrue. But is this optimal in this model?

In this Section we will calculate the optimal spread interval [x1, x2] in terms of
(pbook, L, σ) under the assumption that pgamb = ptrue.

By a symmetry argument, in the case pgamb = ptrue we must have [x1, x2] =
[pbook − y, pbook + y] for some y. To apply (3),

x2 − ptrue = y + ξ; pgamb + L− x2 = L− y − ξ.

Neglecting odd orders of ξ (which will have expectation zero)

(x2 − ptrue)(pgamb + L− x2)2 = y(L− y)2 + (y − 2(L− y))ξ2

and so

E[(x2 − ptrue)(pgamb + L− x2)2] = y(L− y)2 + (3y − 2L)σ2. (8)

Maximizing this over y involves setting d/dy(·) = 0 and solving the quadratic equa-
tion, yielding the optimal value

y∗ = 1
3

(
2−

√
1− 9σ2

L2

)
L

provided σ ≤ L/3. So in this model the bookmaker’s strategy is to use the spread
interval

[x1, x2] = [pbook − y∗, pbook + y∗]. (9)

In our case where pgamb = ptrue, the value of (8) at y∗ works out as

2
27

(
1 + (1− 9σ2

L2 )3/2
)
L3.

We can now use (3) to calculate the mean gain to bookmaker. The contribution from
the second term in (3) is the same (by symmetry) as the contribution from the first
term, so taking account of the pre-factor κ

4L
in (3) we find,

E[ mean gain to bookmaker ] = κh( σ
2

L2 )L2 (10)

where

h(u) = 1
27

(
1 + (1− 9u)3/2

)
. (11)

The function h(u) is shown in Figure 1 (left). The result corresponds to intuition:
as σ increases the gamblers would start to profit from having the correct consensus
probability, and so the bookmaker needs to widen the spread interval in response. Note
also that h′(0) < 0, meaning that the cost of the bookmaker’s error scales as σ2 for
small σ, continuing the “error squared” principle.

So the general allowance issue question “should agents try to adjust their strategy
by making allowance for error in estimating probabilities?” has the answer “yes” for
bookmakers in this model, because the optimal spread interval depends on σ. However
the practical issue is whether bookmakers could estimate their own σ in order to use a
result like (9), leading to deeper issues discussed in Section7.
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Figure 1. Mean gain to bookmaker. (Left) The function h(u) at (11) showing gain as a function of book-
maker’s error, if gamblers unbiased. (Right) The function h∗(u, r) at (12) showing gain as a function of
gamblers bias, for given bookmaker error.
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Further variations. The assumption above that pgamb = ptrue is rather pessimistic
from the viewpoint of the bookmaker, who presumably will do better in the more
realistic case that ∆ = pgamb − ptrue is non-zero. How to set the spread interval in
that case is one of many variants of the models above which may deserve further
study. Here we merely note that one can calculate the mean gain to bookmaker, if the
∆ = 0 spread interval (9) is used when ∆ 6= 0; this gives a formula of the form

E[ mean gain to bookmaker ] = κh∗( σ
2

L2 ,
∆
L

)L2. (12)

Figure 1 (right) shows the function r → h∗(u, r) for u = 0, 1/36, 2/36. As r in-
creases, the initial penalty (to bookmaker) of the bookmaker’s inaccuracy is offset
increasingly by the inaccuracy of the gamblers’ consensus probability.

5. KELLY RULES. The previous example illustrates the type of “competitive inter-
action between agents” that our framework is intended for. But for an introductory
account, such models seem rather complex, so our remaining two examples are sim-
pler in that they involve only one agent. We can view these as “games against nature”
— see Section7 for discussion.

The general Kelly strategy [22], when a range of bets (some favorable) are available,
can be illustrated as follows. Suppose that there are 3 available bets, and that bet i will
return a random amount Zi ≥ 0 from a stake of 1 unit. If the joint distribution of
(Z1, Z2, Z3) is known, the strategy is to stake a proportion ai of one’s fortune on each
bet i, where the proportions a = (a1, a2, a3) are chosen to maximize

E[logZa] := E[log(aiZ1 + a2Z2 + a3Z3)]

subject to ai ≥ 0 and a1 + a2 + a3 = 1. So the total return from unit stake will be
Za, and the value E[logZa] represents the resulting optimal long-term growth rate.
But what happens when probability distributions are unknown?

In this Section we consider the simple setting of betting at even odds, on events with
probability close to 0.5. If we bet a small proportion a of our fortune and the event oc-
curs with probability 0.5 + δ for small δ then to first order (we use this approximation
throughout)

growth rate = 2aδ − a2/2. (13)
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We view formula (13) as one of the most interesting formulas accessible in introduc-
tory mathematical probability. It is curiously hard to find in textbooks, so we repeat
the derivation here. For small δ and a,

E[logZ] = ( 1
2

+ δ) log(1 + a) + ( 1
2
− δ) log(1− a)

≈ ( 1
2

+ δ)(a− a2/2) + ( 1
2
− δ)(−a− a2/2)

= 2aδ − a2/2.

So for known δ > 0 the optimal choice of proportion is a = 2δ and the resulting
optimal growth rate is 2δ2. Formula (13) remains true for small δ < 0 but of course
here the optimal choice is a = 0.

Figure 2. Growth rate in the Kelly model, as a function of the true advantage δ.
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In our context there is a perceived probability 0.5 + δperc and we make the op-
timal choice based on the perceived probability, that is to bet a proportion a =
max(0, 2δperc). We use our usual model for unknown probabilities

δperc = δtrue + ξ.

The growth rate equals 2aδtrue − a2/2, which can be rewritten as

growth rate = 2(δ2
true − ξ2) if ξ > −δtrue

= 0 else.

Now assume that ξ has Normal(0, σ2) distribution. We can evaluate the expectation
of the growth rate in terms of the pdf φ and the cdf Φ of the standard Normal Z. For
δ := δtrue,

E[ growth rate ] = 2E[(δ2 − σ2Z2)1(σZ>−δ)]

= 2
(
δ2Φ(δ/σ)− σ2S(−δ/σ)

)

10 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 January 21, 2022 11:35 a.m. monthly˙final.tex page 11

where

S(y) := E[Z21(Z>y)] = yφ(y) + Φ(−y),

the final equality via an integration by parts. Putting this together,

E[ growth rate ] = 2(δ2 − σ2)Φ(δ/σ) + 2σδφ(δ/σ). (14)

Figure 2 shows the growth rate as a function of δ := δtrue for several values of σ. The
top curve is the “known advantage δ > 0” case, for which the growth rate is 2δ2. In the
case where our RMS error in perceived probability is σ > 0, then even if the game is in
fact fair (δ = 0), we will lose money in the long run (growth rate< 0). At first this may
seem counter-intuitive, but the Kelley criterion envisages the multiplicative setting: the
criterion for growth is E[logZ] > 0, not E[Z] > 1. It is curious that the “naive” guess,
that the criterion for positive growth rate should be “δ > σ”, is approximately correct
in this model (look where the curves cross the “growth rate = 0” line). This is perhaps
merely an artifact of the assumed Normal distribution of error.

The setting here is another setting where the general allowance issue question
“could agents do better if they knew the typical accuracy of their perceived probabil-
ities and adjusted their actions somewhat?” arises. Intuitively, knowing one’s percep-
tion is inaccurate should make one act more conservatively, but in preliminary study
we have found it difficult to improve on the growth rate (14). This remains a specific
question for future research.

6. HOW VALUABLE IS IT REALLY? The models discussed so far have featured
discrete outcomes with unknown probabilities. More generally we can consider con-
tinuous outcomes, that is a range of possible utilities, where one’s perception of the
utility is inaccurate. Here we study one specific mathematical model chosen to be an-
alytically tractable, and to which two slightly different stories can be attached. Note
that in this kind of setting, the details of the model can make a large difference.

Perhaps the simplest type of such model is the “choose the best item from many
items” type.

Choosing the best item. Here an agent (you) needs to choose one out of a given set of
items. In our model, the true utilities of the items are distributed as the inhomogeneous
Poisson process whose intensity function is11

λ(x) := e−x, −∞ < x <∞. (15)

This distribution arises from classical extreme value theory [21]. In that model the
largest true utility X(1) has the Gumbel distribution with c.d.f. and p.d.f.

G(x) = exp(−e−x), g(x) = e−x exp(−e−x), −∞ < x <∞.

If you knew the true utilities then you would pick that item and gain utility X(1).
However, in our model your perceived utility of an item of true utility x is x+ ξ for
i.i.d. random ξ. So by choosing the item with largest perceived utility, you gain some
utility Y which may or may not beX(1), and so you incur a “cost”X(1) − Y ≥ 0. We
will study the mean cost.

11One imagines there are many items and the distribution of utility score has exponential tail; then re-center
the utility score to be near the maximum instead of the mean.
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Note first that the mean difference between the largest two true utilities, that is
E[X(1) −X(2)], can be calculated easily in terms of

N(x) := number of items with true utility > x

because x ∈ (X(2), X(1)) if and only if N(x) = 1. This implies

E[X(1) −X(2)] =

∫ ∞
−∞

P(N(x) = 1) dx (16)

=

∫ ∞
−∞

e−x exp(−e−x) dx = 1.

Note also that replacing ξ by ξ − E[ξ] makes no difference, so we may assume E[ξ] =
0.

Now suppose the errors ξσ have Normal(0, σ2) distribution and write φσ and Φσ

for the p.d.f and c.d.f. of that distribution. By basic properties of Poison processes
[15], the process of pairs (true utility of item, perceived utility of item) is Poisson with
intensity

λ2(x, y) = e−xφσ(y − x), −∞ < x, y <∞.

Continuing the calculation of the mean cost could be used as a challenging exercise
in an applied probability course; it turns out that the style of argument for (16) can be
expanded to show

E[ cost ] =

∫ ∞
−∞

∫ x(1)

−∞

∫ ∞
−∞

g(x(1))Φσ(y− x(1)) P(M(x,x(1))
< y) P(M(−∞,x] ∈ dy) dxdx(1)

where MI is the maximum perceived utility amongst items with true utility in interval
I . And

P(MI < y) = exp

(
−
∫
I

e−u(1− Φσ(y − u)) du

)
P(MI ∈ dy)/dy = P(MI < y) ·

∫
I

e−uφσ(y − u) du.

Figure 3 shows numerical values. For small σ we see quadratic growth – the squared
error principle again.

Profit or loss at auction? We can re-use the mathematical model at (15) as an auction
model, as follows. Now there is one item being sold, and a large number of agents who
can bid. For each agent, the future benefit of acquiring the item is some value x which
the agent does not know exactly. Instead, the agent perceives the value as y = x+ ξ
for random ξ, i.i.d. over agents, and the agent bids that perceived value. In this model
the points of the Poisson process (15) represent the actual values xi of the given item
to the different agents. The winner of the auction is the agent i whose bid yi = xi + ξi
is largest. In a traditional sealed-bid auction, that winner pays their own bid amount
yi and so makes a profit of xi − (xi + ξi) = −ξi. In a modern Vickrey auction the
winner pays the second-highest bid amount y(2), to mimic a live auction, and so makes
a profit of xi − y(2).
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Figure 3. Mean cost in the “choosing the best item” model, as a function of the RMS error σ in perceived
utility.
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Figure 4. Mean profit for winner in the auction model.
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The formula for the mean profit for the winner is complicated, but the model is
easily simulated. Figure 4 shows numerical values of the mean profit as a function
of σ, when the error ξ has Normal(0, σ2) distribution. Note that, in the “no error”
case σ = 0, in the traditional auction the actual profit is zero, whereas in the Vickrey
auction the mean profit equals 1, by the calculation at (16).

In this model we see the usual “error-squared” quadratic behavior for small σ. It is
curious that the difference in mean profits between the two auction protocols remains
roughly constant as σ varies.

Game theory aspects. In the auction model above, agents simply bid their per-
ceived value without paying attention to competing bidders. There has been extensive
theoretical and applied work on game-theoretic aspects of auctions, in particular in
the context of Google auctions for sponsored advertisements [11]. Chapter 14 of [13]
gives an introduction to relevant theory. The reader might consider how to combine
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our framework with game-theoretic models.

7. BACKGROUND AND DISCUSSION.

Remarks on prediction tournaments. In our interpretation of the basic result (1)
we are implicitly meaning that in the long run we can determine contestants’ rela-
tive abilities at estimating probabilities. Of course “long run” assertions deserve some
consideration of non-asymptotics. Under fairly plausible more specific assumptions,
[1] shows that in a 100-question tournament, if you are 5% more accurate than me
(e.g. your RMS error is 15% while mine is 20%), then your chance of beating me
is around 75%; increasing to around 92% if a 10% difference in RMS error. So the-
ory says there is quite a lot of chance variability due to event outcomes. However,
extensive data, e,g. from IARPA-sponsored prediction tournaments12 over 2013-2017,
shows that some individuals consistently get better scores than others: see [24] for pub-
lic policy implications. The natural interpretation is that some individuals are better
than others at assessing true probabilities. This article has adopted the “naive” philos-
ophy that real-world future events have some unknown true probability. Interpreting
the data mentioned above, under alternate philosophical views of probability, strikes
us as problematic.

Whether one can estimate σ itself, that is a contestant’s absolute rather than relative
error, is a deep question. Under a certain model, it is shown in [1] that from the distri-
bution of all scores in a 300-player tournament one can determine roughly the σ for the
best-scoring contestants, but the assumptions of the model are not readily verifiable.

On unbiased and calibrated estimates. We have not attempted to model how an
agent’s perceived probabilities are obtained — just some “black box” method. How-
ever, an agent can record predictions and outcomes to check whether the calibrated
property [27]

the long-run proportion of events with perceived probability near p is approximately p

holds. In principle one can mimic this property in the long run: if one finds that only
15% of events for which one predicted 20% actually occur, then in future when one’s
“black box” outputs 20%, one instead predicts 15%. So calibration is not so unrealistic
for serious gamblers who monitor their performance.

Now imagine a scatter diagram of (pperc, ptrue). Freshman statistics reminds us that
there are two different regression lines (for predicting one variable given the other).
The calibrated property is that one of those lines is the diagonal on [0, 1]2; our unbiased
property E[ξ] = 0 is that the other line is the diagonal. These are logically different,
but if the errors ξ are small then the lines are not very different13; so calibrated and
unbiased capture the same intuitive idea.

Note also that for simplicity we have usually assumed that the variance of pperc for
given ptrue is a constant σ2 not depending on ptrue; it would be more realistic to relax
that assumption.

The error-squared principle in bets against nature. In describing our framework
we have emphasized “bets against humans”, such as the gentleman’s bet and the book-
maker’ dilemma, rather than single agent “bets against nature” because, in a sense de-
scribed below, the latter are simpler. One type of “decisions under unknown probabili-
ties” setting can be abstracted as follows. You have an action which involves choosing

12Contestants recruited via the challenge can you predict better than the CIA?
13They differ more near 0 or 1, but recall we are implicitly dealing with probabilities not near 0 or 1.
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a real number x. The outcome depends on whether an event of unknown probability
p occurs. The mean gain (in utility) is a function gain(x, p). If you knew the true
probability ptrue then you could choose the optimal action

xopt = arg max
x

gain(x, ptrue).

Instead you have a perceived probability pperc and so you choose an actual action

xactual = arg max
x

gain(x, pperc).

So the mean cost of your error is the difference

cost(pperc) := gain(xopt, ptrue)− gain(xactual, ptrue).

And then calculus tells us that for a generic smooth function gain we have |xactual −
xopt| is order |pperc − ptrue| and so because x → gain(x, ptrue) is maximized at
xopt,

cost(pperc) is order (pperc − ptrue)2 as pperc → ptrue.

So the cost of an error in estimating a probability typically scales as the square of the
size of the error.

In one sense this explains the squared-error principle, but at this level of abstrac-
tion it seems hard to appreciate. Note also that one can devise more complicated set-
tings, such as the optimal stopping context in [4], in which one optimizes over discrete
strategies x, so that while ptrue → gain(x, ptrue) is continuous, the optimal strat-
egy for ptrue switches at some critical value, and this can lead to discontinuity of
pperc → cost(pperc).

8. REMARKS ON THE ACADEMIC LITERATURE. We do not know any com-
parable elementary discussion of our general topic — quantitative study of conse-
quences of the fact that numerical probabilities can often only be roughly estimated
— but the topic has certainly been considered at a more sophisticated level in many
contexts, some of which we describe here.

The most relevant general setting is Bayesian decision theory (BDT) — see the
well known textbook [3]. The starting setup in that theory is a loss function L(θ, a)
depending on an unknown parameter θ and a choose-able action a, and a Bayesian
would put a prior on the parameter θ and then be able to compute the expectation
of loss (as a function of a) and choose the minimizing action a. That theory allows
parameters to have arbitrary meaning, whereas in our setting they represent unknown
probabilities, so in that sense our basic setting is a very special (and rather atypical)
case of BDT. Our “Kelly” example fits directly into the setting of BDT, and indeed
an elementary BDT analysis of a similar example is given in [6]. However the central
point of this article is to give a first look at “unknown probabilities” via the conceptual
idea (B) and its illustration in the fundamental “gentleman’s bet” example and the more
elaborate “bookmaker” example. These examples do not seem to fit naturally into the
textbook BDT setting.

Of course one can estimate an unknown probability in the classical context of “re-
peatable experiments.” In the standard mathematical treatment of stochastic processes
models (e.g. [20]) one has a model with several parameters (some relating to prob-
abilities) and the implicit relevance to the real-world is that, with enough data, one
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can estimate parameters and thereby make predictions. The recent field of uncertainty
quantification [17, 25, 26] seeks to address all aspects of error within complicated
models, so we are being very simplistic in considering only the uncertainty in the nu-
merical value of a probability. Our focus, exemplified by the prediction tournament
examples from Section2 or sports gambling, is on contexts of “unique events.” That
is, cases where one has no causal model or no directly relevant past data to put into a
model in order to output a numerical estimate. In such cases (e.g. sports gamblers and
bookmakers) there is necessarily some element of human judgment involved in stating
a numerical probability.

Sports gambling is too huge a field to survey here; see [18] for a non-mathematical
introduction, or browse the Journal of Quantitative Analysis in Sports.

Already mentioned is the detailed account of actual bookmaker strategy in the U.S.
sports gambling context by Levitt [16]. For one aspect of gambling on horse races
to illustrate the style of literature, Green et al. [10] seek to explain the observed low
return from betting on longshots in parimutuel markets as follows.

The track deceives naive bettors by suggesting inflated probabilities for longshots and de-
pressed probabilities for favorites. This deception induces naive bettors to underbet favorites,
which creates arbitrage opportunities for sophisticated bettors and, from that arbitrage, incre-
mental tax revenue for the track.

At technically sophisticated levels, there has been considerable work on the cali-
bration issue — [5, 9] are standard references and [30] provides a recent summary.
Closely related is extensive theoretical work on the forecast aggregation problem, that
is how to combine different probability forecasts into a single consensus forecast. See
[2, 8, 23] for representative recent work.

The concept of Knightian uncertainty, that is unquantifiable uncertainty, has
prompted a wide array of suggested variants of standard mathematical probability.
As perhaps the closest topic to our examples, the Gittins index [29] is analogous to
the Kelly criterion in that it gives an optimal strategy within a certain “multiarmed
bandits” context, assuming known distributions. A recent paper [7] describes analy-
sis of the “uncertain distributions” case within a technically sophisticated “nonlinear
expectations” framework.

Final remarks. Most readers perhaps do not engage in literal gambling, but a range
of more common activities, from fantasy sports to stock market investment, are sim-
ilar in that decisions involve some implicit judgment of unknown probabilities. Our
framework may be conceptually helpful in reminding you to compare your judgment
ability with that of the counterparty.
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