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This book contains almost no mathematics, instead it pro-
vides extensive real-world background on a topic of intrin-
sic interest which, in the context of pandemics, is of im-
mense real-world importance. While an epidemic is the
spread of a disease, it has long been realized that the spread
of opinions, preferences, or practices, and nowadays fake
news or cat videos, is analogous. Notices readers will know,
or not be surprised to learn, that there has been substan-
tial mathematical modeling of such phenomena over the
last century, enhanced in the 21st century by the increased
availability of data (e.g., from social networks).

This book succeeds marvelously in illustrating the
breadth of this analogy, via roughly 50 real-world stories
told in greater or lesser detail. It has an exemplary style
of serious popular science, avoiding the fluffy style of “I
was sitting in Professor X’s office one spring morning . . . ”
in favor of just telling the story accurately. It is worth not-
ing that it was written just before the COVID-19 pandemic,
and that the author is an epidemiologist rather than a
mathematician.
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Despite theminimal mathematics in the book, I hope it
will be widely read and appreciated by mathematicians. It
provides both an overview of one of the major real-world
contexts where elementary and advanced mathematics are
manifestly useful, and a fertile source for engaging under-
graduates with real-world modeling activities.
Outline of contents: Epidemics. The book opens with
a detailed account of the work on malaria transmission
by Ronald Ross, who argued in 1910 via mathematical
modeling thatmosquito control—reducing the prevalence
of mosquitos below some critical level—would suffice to
minimize the prevalence of malaria. Ross’s subsequent in-
teraction with Anderson McKendrick led to the first epi-
demiological paper [KM27] that we might regard as seri-
ous mathematical research. This 1927 paper—rather scan-
dalously not included inMathSciNet—introduced the fun-
damental SIR (susceptible-infected-recovered) model. In
the most basic form of this model, individuals are in one
of the three SIR states, and each susceptible becomes in-
fected at rate proportional to the number of infectives.

The concept of herd immunity was introduced also
around this time. Such timeline assertions can quickly
be checked for consistency with Google Ngram (see Figure
1 below). Mathematical analysis of variant models devel-
oped slowly over the next decades, and amilestone was the
1957 monograph by Bailey [Bai57]. To digress, though I
am no expert, I have a personal fondness for the topic be-
cause this was the first monograph, rather than textbook,
that I read as an undergraduate. I suspect that most of us
remember our first monograph.
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Figure 1. Trend in frequency of 3 phrases: “herd immunity,” “reproduction number,” and “diffusion of innovations.” From
Google Books Ngram Viewer, https://books.google.com/ngrams.

In the MathSciNet review, the monograph is praised as

. . . the first comprehensive account of the work
that has been done in this field, and it is difficult
to think how his task could have been better done.
. . . to the mathematical reader the most interesting
parts of the book are those in which a model is de-
fined and an attempt is then made to give a quali-
tative description of its behaviour.

Its subsequent influence on the mathematical literature is
evidenced by 4000+ citations to the 1975 second edition.
In contrast, consider the words of the book under review.

Then [1957] progress stuttered. The obstacle was
[the monograph [Bai57]]. . . . It was almost en-
tirely theoretical, with hardly any real-life data.
[It] was an impressive survey of epidemic theory
. . .But here was a problem: Bailey had left out a
crucial idea, which would turn out to be one of
the most important concepts . . .

That crucial idea was to focus attention on the reproduction
number 𝑅, the average number of new individuals who get
infected from one individual. This focus on 𝑅, which be-
came prominent in applied epidemiology over the 1980s
(a timeline assertion again consistent with Ngram—Figure
1) is here attributed to Robert May and Roy Anderson
around 1980. While the latter attribution seems literally
true for the phrase reproduction number, the concept was in
fact well understood much earlier (under the term thresh-
old) in the applied probability and theoretical epidemic
modeling community—see [HD96] for history and an in-
troduction to the mathematics.

The relevance of 𝑅 to epidemics is clear: in the simplest
possible model, from a few initial infectives there will be
around 𝑅𝑛 infectives after the 𝑛th stage of transmission, so
a pandemic will occur if 𝑅 > 1 but will not occur if 𝑅 < 1.
Of course, for any pretense of realism one needs to take
account of the heterogeneity of populations. Heterogene-
ity arises in many ways. As a “spatial” issue, in the sense
that disease contacts must be physically close, or online
contacts are generally people “like you” in a relevant con-
text. And as a “number of contacts” issue, which is affected

by your occupation and sociability. Ideally, epidemics
and analogous processes should bemodeled via a network
whose vertices are individuals and whose edges, represent-
ing possible transmission, are marked with the probability
of transmission if one end-individual is infected. Need-
less to say, though inventing such models is easy, finding
enough real-world data to make them realistic is very diffi-
cult.

For a mathematician, we have not given a precise def-
inition of 𝑅. In the real world this is estimated from
data. Indeed, many of us tracked graphics for such esti-
mates during the COVID-19 pandemic. Within a mathe-
matical model, 𝑅 will be a function of the model parame-
ters. In both cases what one obtains is better described as
an effective reproduction number, matching the “𝑅𝑛 infec-
tives after the 𝑛th stage” interpretation. The book’s useful
mnemonic is

𝑅 depends on the 4DOTS: duration of infection, op-
portunities for transmission, transmission probability
during each opportunity, and average susceptibility.

Regarding “number 𝑁 of contacts,” COVID-19 has
made us all familiar with the superspreader concept,
roughly corresponding mathematically to a power law tail
for the distribution of 𝑁. The book gives various examples
from previous epidemics. For instance, regarding Ebola:

The cases most likely to be involved with super-
spreading were the ones that couldn’t be linked
to existing chains of transmission. Put simply,
the people driving the epidemic were generally
the ones the health authorities didn’t know about.
These people went undetected until they sparked
a new set of infections, making it near impossible
to predict superspreading events.

Like other recent writers, the author debunks the persistent
myth of a “patient zero” initiating the AIDS epidemic.
Outline of contents: Analogies. The most obvious anal-
ogy is surely malware—computer virus—though this is dis-
cussed only briefly.

Another widely known analogy is the notion of dif-
fusion of innovations [Wik21] which was introduced by
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Everett Rogers in 1962 and quickly gained traction (Fig-
ure 1 again). This models the proportion of users who
have adopted a new technology product, from color tele-
visions in the 1960s to smartphones in the 2000s. Mathe-
matically, this is merely the even simpler SI model with I
= number of adopters and S = number of non-adopters. It
predicts the 𝑆-shaped logistic function 𝑐𝑒𝑡−𝑡0/(𝑒𝑡−𝑡0+𝑒𝑡0−𝑡)
as an approximation to the proportion adopting, as a func-
tion of time.

Another well known analogy involves finance, and the
familiar story of CDOs (collateralized debt obligations)
and systemic risk leading to the global financial crisis of
2007–2008 is recounted. In a conceptual sense, the finan-
cial system exists to move risk from those who are risk-
averse to those who are willing to be paid to take on the
risks, via a network of institutions which are borrowing
and lending to each other, and the failure of one institu-
tion could cause a dramatic “house of cards” collapse.

Turning to the spread of ideas and habits, examples in
Chapter 3 include the notorious and widely publicized
Christakis-Fowler studies starting from [CF07] asserting a
“social contagion” effect for conditions such as obesity,
happiness, or loneliness. These studies concluded that
one individual acquiring the condition tended to increase
the chance of a friend acquiring the condition, and that
this effect extended to friends-of-friends. It is noted that
whether this is correct or even meaningful is debated –
mathematician Russell Lyons [Lyo11] and others have pub-
lished critiques. Another example concerns the backfire
effect, the claim that being told additional information,
logically contradicting existing beliefs, might actually re-
inforce them. This raises the interesting question of how
one can get data to test this?

COVID-19 has made us familiar with ways to attempt
to control a disease epidemic once started, but what about
control of analogous processes? Chapter 4 includes sto-
ries about metaphorical “epidemics of violence” or opioid
abuse, and describes attempts at control techniques such
as predictive policing.

The longest chapter, Going Viral, gives fascinating de-
tails aboutmatters for which (I guess)most of us have read
only superficial accounts. Many millions of organizations
are seeking to spread their message widely online—from
advertising to political campaigning to fake news—but we
don’t have the time to watch all of these, so most attempts
must fail to gain widespread attention. What makes the
few succeed? The phrase “going viral” suggests some am-
ateur humorous YouTube video, but in fact this is the ex-
ception. The author describes his own experience after giv-
ing a YouTubed talk at London’s Royal Institution. From
followers of that institution, it acquired a hundred or so
views a day for a year, then suddenly it picked up more
views in a few days than in all previous time. This was not
because of a viral epidemic, but because it was featured on

the YouTube homepage. Such stories provide background
to an important finding.

A common argument for featuring extreme views
is that they would spread anyway, even without
media amplification. But studies of online con-
tagion have found the opposite: content rarely
goes far without broadcast events to amplify it. If
an idea becomes popular, it’s generally because
well-known personalities and media outlets have
helped it spread . . . .

Another line of analysis argues that influencers have rather
less effect than generally supposed. For instance, given
a new tweet, can one predict whether it will create a
large Twitter cascade? Analyses show that the content
of the tweet has little relevance, while the tweeter’s past
record has more relevance, but no prediction algorithm
was found to be very accurate.

There is a brief but admirably nuanced discussion of
data privacy versus usefulness of mass data. Cell phone
GPS data on individuals has been used for contact trac-
ing during COVID-19, reasonably enough, but the general
availablity of such data has obvious risks:

In a 2014 survey, 85% of US domestic violence
shelters were protecting people from abusers who
had stalked them via GPS.

As another example, we might agree that “how does the
content we see on social media affect our emotional
state?” is an important question, but does this justify the
Facebook experiment in which researchers secretly altered
News Feeds to show happier or sadder posts?
Discussion. The book is organized appropriately around
the contexts where epidemics and analogs occur, rather
than around the underlying mathematical methodologies,
which are hardly mentioned. In true scholarly fashion,
there are 53 pages of references, mostly to sources for the
stories; some contain relevant data, but few address the un-
derlying mathematics. The curious mathematician might
be interested to know that a huge relevant mathematical
academic literature has appeared over the last 20 years, pre-
dominantly on what is best termed spread of information on
networks. As a few representative books or surveys:

• [KMS17] replicates the spirit of [Bai57] by provid-
ing a rigorous comprehensive treatment of a range
of basic SIR-style models on networks, immedi-
ately becoming the standard reference for such
material.

• [DM10] has a broader introductory “applied
math” style.

• [CFL09] takes a wide-ranging statistical physics ap-
proach.

In my opinion, the book under review is also valu-
able as extensive thought-provoking raw material for
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undergraduate research projects. As background, I am
not enthusiastic about organized REU programs aimed at
theorem-proving. Undoubtedly they serve to identify and
encourage the very best future researchers. But proving
new theorems is hard: I worry that typical attendees might
get discouraged by lack of success, or conversely succeed
and get the impression that theory research is easier than
it really is. In contrast, devising and studying toy mod-
els of real-world phenomena promotes a wide range of
skills—identifying a conceptual question, devising mod-
els, analysis of simple models and simulations of complex
ones, comparison with data. Mathematical readers of this
book surely have enough creative imagination to identify
many such questions. For instance: given a limited bud-
get for contact-tracing in an epidemic, is it better to use
resources to trace forward (from a case testing positive to-
day, who might they have already infected?) or backward
(who might they have been infected by, and then who else
might that person have infected?). Such questions have of
course already been examined, but there is no “one right
answer” given the multitude of models one might choose.

Regarding COVID-19, the significance of 𝑅 and the ne-
cessity for measures to reduce 𝑅 have perhaps been un-
derstood by those members of the public who take a ra-
tional view of medicine. The significance of exponential
growth is often less apparent to non-mathematicians. For
instance, the one or two week delay (compared to an alter-
native more aggressive strategy) in starting the U.K. lock-
down in March 2020 clearly had a huge potential down-
side in permitting a substantially larger infected popula-
tion via exponential growth, compared to a limited upside.
The current Prime Minister ironically ignored the saying
attributed to an earlier PM—“a week is a long time in pol-
itics.”
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