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Abstract

This is an extended write-up of a lecture introducing the concept of
Nash equilibrium in the context of an auction-type game which one can
observe being played by “ordinary people” in real time. In a simplified
model we give an explicit formula for the Nash equilibrium. The actual
game is more complicated and more interesting; players place a bid on
one item (amongst several) during a time window; they can see the
numbers, but not the values, of previous bids on each item. A complete
theoretical analysis of the Nash equilibrium now seems a challenging
research problem. We give an informal analysis and compare with data
from the actual game.
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1 Introduction

The first author teaches an undergraduate course “Probability in the Real
World” with a non-traditional format. There are twenty 80-minute lectures
on very different topics; each lecture is (ideally) “anchored” by some in-
teresting new real-world data; and I talk about some theory relevant to
understanding this specific data. From the traditional viewpoint this for-
mat has the obvious defect that one can hardly go in depth into any topic
in a single lecture. But my goal is not to teach mathematical technique or
statistical methodology, but to inspire students to think about the relation-
ship between textbook material and real data. Instead of homework and
exams, students do a course project of their choice which is (ideally) in the
same spirit of finding and studying some new data relevant to some topic in
probability or statistical theory.

In a typical lecture I give a brief overview of the topic, do a little math-
ematics aimed in the direction of the particular data-set, and then jump (if
necessary) to stating that more advanced theory gives some specific predic-
tion for what we would expect to see in data like this; and finally compare
the prediction to the particular new real-world data. Of course some of the
jumped-over theory can be outlined in the lecture write-up. See [1] for this
style of lecture on the topic of prediction markets and martingales, and see
[2] for a typical student project (finding data to check Benford’s Law). This
article describes a lecture in this style on the topic of game theory. Sections
2 - 6 are an expanded version of what I actually do in class.

Game theory is an appealing mathematical topic, and there are perhaps a
hundred books giving introductory accounts in different styles. Styles using
minimal mathematics range from “popular science” [6] to airport bookstore
Business section bestseller [5]. A wide-ranging account with a modicum
of mathematics is provided in [12], while careful rigorous expositions at a
lower division mathematical level can be found in [13, 14] and the recent
e-book [11]. A representative of the numerous textbooks aimed at students
of Economics is [7], and an erudite overview from that viewpoint is given in
[9]. But such books either contain no real data, or occasionally quote data
obtained by others. Where can we obtain some interesting new real data,
by ourselves?

One common “experimental” answer is to have volunteers (typically
one’s students) play games, such as Prisoners’ Dilemma or the Ultimatum
Game, that explicitly fit the mathematical game theory framework. But
people’s behavior in such staged tournaments is not necessarily represen-
tative of behavior in the other aspects of life to which it is often claimed
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that game theory can be applied – aspects as varied as economic behavior,
political or military conflict, or evolutionary biology. So ideally I would like
data from such “real-world” settings. Now observing any one-time game-
like setting without objectively recognizable quantitative payoffs, one can
surely devise payoffs so that the observed outcome is consistent with game-
theoretic predictions; and game-theoretic explanations in such settings are
hardly more than the “just-so stories” famously satirized by Stephen Jay
Gould. Economics settings, where payoffs are simply money, provide a more
promising direction to seek repeatable data. Analyzing auction data for
commodity items (e.g. iPhones) on eBay is a popular project for my stu-
dents, with somewhat of a game-theoretic flavor. But it is hard to think of
precise quantitative game-theoretic predictions with which to compare such
observed data.

To get repeatable data in a context which is (partially) amenable to the-
oretical analysis, I chose a game (in the everyday sense of “game”) which
has an incidental game-theoretical aspect; the players likely have no techni-
cal familiarity with game theory, but simply play in the intuitive way that
ordinary people play recreational table games. The game is pogo.com’s Dice
City Roller (DCR). In class, I start by spending a couple of minutes demon-
strating the game by actually participating in it, in real time. In this article
the written description of the DCR game is deferred to section 6; readers
may wish to read it now, or go online and play it themselves, before reading
further. For our mathematical analysis, the following abstracted model of
the game is sufficient, with italicized comments on actual play.

1.1 Model of the DCR game

• There are M items of somewhat different known values, say b1 ≥ b2 ≥
. . . bM (always M = 5, but the values vary between instances of the
game).

• There are N players (N varies but 5− 12 is typical).

• A player can place a sealed bid for (only) one item, during a window
of time (20 seconds).

• During the time window, players see how many bids have already been
placed on each item, but do not see the bid amounts.

Of course when time expires each item is awarded to the highest bidder on
that item. We assume players are seeking to maximize their expected gain.
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So a player has to decide three things; when to bid, which item to bid on,
and how much to bid.

It turns out that without the time element (that is, if players make sealed
bids without any information about other players’ bids) the game above is
completely analyzable, as regards Nash equilibria – see section 4. This is
the mathematical content of the paper, and the results are broadly in line
with intuition.

The time element makes the game more interesting, because various
strategies suggest themselves: bid late on an item that few or no others
have bid on, seeking to obtain it cheaply, or bid early on a valuable item
to discourage others from bidding on it. Alas theoretical analysis seems
intractable, at least at an undergraduate level. One can analyze the simplest
case (two players, two items, two discrete time periods), and the result is
described in section 7 but the answer is clearly special to that case and does
not illuminate the general case. Continuing theoretical analysis of this “time
element” setting is therefore a research project. Indeed, an incidental benefit
of looking at real data is that it often suggests research-level theoretical
problems – for instance the “prediction market” lecture mentioned above
motivated the research paper [3].

We obtained data from 300 instances of the DCR game, and various
statistical aspects of the data are shown in section 5. As mentioned above
we do not have a precise formula for the NE strategy in the real game, but
nevertheless we can formulate plausible approximations to the NE strategy.
And the bottom line, discussed in section 5, is rather ambiguous. On one
hand the “ordinary people” playing this game are not bidding in a way that
is close to the NE strategy, but their deviations are not “foolish” in any
specific way.

2 Starting the game theory lecture

In the lecture I give a quick bullet point overview of game theory.

1. Setting: players each separately choose from a menu of actions, and
get a payoff depending (in a known way) on all players’ actions.

2. Rock-paper-scissors illustrates why one should use randomized strat-
egy, and why we assume a player’s goal is to maximize their expected
payoff. There is a complete theory of such two-person zero-sum games.

3. For other games, a fundamental concept is Nash equilibrium strategy:
one such that, if all other players play that strategy, then you cannot do
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better by choosing some other strategy. This concept can be motivated
mathematically by the idea that, if players adjust their strategies in a
selfish way to maximize their own payoff, and if the strategies converge
to some limit strategy from which a player cannot improve by further
adjustment, then by definition the limit strategy is a Nash equilibrium.

4. More advanced theory is often devoted to settings where Nash equi-
libria are not optimal in some sense, as with Prisoners’ Dilemma, and
to understanding why human behavior is not always selfish. For a
glimpse of contemporary research see [4].

This lecture will focus on point 3. The DCR game is one which, to a game
theorist, fits exactly into the setting of point 3. The “learning-adjust” theory
predicts that players who play repeatedly and play selfishly – being unable
or unwilling to collaborate with other players – will tend to adjust their
strategies to approximate the Nash equilibrium (which we now abbreviate
to NE) strategy. Further discussion of NE can be found in many places,
for instance the textbook treatment in [8] or the high-level discussion in the
“why study NE” section of [9], whose thesis is that if there is some natural
way to play a game then that way must be a NE, but not conversely. Instead
of general discussion, what I will do in this lecture is

• calculate the NE strategy in somewhat simplified versions of the real
game;

• compare this with the data on what players actually do.

I do not seek to introduce and explain much standard game-theory terminol-
ogy – for instance, the concept of NE refers, strictly speaking, to a strategy
profile, that is a strategy for each player, but in our “symmetric over play-
ers” context we look only for NE strategy profiles in which each player uses
the same strategy.

3 The 2-player 2-item game

3.1 A simple game played earlier in class

In the first class of the course, students do several exercises to generate data
that will be useful later, and this was one exercise in the Fall 2014 course.

Imagine you and another player in the following setting. There
are two items, a $1 bill and a 50 cent coin; you can write a bid
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on one item – e.g. “I bid 37 cents for the $1” or “I bid 12 cents
for the 50 cent coin”. If you and the other player bid on different
items, then both get their item – so make a gain of 63 cents in
the first case, or 38 cents in the second case. If you both bid on
the same item, only the higher bidder gets the item.

Write down how much you would bid, and on which item. After
class I will match your bid against a random other student’s bid.

This was designed as the simplest possible variant of the real game – 2
players, 2 items, no time window. I remind students that we already have
this small data-set – the 35 bids by students – so let’s calculate the NE and
compare that with the data.

3.2 Analysis of the 2-player 2-item game

To generalize very slightly the game above, there are two items, of values 1
and b ∈ (0, 1], and there are two players. Each player places a sealed bid for
one of the items, and when the bids are unsealed the winners are determined.
We assume each player is seeking to maximize their expected gain (rather
than their gain relative to the other player’s gain, which would make it a
zero-sum game). We assume that bids on the first item are real numbers in
[0, 1], and on the second item are real numbers in [0, b]. A player’s strategy
is a pair of functions (F1, Fb):

F1(x) = P( bid an amount ≤ x on the first item), 0 ≤ x ≤ 1 (1)

Fb(y) = P( bid an amount ≤ y on the second item), 0 ≤ y ≤ b (2)

where
F1(1) + Fb(b) = 1. (3)

In the arguments below we assume for simplicity that these distribution
functions1 have densities f1(x) = F ′1(x), fb(y) = F ′b(y), and we work with
these densities where convenient. The reader familiar with measure theory
will see that the general case requires only notational changes.

Intuition for playing this game seems simple: bid more often on the
more valuable item, and typically bid low for the less valuable item or bid
somewhat higher for the more valuable item. A reader familiar with game
theory might wish to think what can be said about the NE strategy without
doing any calculations.

1We slightly abuse terminology in calling these distribution functions because their
individual masses are less than 1.
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Proposition 1. The unique Nash equilibrium strategy is (F1, Fb) given in
(14,15) below.

Proof. We will give a somewhat pedantic “proof from first principles” using
mathematical symbols. Some key ideas will be restated in words in section
3.3, and understanding these ideas will enable us to carry through the general
case analysis (section 4) surprisingly easily, by omitting fussy details.

Your opponent’s strategy is a function2 (f1, fb) and your strategy is a
function (g1, gb). Your expected gain equals∫ 1

0
(1− x)g1(x)[F1(x) + Fb(b)] dx+

∫ b

0
(b− y)gb(y)[Fb(y) + F1(1)] dy. (4)

To explain the first term: if you bid x on the first item then you gain 1− x
if your opponent either bids on the second item (chance Fb(b)) or bids less
than x on the first item (chance F1(x)). The second term arises similarly
from the case of bidding on the second item.

We now point out an obvious fact. Consider a function h(x) ≥ 0 with
h∗ := supx h(x) < ∞. Consider the functional L(g) :=

∫
h(x)g(x)dx as

being defined on the space F of probability density functions g, and recall
support(g) is the closure of {x : g(x) > 0}. Then

the functional L(·) attains its maximum at g0 iff

h(x) = h∗ for all x ∈ support(g0). (5)

So given your opponent’s strategy (f1, fb), your expected gain is maximized
by choosing (g1, gb) satisfying, for some constant c (the h∗ in (5))

(1− x)[F1(x) + Fb(b)] = c on support(g1) (6)

≤ c off support(g1) (7)

(b− y)[Fb(y) + F1(1)] = c on support(gb) (8)

≤ c off support(gb). (9)

Now the definition of (f1, fb) being a NE is precisely the assertion that (6 - 9)
hold for (g1, gb) = (f1, fb). So assume that, for the remainder of the proof.
We will show that (6 - 9), together with “boundary conditions” (3) and
F1(0) = Fb(0) = 0, determine f1, fb, c uniquely. Write x∗ for the supremum
of support(f1). So F1(x

∗) = F1(1) and from (6)

1− x∗ = c.

2We envisage (f1, fb) as a single function defined on a union of two disjoint intervals.
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We cannot have c = 0 (F1 would put mass 1 at 1), so take c > 0. Using (6,
7)

F1(x) = 1−x∗
1−x − Fb(b) on support(f1) (10)

≤ 1−x∗
1−x − Fb(b) off support(f1) (11)

From (10), support(f1) must be some interval [x∗, x
∗], because if the support

contained a gap (a, b) then F1(a) = F1(b) is inconsistent with the strict
monotonicity of the function F1(·) in (10). Next, if x∗ > 0 then (11) and the
fact F1(x

∗) = 0, would force F1(x) < 0 on 0 < x < x∗, which is impossible.
So we have shown support(f1) = [0, x∗]. Then (10) for x = 0 shows

Fb(b) = 1− x∗ (12)

and so for general x, (10) becomes

F1(x) = (1− x∗)[ 1
1−x − 1], 0 ≤ x ≤ x∗

and in particular
F1(x

∗) = x∗.

Now we can repeat for equation (8) the analysis done for (6); the same
argument shows that support(fb) must be an interval [0, y∗]. Then (8),
together with facts F1(x

∗) = x∗ and c = 1− x∗, gives

Fb(y) = 1−x∗
b−y − x

∗, 0 ≤ y ≤ y∗. (13)

Because Fb(0) = 0 we can now identify the value of x∗ as the solution of
1−x∗
b − x∗ = 0, that is

x∗ = 1
1+b .

And because
Fb(y

∗) = Fb(b) = 1− F1(1) = 1− x∗,
applying (13) at y∗ identifies y∗ as the solution of 1−x∗

b−y∗ = 1, that is y∗ =

x∗ + b− 1 = b2/(1 + b).
Now we can write everything explicitly:

F1(x) = b
1+b(

1
1−x − 1) on 0 ≤ x ≤ 1

1+b (14)

Fb(y) = 1
1+b(

b
b−y − 1) on 0 ≤ y ≤ b2

1+b . (15)

The corresponding densities are

f1(x) = b
1+b(1− x)−2 on 0 ≤ x ≤ 1

1+b (16)

fb(y) = b
1+b(b− y)−2 on 0 ≤ y ≤ b2

1+b . (17)
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This essentially completes the proof. Careful readers will observe that we
actually proved that, if (6 - 9), together with (3), have a solution, it must be
(16,17); such readers can check for themselves that this really is a solution.

3.3 Discussion of Proposition 1

The NE strategy is consistent with the qualitative intuitive strategy noted
above the statement of Proposition 1. Here are some quantitative properties
of the strategy that can be read off from the formulas above.
(i) Bid on the more valuable prize with probability 1/(1 + b), and on the
less valuable with probability b/(1 + b).
(ii) Conditional on bidding on the more valuable prize, your median bid is
1/(1 + 2b) and your maximum bid is 1/(1 + b); conditional on bidding on
the less valuable prize, your median bid is b2/(2+b) and your maximum bid
is b2/(1 + b);
(iii) Your expected gain is b/(1 + b).

Note that (i) says to bet proportional to the value of item; alas this simple
rule does not extend to N > 2 players (see (21) for the correct extension).
In fact the only aspect that generalizes nicely is that the gap between your
maximum bid and the item’s value is the same for both items; 1−1/(1+b) =
b − b2/(1 + b) = b/(1 + b). This aspect can be seen without calculation: if
your opponent’s strategy had maximum bids x∗, y∗ with 1 − x∗ < b − y∗,
say, then taking your strategy as

the modification of the opponent’s strategy in which (for small
ε > 0) bids on the first item in [x∗ − ε, x∗] are replaced by bids
on the second item in [y∗, y∗ + ε]

will increase your expected gain. The same “equal gap principle” works by
the same argument for general numbers of players and items, and provides
a key simplification for the argument in section 4, as explained below.

An important general principle about NE (not restricted to this partic-
ular game) was hidden in the argument around (5).

If opponents play the NE strategy then any non-random choice
of action you make in the support of the NE strategy will give
you the same expected gain (which equals the expected gain if
you play the random NE strategy), and any other choice will
give you smaller (or equal) expected gain.
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This “constant expected gain” property is true because the NE expected gain
is an average gain over the different choices in its support; if these gains were
not constant then one would be larger than the NE gain, contradicting the
definition of NE.

This property allows us to extend the “equal gap principle” of this par-
ticular game to say, for general numbers of players and items,

in the NE strategy, the gap between your maximum bid on an
item and the item’s value is the same for all items, and equals
the expected gain at NE.

3.4 Comparison with class data

As mentioned in section 3.1 we obtained data for this game with b = 1/2 by
asking students to make one bid. The top two frames in Figure 1 compare
the NE distribution functions F1 and Fb at (14,15) with the corresponding
empirical distribution functions G1 and Gb from the data. The bottom two
frames in Figure 1 compare the NE expected gain from bidding different
amounts with the corresponding empirical mean gain from the amounts bid
by students. That is, a bid of 49 cents on the $1 item had, when matched
against a random other bid, mean gain of 29 cents, and this is represented
by a point at (49, 29).

Here the data is not close to the NE. Students had some apparent intu-
ition to bid around 50 cents on the $1, and those who bid on the 50 cent
items tended to overbid. But recall from section 2 that the NE concept
is motivated by the idea that, if players play repeatedly and adjust their
strategies in a selfish way, then strategies should typically converge to some
NE. So it is not reasonable to expect NE behavior the first time a game is
played.

But in contrast, the actual DCR game is played repeatedly and so it is
more meaningful to ask whether players’ strategies do in fact approximate
the NE.
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Figure 1. Class data compared with the NE.
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4 N players and M items

We now consider the general case of N ≥ 2 players and M ≥ 2 items of
values b1 ≥ b2 ≥ . . . ≥ bM > 0. Armed with the general “constant expected
gain” property of NE and the special (to our model) “equal gap principle”
described in section 3.3, the actual calculation of the NE is surprisingly
simple, if we omit some details. The bottom line (with a caveat noted below
reflecting omitted details!) is the formula

expected gain to a player at NE = c :=

(
M − 1∑
i b
−1/(N−1)
i

)N−1
(18)

and the NE strategy is defined by the density functions at (22) below.
To derive the formula, define as at (1,2)

Fi(x) = P(bid on item i, bid amount ≤ x).

By the “equal gap principle” we take the NE strategy (Fi(·), 1 ≤ i ≤M) to
be such that each Fi is supported on [0, bi− c], where c is the expected gain
to a player at NE. Writing out the expression for the expected gain when
you bid xi on the i’th item, the “constant expected gain” property says

(bi − x) (1− (Fi(x
∗
i )− Fi(x)))N−1 = c, 0 ≤ x ≤ x∗i := bi − c. (19)

This is the generalization of (6,8). Because a strategy is a probability dis-
tribution we have

∑
i Fi(x

∗
i ) = 1 and so∑
i

(1− Fi(x∗i )) = M − 1.

Now using (19) with x = 0 we have

1− Fi(x∗i ) = (c/bi)
1/(N−1) (20)

and so ∑
i

(c/bi)
1/(N−1) = M − 1

which rearranges to (18). So the probability that (at NE) you bid on item
i is, by (20),

Fi(x
∗
i ) = 1− (c/bi)

1/(N−1) = 1−
b
−1/(N−1)
i∑
j b
−1/(N−1)
j

(M − 1). (21)
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Now (19) gives an explicit formula for Fi(x), and differentiating gives the
density

fi(x) = 1
N−1c

1/(N−1)(bi − x)−N/(N−1), 0 ≤ x ≤ bi − c

=
M − 1

N − 1

1∑
j b
−1/(N−1)
j

(bi − x)−N/(N−1), 0 ≤ x ≤ bi − c. (22)

The distribution function can be written as

Fi(x) = c1/(N−1)
((

1
bi−x

)1/(N−1)
−
(

1
bi

)1/(N−1))
, 0 ≤ x ≤ bi − c (23)

where again c is the expected gain to a player at NE, at (18).

Reality check and caveat. As a reality check, consider the case of N = 2
players and M = 3 items of values (b1, b2, b3) = (1, 1, b) where 0 < b ≤ 1.
From the formulas above we find

x∗1 = x∗2 = 1
1+2b , x

∗
3 = b(2b−1)

1+2b ; F1(x
∗
1) = F2(x

∗
2) = 1

1+2b , F3(x
∗
3) = 2b−1

1+2b .

But for b < 1/2 this says x∗3 < b and F3(x
∗
3) < 0, which cannot be correct.

The mistake is that we implicitly assumed that the NE strategy included
a bid on each item (include means “assigns non-zero probability to”). We
can fix the mistake as follows. Recall we order item values as b1 ≥ b2 ≥
. . . ≥ bM > 0. Inductively for m = 2, 3, . . . ,M − 1 calculate the NE and
the expected gain assuming we have only the first m items available. If
the expected gain is greater than bm+1 then stop and use this NE stategy
which does not include a bid on any of bm+1, . . . , bM . Otherwise continue to
m + 1. However, we only need to do this procedure if the original formula
(18) for expected gain is manifestly wrong, in giving a value greater than
the smallest value bM .

Discussion. If the items have equal value b then we can find the expected
gain more easily. The NE strategy will be symmetric over items, so the
chance that no opponent bids on item 1 equals ((M − 1)/M)N−1. So, as-
suming that the NE strategy includes bidding an amount close to 0, bidding
such an amount earns you expected gain of b((M − 1)/M)N−1, and by the
“constant expected gain” property this is the expected gain at NE. Note that
for large M and N the expected gain is around b exp(−M/N). The fact this
depends on the ratio M/N – the average number of bids per item – is very
intuitive, but the fact it decreases exponentially rather than polynomially
fast is perhaps not so intuitive.
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4.1 Minimum bid rule

An extra feature of the DCR game is that there is a minimum allowed bid
on each item, say minimum bid θi < bi on the i’th item. Fortunately the
analysis above extends to this case with only minor changes: (18, 23) are
replaced by

expected gain to a player at NE = c :=

(
M − 1∑

i(bi − θi)−1/(N−1)

)N−1
(24)

Fi(x) = c
1

N−1

((
1

bi−x

) 1
N−1 −

(
1

bi−θi

) 1
N−1

)
, θi ≤ x ≤ bi − c. (25)

And the chance Fi(bi − c) of bidding on item i becomes

pi := 1−
(

c
bi−θi

) 1
N−1

. (26)

5 Comparing data from the DCR game with NE
theory

Comparing data from the DCR game with NE theory requires a certain
fudge, and involves a small complication. As mentioned before, the “time
window” aspect makes the game more interesting, because various strategies
suggest themselves: bid late on an item that few or no others have bid on, or
bid early on a valuable item to discourage others from bidding on it. Figure
2 shows some data on when players place their bid – instead of recording
exact time of bids we recorded bid times, via screenshots, as
early (20 - 14 seconds before deadline)
medium (14 - 5 seconds before deadline)
or late (5 - 0 seconds before deadline).

There is no clear pattern of bid times versus number of players, though
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bid times are widely spread over the window.
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Figure 2. Distribution of early/medium/late bids, for varying numbers
of players.

Using the analysis we have done, which ignores the “time window” aspect
that players can see how many bids have been made on which items, the
number of bids on item i at NE would have Binomial(N, pi) distribution,
for pi at (26). But the strategic considerations involve different players
seeking to bid on different items, and therefore we expect the distribution
of the number of bids on a given item in the DCR game would be more
concentrated around its mean than the corresponding Binomial. And indeed
this can be clearly seen in the data.

Another complication is that the observable data in the DCR game is
the number of bids, and the value of the winning bid, on each item – but we
cannot see the values of losing bids. So, for a given pair (N, i) of (number
of players, item), the data we have available is the empirical distribution of
values of winning bids over auctions where there was at least one bid. This
is plotted as a distribution function G∗ in Figure 3. We want to compare
that to a “NE theory” distribution, and we obtain this by assuming that the
amounts of bids follow the NE distribution (25), but (to allow for strategic
effects) we use the true empirical distribution for the number of bids. Then
we can numerically calculate a “NE theory” distribution function for value
of winning bid, and this is plotted as a distribution function G in Figure 3.

Deferring some further details and approximations to section 6, Figure 3
shows the comparison between data and NE theory. The labels “150 match”
etc are our names for some of the items (explained in section 6), and this
data is for N = 8 players.

One’s first reaction to the Figure 3 data is that the players’ bids are
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not very close to what NE theory would predict. One could imagine many
reasons for this discrepancy. A typical player self-description is “age 63,
retired nurse: interests church, crafts, grandkids”; on this basis we suppose
the typical player is not a student of game theory, so might not consider the
idea of conscious randomization. The fact that the winning bid is, in roughly
a third of these cases, the minimum allowed bid is clearly a consequence of
time-window strategy (making a last-second bid on an item no-one else has
bid on) not taken into account in our theory, so the data might be closer to
the true NE than to our approximate NE. A third possibility is described in
section 6.1.

Figure 3. Comparison of winning bid distribution from data and from
NE theory.
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6 Dice City Roller

The game motivating this article is called Dice City Roller (DCR), and found
on pogo.com, a free online casual gaming website offering over 150 different
games. At a typical time there may be about 10 different active “rooms”
each containing typically having 5 - 15 competing players – other rooms
with 1 or 2 players do not concern us. The underlying game is illustrated by
the screenshot in Figure 4 (details below not relevant to our mathematics,
until further notice). An instance of the game consists of 12 repetitions of
the following “turn”. The player is shown five rolled dice, allocates them
onto “cards” to fill out specified combinations (over several turns); when a
card is completed the player earns points and a new card is offered.

Figure 4. Screenshot of basic play of the underlying game in DCR.

For instance, in Figure 4 the rolled dice show 1, 6, 2, 4, 1. The player could
place a 1 on the Full House, place a 2 and 6 on the Straight and place a 1
on the 3 Of A Kind, to complete 3 cards, placing the remaining 4 on one
of the other cards. The player has 15 seconds to decide upon and execute
these placements.

This underlying game is more subtle than it may appear, because there
is a bonus for completing several cards on the same turn, so a simple greedy
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scheme for filling cards is not optimal. However this activity is not game-
theoretic, because there is no interaction between players – one simply seeks
to maximize one’s score, that is one’s total number of points at the end of
the game.

What is relevant to us is the “auction” version which adds the following
step, 3 times during the game. Players are allowed to use some of their
points to bid for one of 5 prizes, a prize being the chance to earn extra
points. The bidding proceeds as described in section 1.1:

During a 20 second time window, players see how many bids
have already been placed on each item, but do not see the bid
amounts.

The screenshot in Figure 5 shows a situation 5 seconds before the window
closes. Three players have placed bids, on different cards – these numbers
of bids are shown in the disc at the cards’ bottom left corner. Three other
players had not yet placed bids. In the 5 seconds remaining after the screen-
shot, it happened that two players bid on the top right card (with 0 earlier
bids) and one player bid on the bottom left card (with 1 earlier bid).

Figure 5. Screenshot of auction in progress.

In each auction there are 5 cards, from a set of 12 different cards. The
prizes, if you win a bid, are a random number of points. In our mathematical
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analysis we took the prizes to be the (non-random) expected value for each
card, so we are implicitly assuming

(a) players seek to maximize their expected number of points won
(b) players know the expectations, for instance implicitly learned by

experience.
As noted in section 6.1 below, one can actually calculate the expected

values. Issue (a) is more subtle. One way in which DCR resembles real life
rather than a staged tournament is that the players’ objectives are rather
ill-defined. A player accumulates “pogo points” over the many different
games offered by pogo.com. This is distinct from your score (total number
of points) in one DCR game. The number of pogo points you earn from one
DCR game depends partly linearly on your score, and partly on whether
your score exceeds a certain threshold; actually winning a game (scoring
more than the other players) earns you kudos but not pogo points. So a so-
phisticated player would switch between risk-averse and risk-seeking actions
depending on their progress toward the threshold or toward winning; the
relative importance of these two goals depending on some mental “exchange
rate” between pogo points and kudos.

6.1 More details

1. As seen in Figure 5, each card shows the minimum bid allowed, the
maximum possible prize and the “type” which is mostly match or scratch:
our names like “150 match” refer to type and maximum prize. In “150
match” there are 6 covered numbers, and the winning bidder uncovers each
until finding two equal numbers, and that number becomes the prize. One
can learn that the 6 covered numbers are 50, 100 and 150, with two copies
of each. So the prize is equally likely to be 50, 100, 150, with expectation
100. In a “scratch” card there are also 6 covered numbers; except that
one is a bomb; the player uncovers numbers until reaching the bomb, and
the prize is the sum of the values uncovered. For such a “scratch” card
the maximum prize is the sum of the 5 numbers and the expected value is
exactly half of this maximum. Learning all these numerical values requires
careful observation, and we suspect typical players do not explicitly know
these expected values. In particular, for “match” cards the expected value is
always more than half of the maximum prize shown on the card. A player
unaware of this distinction is liable to underbid on the “match” cards or
overbid on the “scratch” card, which appears to be happening in the Figure
3 data.
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2. The NE distribution for bid amounts on card i depends not only on
i and N = number of players, but also on the other cards present in the
auction. To produce Figure 3 we did the NE calculation separately for each
auction in our data with a given combination (N, i) and averaged the distri-
butions (which in fact vary little over different such auctions). Because of
the large number of combinations of (N, i) we see small-sample fluctuations
in our data for any particular combination. In Figure 3 we in fact averaged
over the cases N = 7, 8, 9 to smooth the data.

3. Two of the 12 cards are “extra die next round”; we assigned an
equivalent point value to those prizes for the purpose of calculating the NE
bid distribution for other cards (amongst plausible values, the exact choice
of value has negligible effect).

4. The site shows the total number of pogo points that players have
accumulated, from which we can infer that many players have spent many
thousands of hours playing different games on pogo.com. From this and
the players’ self-descriptions, we tell students to envisage a typical player as
“your grandmother, who plays a mean game of gin rummy”.

7 Introducing a time element

In seeking to model the “20 second window” aspect of the DCR game, a
natural start is to discretize time into s stages. So the model is:

at the start of each stage, you are told the numbers of bids on
the different items in previous stages, and if you have not already
placed a bid then you can place a bid in that stage.

Note that in collecting data from the DCR game we were anticipating com-
paring it to the NE for the 3-stage model.

Developing NE theory in this setting turns out to be a challenging re-
search project, so let us just state the result in the simplest possible case.

Proposition 2. The 2-player 2-item 2-stage game, with item values 1 and
b ≤ 1, has the following Nash equilibrium strategy, which has mean gain per
player

c :=
b(b2 + b+ 1)

(b+ 1)(b2 + 1)
. (27)

The probabilities of (bid on item 1 in first stage, bid on item 2 in first stage,
wait) are (1− c, 1− c

b , c+ c
b − 1), and the bid amounts have the distributions

F1(x) = c( 1
1−x − 1), 0 ≤ x ≤ x∗ = 1− c; F1(x

∗) = F1(1) = 1− c (28)

Fb(y) = c( 1
b−y −

1
b ), 0 ≤ y ≤ y∗ = b− c; Fb(y

∗) = Fb(b) = 1− c
b . (29)
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If you wait and the opponent bids in the first stage, then you bid 0 on the
other item in the second stage. If you both wait then in the second stage you
bid according to the 1-stage NE strategy (14,15).

One can check that the gain c in (27) is larger than the corresponding
gain b/(1 + b) in the 1-stage game. Perhaps unexpectedly this NE is not
unique, as observed by Dan Lanoue, because there is the following rather
anti-social NE strategy which essentially reduces the 2-stage game to the
1-stage game.

Never bid in the first stage. If opponent bids in the first stage
then bid the whole value (1 or b) on the same item in the second
stage. If opponent does not bid in the first stage then in the
second stage bid according to the 1-stage NE strategy.

The point is that this strategy punishes any opponent who bids in the first
round, so forces the reduction to the 1-stage game.

8 Final remarks

1. Our setting differs from the usual setting of introductory game theory
in that we use continuous, rather than discrete, actions. But our arguments
show that calculating NE in settings like ours often involves little more than
basic calculus. Berkeley, like most large universities, has an undergraduate
course in game theory, which is an optional course parallel to my (also
optional) course described in the introduction. An incidental advantage of
our “continuous” model is that it is novel even to students who have taken
the game theory course.

2. As implied in section 2, an expert might remark that merely calcu-
lating a NE is not getting to grips with the essence of modern game theory.
Agreed; but my general theme is comparing theory with data, and this is
the best I can do in an 80 minute class.

3. Another interesting context for NE involves the “least unique posi-
tive integer” game, whose brief implementation as a real Swedish Lottery
game attracted 50,000 players before it was realized that a consortium could
“cheat” by buying sufficiently many numbers – see [10] for the NE analysis.
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[10] Robert Östling, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F.
Camerer. Testing game theory in the field: Swedish LUPI lottery games.
American Economic Journal: Microeconomics, 3(3):1–33, 2011.

[11] Erich Prisner. Game Theory Through Examples. Mathematical Associ-
ation of America, Washington, DC, 2014. e-book; Classroom Resource
Materials.

[12] Edward C. Rosenthal. The Complete Idiot’s Guide to Game Theory.
ALPHA, 2011.

[13] Saul Stahl. A gentle introduction to game theory, volume 13 of Mathe-
matical World. American Mathematical Society, Providence, RI, 1999.

22



[14] Philip D. Straffin. Game theory and strategy, volume 36 of New Math-
ematical Library. Mathematical Association of America, Washington,
DC, 1993.

23


