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Abstract

Aldous (2007) defined a gossip process in which space is a discrete N ×N
torus, and the state of the process at time t is the set of individuals who know
the information. Information spreads from a site to its nearest neighbors at
rate 1/4 each and at rate N−α to a site chosen at random from the torus. We
will be interested in the case in which α < 3, where the long range transmission
significantly accelerates the time at which everyone knows the information.
We prove three results that precisely describe the spread of information in a
slightly simplified model on the real torus. The time until everyone knows the
information is asymptotically T = (2 − 2α/3)Nα/3 logN . If ρs is the fraction
of the population who know the information at time s and ε is small then, for
large N , the time until ρs reaches ε is T (ε) ≈ T+Nα/3 log(3ε/M), whereM is a
random variable determined by the early spread of the information. The value
of ρs at time s = T (1/3) + tNα/3 is almost a deterministic function h(t) which
satisfies an odd looking integro-differential equation. The last result confirms
a heuristic calculation of Aldous.

1 Introduction

We study a model introduced by Aldous (2007) for the spread of gossip and other
more economically useful information. His paper considers various game theoretic
aspects of random percolation of information through networks. Here we concentrate
on one small part, a first passage percolation model with nearest neighbor and long-
range jumps introduced in his Section 6.2. The work presented here is also related to

∗Both authors were partially supported by NSF grant DMS 0704996 from the probability pro-
gram.
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work of Filipe and Maule (2004) and Cannas, Marco, and Montemurro (2006), who
considered the impact of long-range dispersal on the spread of epidemics and invading
species.

Space is the discrete torus Λ(N) = (Z mod N)2. The state of the process at time t
is ξt ⊂ Λ(N), the set of individuals who know the information at time t. Information
spreads from i to j at rate

νij =

{

1/4 if j is a (nearest) neighbor of i

λN/N
2 if not.

If λN = 0, this is ordinary first passage percolation. If we start with ξ0 = {(0, 0)},
then the shape theorem for nearest-neighbor first passage percolation, see Cox and
Durrett (1981) or Kesten (1986), implies that until the process exits (−N/2, N/2)2,
the radius of the set ξt grows linearly and ξt has an asymptotic shape. From this we
see that if λN = 0, then there is a constant c0 so that the time TN , until everyone
knows the information, satisfies

TN
N

P→ c0,

where
P→ denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest neighbor part
of the process, and formulate it on the (real) torus Γ(N) = (R mod N)2. The state of
the process at time t is Ct ⊂ Γ(N). The “balloon process” Ct starts with one “center”
chosen uniformly from the torus at time 0. When a center is born at x, a disk with
radius 0 is put there, and its radius grows as r(s) = s/

√
2π, so that the area of the

disk at time s after its birth is s2/2. If the area covered at time t is Ct, then births of
new centers occur at rate λNCt. The location of each new center is chosen uniformly
from the torus. If the new point lands at x ∈ Ct, it will never contribute anything to
the growth of the set, but we will count it in X̃t, the total number of centers.

Here we will be concerned with λN = N−α. To begin we will get rid of trivial
cases. If the diameter of Ct grows linearly, then

∫ c0N

0
Ct dt = O(N3). So if α > 3,

with probability tending to 1 as N goes to ∞, there is no long range jump before the
initial disk covers the entire torus, and the time TN until the entire torus is covered
satisfies

TN
N

P→ c1, where c1 =
√
π.

If α = 3, then with probabilities bounded away from 0, (i) there is no long range
jump and TN ≈ c1N , and (ii) there is one that lands close enough to (N/2, N/2) to
make TN ≤ (1− δ)Nc1. Using ⇒ for weak convergence, this suggests that

Theorem 0. When α = 3, TN/N ⇒ a random limit concentrated on [0, c1] and with
an atom at c1.

This is easily proved by observing that the set-valued process {CNt/N, t ≥ 0} con-
verges to a limit. Further details are left to the reader.

2



For the remainder of the paper we suppose λN = N−α with α < 3. The overlaps
between disks in Ct poses a difficulty in analyzing the process, so we begin by studying
a simpler “balloon branching process” At, in which At is the sum of the areas of all
of the disks at time t, births of new centers occur at rate λNAt, and the location of
each new center is chosen uniformly from the torus. Let Xt be the number of centers
at time t in At.

Suppose we start C0 and A0 from the same randomly chosen point. The areas
Ct = At until the time of the first birth, which can be made to be the same in the
two processes. If we couple the location of the new centers at that time, and continue
in the obvious way letting Ct and At give birth at the same time with the maximum
rate possible, to the same place when they give birth simultaneously, and letting At

give birth by itself otherwise, then we will have

Ct ⊂ At, Ct ≤ At, X̃t ≤ Xt for all t ≥ 0. (1.1) couple

Xt is a Crump-Mode-Jagers branching process, but saying these words does not
magically solve our problems. Define the length process Lt to be

√
2π times the sum

of the radii of all the disks at time t.

Lt =

∫ t

0

(t− s)dXs =

∫ t

0

Xs ds, (1.2) LA

At =

∫ t

0

(t− s)2

2
dXs =

∫ t

0

Ls ds.

Here and later we use
∫ t

0
for integration over the closed interval [0, t], i.e., we include

the contribution from the atom in dXs at 0. (X0 = 1 while Xs = 0 for s < 0.) For
the second equality on each line integrate by parts or note that L′

t = Xt and A
′
t = Lt.

Since Xt increases by 1 at rate λNAt, (Xt, Lt, At) is a Markov process.
To simplify formulas, we will often drop the subscript N from λN . For comparison

with Ct, the parameter λ is important, but in the analysis of At it is not. If we let

X1
t = X(tλ−1/3), L1

t = λ1/3L(tλ−1/3), A1
t = λ2/3A(tλ−1/3), (1.3) scale

then (X1
t , L

1
t , A

1
t ) is the process with λ = 1.

To study the growth of At, first we will compute the means of Xt, Lt, and At. Let
F (t) = λt3/3!. Using the independent and identical behavior of all the disks in At it
is easy to show that

EXt = 1 +

∫ t

0

EXt−s dF (s).
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Solving the above renewal equation and using (1.2), we can show

EXt =
∞
∑

k=0

F ∗k(t) = V (t) =
∞
∑

k=0

λkt3k

(3k)!
,

ELt =
∞
∑

k=0

λkt3k+1

(3k + 1)!
, (1.4) mean

EAt =

∞
∑

k=0

λkt3k+2

(3k + 2)!
.

To evaluate V (t) we note that V ′′′(t) = λV (t) with V (0) = 1, V ′(0) = V ′′(0) = 0, so

V (t) =
1

3

[

exp(λ1/3t) + exp(λ1/3ωt) + exp(λ1/3ω2t)
]

. (1.5) Vtdef

Here ω =
(

−1 + i
√
3
)

/2 is one of the complex cube roots of 1 and ω2 =
(

−1− i
√
3
)

/2
is the other. Note that each of ω and ω2 has real part −1/2. So the second and third
terms in (1.5) go to 0 exponentially fast.

If Fs = σ{Xr, Lr, Ar : r ≤ s}, then

d

dt
E





Xt

Lt
At

∣

∣

∣

∣

∣

∣

Fs





∣

∣

∣

∣

∣

∣

t=s

=





0 0 λ
1 0 0
0 1 0









Xs

Ls
As



 . (1.6) infgen

Let Q be the matrix in (1.6). By computing the determinant of Q− ηI it is easy to
see that Q has eigenvalues η = λ1/3, ωλ1/3, ω2λ1/3, and

e−ηt(Xt + ηLt + η2At) is a (complex) martingale.

Let It, Jt, and Kt be Xt + ηLt + η2At for the three values of η respectively, and let
Mt, J̃t, and K̃t be the corresponding martingales.

th1 Theorem 1. {Mt : t ≥ 0} is a positive square integrable martingale with respect to
the filtration {Ft : t ≥ 0}. EMt =M0 = 1.

EM2
t =

8

7
− 1

3
exp(−λ1/3t) +O

(

exp(−5λ1/3t/2)
)

,

E|J̃t|2, E|K̃t|2 =
1

6
exp(2λ1/3t) +O

(

exp(λ1/3t/2)
)

.

If we let M = limt→∞Mt, then P (M > 0) = 1 and

exp(−λ1/3t)Xt, λ
1/3 exp(−λ1/3t)Lt, λ2/3 exp(−λ1/3t)At → M/3

a.s. and in L2. The distribution of M does not depend on λ.
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The last result follows from (1.3), which with (1.2) explains why the three quan-
tities converge to the same limit. The key to the proof of the convergence results is
to note that 1 + ω + ω2 = 0 implies

3Xt = It + Jt +Kt,

3λ1/3Lt = It + ω2Jt + ωKt,

3λ2/3At = It + ωJt + ω2Kt.

The real parts of ω and ω2 are −1/2. Although the results for E|J̃t|2 and E|K̃t|2
show that the martingales J̃t and K̃t are not L2 bounded, it is easy to show that
exp

(

−λ1/3t
)

Jt and exp
(

−λ1/3t
)

Kt → 0 a.s. and in L2, and Theorem 1 then follows

from Mt = exp
(

−λ1/3t
)

It →M .
Recall that λN = N−α and let

a(t) = (1/3)N2α/3 exp(N−α/3t), l(t) = N−α/3a(t), x(t) = N−2α/3a(t), (1.7) a

so that At/a(t), Lt/l(t), Xt/x(t) →Ma.s.. Let

S(ε) = Nα/3[(2− 2α/3) logN + log(3ε)], (1.8) S

so a(S(ε)) = εN2. Let

σ(ε) = inf{t : At ≥ εN2} and τ(ε) = inf{t : Ct ≥ εN2}. (1.9) sigtau

The first of these is easy to study.

th2 Theorem 2. If 0 < ε < 1, then as N → ∞

N−α/3(σ(ε)− S(ε))
P→ − log(M).

The coupling in (1.1) implies τ(ε) ≥ σ(ε). In the other direction, for any γ > 0

lim sup
N→∞

P [τ(ε) > σ((1 + γ)ε)] ≤ P
(

M ≤ (1 + γ)ε1/3
)

+ 11
ε1/3

γ
.

The last result implies that for ε < 1

τ(ε) ∼ (2− 2α/3)Nα/3 logN. (1.10) tauLLN

Our next goal is to obtain more precise information about τ(ε) and about how |Ct|/N2

increases from a small positive level to reach 1.
The first result in Theorem 2 shows that (σ(ε)−S(ε))/Nα/3 is determined by the

random variable M from Theorem 1, which in turn is determined by what happens
early in the growth of the branching balloon process. Let

R = Nα/3[(2− 2α/3) logN − log(M)], (1.11) R
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R is defined so that a(R) = (1/3)N2/M , and hence AR/N
2 P→ 1/3. Define

ψ(t) ≡ R +Nα/3t, W ≡ ψ(log(3ε)), and Iε,t = [log(3ε), t] (1.12) psiWI

for log(3ε) ≤ t. W is defined so that a(W ) = εN2/M and hence AW/N
2 P→ ε. The

arguments that led to Theorem 2 will show that if ε is small then CW/AW is close to
1 with high probability.

To get a lower bound on the growth of Ct after timeW we declare that the centers
in CW and AW to be generation 0 in Ct and At respectively, and we number the
succeeding generations in the obvious way, a center born from an area of generation
k is in generation k + 1. For t ≥ log(3ε), let Ck

W,ψ(t) and AkW,ψ(t) denote the areas

covered at time ψ(t) by respective centers of generations j ∈ {0, 1, . . . , k} and let

g0(t) = ε

[

1 + (t− log(3ε)) +
(t− log(3ε))2

2

]

, f0(t) = g0(t)− ε7/6. (1.13) gfdef

To explain these definitions, we note that Lemma 4.3 will show that for any t, there
is an ε0 = ε0(t) so that for any 0 < ε < ε0

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣N−2A0
W,ψ(s) − g0(s)

∣

∣ > η

)

= 0 for any η > 0,

P

(

inf
s∈Iε,t

N−2(C0
W,ψ(s) − A0

W,ψ(s)) < −ε7/6
)

≤ P (M < ε1/3) + ε1/12.

Since C0
W,ψ(t) ≤ A0

W,ψ(t), if ε is small, with high probability g0(t) and f0(t) provide

upper and lower bounds respectively for C0
W,ψ(t).

To begin to improve these bounds we let

f1(t) = 1− (1− f0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
f0(s) ds

)

,

and define g1 similarly. To explain this equation note that an x 6∈ C0
W,ψ(t) will not be

in C1
W,ψ(t) if and only if no generation 1 center is born in the space-time cone

Kε
x,t ≡

{

(y, s) ∈ Γ(N)× [W,ψ(t)] : |y − x| ≤ (ψ(t)− s)/
√
2π
}

.

Lemma 4.4 shows that for 0 < ε < ε0 and δ > 0,

lim sup
N→∞

P

(

inf
s∈Iε,t

N−2C1
W,ψ(s) − f1(s) < −δ

)

≤ P (M < ε1/3) + ε1/12.

To iterate this we will let

fk+1(t) = 1− (1− fk(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
(fk(s)− fk−1(s)) ds

)

6



for k ≥ 1. The difference fk(s) − fk−1(s) in the integral comes from the fact that a
new point in generation k+1 must come from a point that is in generation k but not
in generation k − 1. Combining these equations we have

fk+1(t) = 1− (1− f0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
fk(s) ds

)

. (1.14) fkinteq

Since f1(t) ≥ f0(t), letting k → ∞, fk(t) ↑ fε(t), where fε is the unique solution of

fε(t) = 1− (1− f0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
fε(s) ds

)

(1.15) fepinteq

with fε(log(3ε)) = ε− ε7/6. gk(t) and gε(t) are defined similarly.
gε(t) and fε(t) provide upper and lower bounds on the growth of Cψ(t) for t ≥

log(3ε). To close the gap between these bounds we let ε → 0.

h Lemma 1.1. For any t <∞, if Iε,t = [log(3ε), t], then as ε→ 0,

sup
s∈Iε,t

|fε(s)− h(s)| , sup
s∈Iε,t

|gε(s)− h(s)| → 0

for some nondecreasing h with (a) limt→−∞ h(t) = 0, (b) limt→∞ h(t) = 1,

(c) h(t) = 1− exp

(

−
∫ t

−∞

(t− s)2

2
h(s) ds

)

,

and (d) 0 < h(t) < 1 for all t.

If one removes the 2 from inside the exponential, this is equation (36) in Aldous
(2007). Since there is no initial condition, the solution is only unique up to time
translation.

th3 Theorem 3. Let h be the function in Lemma 1.1. For any t <∞ and δ > 0,

lim
N→∞

P

(

sup
s≤t

|N−2Cψ(s) − h(s)| ≤ δ

)

= 1.

This result shows that the displacement of τ(ε) from (2 − 2α/3)Nα/3 logN on the
scale Nα/3 is dictated by the random variable M that gives the rate of growth of the
branching balloon process, and that once Ct reaches εN

2, the growth is deterministic.
The solution h(t) never reaches 1, so we need a little more work to show that

Theorem 4. Let T be the first time the torus is covered. As N → ∞

T/(Nα/3 logN)
P→ 2− 2α/3.
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Proof. Theorem 3 implies that if δ > 0 and N is large, then the number of cen-
ters in Cψ(0) with high probability dominate a Poisson random variable with mean
λ(δ)N2−(2α/3), where

λ(δ) =

∫ 0

−∞

(h(s)− δ)+ ds.

If δ0 is small enough, λ0 ≡ λ(δ0) > 0. Dividing the torus into disjoint squares of size
κNα/3

√
logN , the probability a given square is vacant is exp(−λ0κ logN). If N is

large, the number of squares is ≤ N2−(2α/3) So if λ0κ ≥ 2, then with high probability
none of our squares is vacant. Thus even if no more births of new centers occur then
the entire square will be covered by a time ψ(0) +O(Nα/3

√
logN).

2 Proof of Theorem 1

We begin with some calculus

conv Lemma 2.1.
∫ t

0
sm(t− s)nds = m!n!

(m+n+1)!
tm+n+1.

Proof. Integrating by parts

∫ t

0

sm

m!

(t− s)n

n!
ds =

∫ t

0

sm+1

(m+ 1)!

(t− s)n−1

(n− 1)!
ds

. . . =

∫ t

0

sm+n

(m+ n)!
ds =

tm+n+1

(m+ n+ 1)!
,

which proves the desired result.

Let F (t) = λt3/3! for t ≥ 0, and F (t) = 0 for t < 0. Let V (t) =
∑∞

k=0 F
∗k(t),

where ∗k indicates the k-fold convolution.

V Lemma 2.2. If ω =
(

−1 + i
√
3
)

/2, then

V (t) =
∞
∑

k=0

λkt3k

(3k)!
=

1

3

[

exp
(

λ1/3t
)

+ exp
(

λ1/3ωt
)

+ exp
(

λ1/3ω2t
)]

.

Proof. We first use induction to show that

F ∗k(t) =

{

λkt3k/(3k)! t ≥ 0

0 t < 0
(2.1) Fconv

This holds for k = 0, 1 by our assumption. If the equality holds for k = n, then using
Lemma 2.1 we have for t ≥ 0

F ∗(n+1)(t) =

∫ t

0

F ∗n(t− s) dF (s) =

∫ t

0

λn(t− s)3n

(3n)!

λs2

2
ds =

λn+1t3n+3

(3n+ 3)!
.
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It follows by induction that V (t) =
∑∞

k=0 λ
kt3k/(3k)!. To evaluate the sum we note

that setting λ = 1, U(t) =
∑∞

k=0 t
3k/(3k)! solves

U ′′′(t) = U(t) with U(0) = 1 and U ′(0) = U ′′(0) = 0.

This differential equation has solutions of the from eγt, where γ3 = 1, i.e. γ = 1, ω
and ω2. This leads to the general solution

U(t) = Aet +Beωt + Ceω
2t

for some constants A,B,C. Using the initial conditions for U(t) we have

A+B + C = 1, A+Bω + Cω2 = 0, A +Bω2 + Cω = 0.

Since 1 + ω + ω2 = 0, we have A = B = C = 1/3. Since V (t) = U(λ1/3t), we have
proved the desired result.

Lemma 2.3. E(Xt, Lt, At) = (V (t), V ′′(t)/λ, V ′(t)/λ).XLAlem

Proof. F (t) = λt3/3!. In the balloon branching process, the initial center x gives
birth to new centers at rate F ′(t) = λt2/2, and all the centers behave independently
and with the same distribution as the one at x. So

EXt = 1 +

∫ t

0

EXt−s dF (s).

Using (4.5) from Chapter 3 of Durrett (2005) and then (1.2):

EXt = V (t) =
∞
∑

k=0

λkt3k

(3k)!
,

ELt =

∫ t

0

EXs ds =
∞
∑

k=0

λkt3k+1

(3k + 1)!
, (2.2) meanXLA

EAt =

∫ t

0

ELs ds =

∞
∑

k=0

λkt3k+2

(3k + 2)!
.

Since V (t) = 1 +
∑∞

k=0 λ
k+1t3k+3/(3k + 3)!, it is easy to see that EAt = V ′(t)/λ and

ELt = V ′′(t)/λ.

Our next step is to compute second moments.

renewaleq Lemma 2.4. Let {Nt : t ≥ 0} be a Poisson process on [0,∞) with intensity λ(·)
and let Πt be the set of points at time t. If {Yt, Zt : t ≥ 0} are two complex valued
stochastic processes satisfying

Yt = y(t) +
∑

si∈Πt

Y i
t−si

, Zt = z(t) +
∑

si∈Πt

Z i
t−si

,

9



where (Y i, Z i), i = 1, 2, . . . are i.i.d. copies of (Y, Z), and independent of N , then

EYt = y(t) +

∫ t

0

EYt−sλ(s) ds,

E(YtZt) = (EYt)(EZt) +

∫ t

0

E(Yt−sZt−s)λ(s) ds.

Proof. Nt has Poisson distribution with mean Λt =
∫ t

0
λ(s)ds. Given Nt = n, the con-

ditional distribution of Πt is same as the distribution of {t1, . . . , tn}, where t1, . . . , tn
are i.i.d. from [0, t] with density β(·) = λ(·)/Λt. Hence

E(Yt|Nt) = y(t) +
Nt
∑

i=1

EY i
t−ti

= y(t) +Nt

∫ t

0

EYt−s β(s) ds,

and taking expected values EYt = y(t) +
∫ t

0
EYt−sλ(s) ds.

Similarly EZt = z(t) +
∫ t

0
EZt−sλ(s)ds. Using the conditional distribution of Πt

given Nt, E(YtZt|Nt) is

= y(t)z(t) + y(t)E

Nt
∑

i=1

Z i
t−ti

+ z(t)E

Nt
∑

i=1

Y i
t−ti

+ E

[

Nt
∑

i=1

Y i
t−ti

Z i
t−ti

+
∑

i 6=j

Y i
t−ti

Zj
t−tj

]

= y(t)z(t) + y(t)Nt

∫ t

0

EZt−s β(s) ds+ z(t)Nt

∫ t

0

EYt−s β(s) ds

+Nt

∫ t

0

E(Yt−sZt−s) β(s) ds+Nt(Nt − 1)

∫ t

0

EYt−s β(s) ds

∫ t

0

EZt−sβ(s)ds.

Taking expectation on both sides and using ENt(Nt − 1) = Λ2
t , we get

E(YtZt) = (EYt)(EZt) +

∫ t

0

E(Yt−sZt−s)λ(s)ds,

which completes the proof.

mart Lemma 2.5. If Mt = exp(−λ1/3t)[Xt + λ1/3Lt + λ2/3At], then {Mt : t ≥ 0} is a
square integrable martingale with respect to the filtration {Ft : t ≥ 0}. EMt = 1 and

EM2
t =

8

7
− 1

3
exp

(

−λ1/3t
)

+ θt where |θt| ≤
4

15
exp(−5λ1/3t/2).

and hence (8/7)−EM2
t ≤ exp(−λ1/3t).

Proof. Let h(t, x, ℓ, a) = exp(−λ1/3t)[x+λ1/3ℓ+λ2/3a], and let L be the generator of
the Markov process (t, Xt, Lt, At). (1.6) implies Lh = 0, so the desired result follows
from Dynkin’s formula. EMt = EM0 = 1.
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To compute EM2
t we use Lemma 2.4. Let Yt = Zt = Xt + λ1/3Lt + λ2/3At and

g(t) ≡ (EYt)
2. Since EMt = 1, g(t) = exp

(

2λ1/3t
)

. Then using Lemma 2.4

EY 2
t = g(t) +

∫ t

0

EY 2
t−s dF (s).

Solving the renewal equation using (4.8) in Chapter 3 of Durrett (2005),

EY 2
t = g ∗ V (t) = exp

(

2λ1/3t
)

+

∫ t

0

exp(2λ1/3(t− s))V ′(s) ds,

where V =
∑∞

k=0 F
∗k. To evaluate the integral we use Lemma 2.2 to conclude

∫ t

0

exp
(

−2λ1/3s
)

V ′(s) ds

=
1

3

∫ t

0

exp
(

−2λ1/3s
)

· λ1/3
[

exp
(

λ1/3s
)

+ ω exp
(

λ1/3ωs
)

+ ω2 exp
(

λ1/3ω2s
)]

ds

=
1

3

[

1

1− 2

{

exp
(

−λ1/3t
)

− 1
}

+
ω

ω − 2

{

exp
(

(ω − 2)λ1/3t
)

− 1
}

+
ω2

ω2 − 2

{

exp
(

(ω2 − 2)λ1/3t
)

− 1
}

]

.

Now using 1 = −ω − ω2 and ω3 = 1,

1− ω

ω − 2
− ω2

ω2 − 2
= 1− ω3 − 2ω + ω3 − 2ω2

ω3 − 2ω2 − 2ω2 + 4
= 1− 4

7
=

3

7
.

Since ω =
(

−1 + i
√
3
)

/2 and ω2 =
(

−1− i
√
3
)

/2, the remaining error satisfies

3|θt| =
∣

∣

∣

∣

ω

ω − 2
exp

(

(ω − 2)λ1/3t
)

∣

∣

∣

∣

+

∣

∣

∣

∣

ω2

ω2 − 2
exp

(

(ω2 − 2)λ1/3t
)

∣

∣

∣

∣

=

(

1

|ω − 2| +
1

|ω2 − 2|

)

exp
(

−5λ1/3t/2
)

≤ 2 · 2
5
exp

(

−5λ1/3t/2
)

,

since ω − 2 and ω2 − 2 each have real part −5/2. Putting all together

∫ t

0

exp
(

−2λ1/3s
)

V ′(s) ds =
1

7
− 1

3
exp

(

−λ1/3t
)

+ θt, (2.3) intbd

Since EM2
t = exp

(

−2λ1/3t
)

EY 2
t , the desired result follows.

We use the previous calculation to get bounds for EA2
t , EL

2
t and EX

2
t , which will

be useful later.

11



sqbound Lemma 2.6. Let a(·), l(·) and x(·) be as in (1.7). Then

EA2
t ≤

27

2
a2(t), EL2

t ≤
27

2
l2(t), EX2

t ≤ 27

2
x2(t).

Proof. By (2.3) we have

∫ t

0

exp
(

−2λ1/3s
)

V ′(s) ds ≤ 1

7
+

4

15
=

43

105
≤ 1

2
. (2.4) intbd1

Now using Lemma 2.4

EA2
t = (EAt)

2 +

∫ t

0

EA2
t−s dF (s), EL2

t = (ELt)
2 +

∫ t

0

EL2
t−s dF (s),

EX2
t = (EXt)

2 +

∫ t

0

EX2
t−s dF (s).

Solving the renewal equations EA2
t = φa∗V (t), EL2

t = φl ∗V (t) and EX2
t = φx∗V (t),

where V (·) is as in Lemma 2.2 and φa(t) = (EAt)
2, φl(t) = (ELt)

2 and φx(t) =
(EXt)

2. A crude upper bound for φa(t) is 9a
2(t). Since a(t− s) = a(t) exp

(

−λ1/3s
)

,

a2 ∗ V (t) = a2(t)

[

1 +

∫ t

0

exp
(

−λ1/3s
)

V ′(s) ds

]

≤ 3a2(t)

2
(2.5) a2bd

by (2.4). Hence EA2
t ≤ 9a2 ∗ V (t) ≤ (27/2)a2(t).

Similarly using the bounds 9l2(t) and 9x2(t) for φl(t) and φx(t) respectively and
noting that l(t − s)/l(t) = x(t − s)/x(t) = exp

(

−λ1/3s
)

, we get the desired bounds
for EL2

t and EX
2
t .

JKbds Lemma 2.7. Let J̃t, K̃t = e−ηt(Xt+ηLt+η
2At) when η = ωλ1/3, ω2λ1/3 respectively.

Then J̃t and K̃t are complex martingales with respect to the filtration Ft, and

E|J̃t|2, E|K̃t|2 =
1

6
exp(2λ1/3t) +

1

2
+ θt, where |θt| ≤

2

3
exp

(

λ1/3t/2
)

,

and hence E|J̃t|2, E|K̃t|2 ≤ (4/3) exp
(

2λ1/3t
)

.

Proof. Let h(t, x, ℓ, a) = e−ηt(x+ ηℓ+ η2a), and let L be the generator of the Markov
process (t, Xt, Lt, At). (1.6) implies Lh = 0, where η = λ1/3ω, λ1/3ω2, so that J̃t and
K̃t are complex martingales from Dynkin’s formula.

First we compute E|Jt|2, where Jt = exp
(

λ1/3ωt
)

J̃t. For that we use Lemma 2.4

with Yt = Jt and Zt = J̄t, the complex conjugate. Since J̃t is a complex martingale
with J̃0 = 1 and ω =

(

−1 + i
√
3
)

/2, EJ̃t = 1 and hence

|EJt|2 = exp(−λ1/3t).

12



Using Lemma 2.4 E|Jt|2 = |EJt|2 +
∫ t

0
E|Jt−s|2 dF (s). Solving the renewal equation

as we have done twice before

E|Jt|2 = exp(−λ1/3t) +
∫ t

0

exp(−λ1/3(t− s))V ′(s) ds.

Repeating the first part of the proof for Kt = exp
(

λ1/3ω2t
)

K̃t, we see that E|Kt|2 is
also equal to the right-hand side above.

The integral is exp(−λ1/3t) times

1

3

∫ t

0

exp
(

λ1/3s
)

· λ1/3
[

exp
(

λ1/3s
)

+ ω exp
(

λ1/3ωs
)

+ ω2 exp
(

λ1/3ω2s
)]

ds

=
1

3

[

1

1 + 1

{

exp
(

2λ1/3t
)

− 1
}

+
ω

ω + 1

{

exp
(

(ω + 1)λ1/3t
)

− 1
}

+
ω2

ω2 + 1

{

exp
(

(ω2 + 1)λ1/3t
)

− 1
}

]

.

Now using 1 = −ω − ω2 and ω3 = 1,

−1

2
− ω

ω + 1
− ω2

ω2 + 1
= −1

2
− ω3 + ω + ω3 + ω2

ω3 + ω2 + ω + 1
= −3

2
.

Since ω =
(

−1 + i
√
3
)

/2 and ω2 =
(

−1− i
√
3
)

/2, if we take

θt =
1

3

[

ω

ω + 1
exp

(

(ω + 1)λ1/3t
)

+
ω2

ω2 + 1
exp

(

(ω2 + 1)λ1/3t
)

]

, then

3|θt| ≤
(

1

|ω + 1| +
1

|ω2 + 1|

)

exp
(

λ1/3t/2
)

≤ 2 exp
(

λ1/3t/2
)

,

since each of ω + 1 and ω2 + 1 has real part 1/2. Putting all together

E|Jt|2 ≤
1

6
exp

(

λ1/3t
)

+
1

2
exp

(

−λ1/3t
)

+
2

3
exp

(

−λ1/3t/2
)

, (2.6) Jbd

which completes the proof, since E|J̃t|2/E|Jt|2 = exp(λ1/3t) = E|K̃t|2/E|Kt|2.
Lemma 2.8. If M = limt→∞Mt, we have P (M > 0) = 1 and

exp(−λ1/3t)Xt, λ
1/3 exp(−λ1/3t)Lt, λ2/3 exp(−λ1/3t)At →

M

3
a.s. and in L2.

Proof. M = limt→∞Mt exists a.s. and in L2, since Mt is an L
2 bounded martingale.

Recall that

It = Xt + λ1/3Lt + λ2/3At,

Jt = Xt + ωλ1/3Lt + ω2λ2/3At,

Kt = Xt + ω2λ1/3Lt + ωλ2/3At.

13



Since 1 + ω + ω2 = 0 and ω3 = 1,

3Xt = It + Jt +Kt,

3λ1/3Lt = It + ω2Jt + ωKt, (2.7) lincomb

3λ2/3At = It + ωJt + ω2Kt.

Since exp(−λ1/3t)It → M , it suffices to show that exp(−λ1/3t)Jt and exp(−λ1/3t)Kt

go to 0 a.s. and in L2. We will only prove this for Jt, since the argument for Kt is
almost identical. J̃t is a complex martingale, so |J̃t| is a real submartingale. Using
the L2 maximal inequality, (4.3) in Chapter 4 of Durrett (2005), and Lemma 2.7,

E

(

max
0≤s≤t

|J̃s|2
)

≤ 4E|J̃t|2 ≤
16

3
exp(2λ1/3t). (2.8) L2max

The real part of ω is −1/2. So writing J̃s = exp(λ1/3(1−ω)s) · exp(−λ1/3s)Js, we see
that

E

(

max
u≤s≤t

|J̃s|2
)

≥ exp(3λ1/3u)E

(

max
u≤s≤t

∣

∣exp(−λ1/3s)Js
∣

∣

2
)

. (2.9) hammer

Combining these bounds with Chebyshev inequality, and taking tn = 2λ−1/3 log n for
n = 1, 2, . . .

P

(

max
tn≤s≤tn+1

∣

∣exp
(

−λ1/3s
)

Js
∣

∣

2 ≥ ε

)

≤ ε−2E

(

max
tn≤s≤tn+1

∣

∣exp(−λ1/3s)Js
∣

∣

2
)

≤ 16

3
ε−2 exp

(

λ1/3(2tn+1 − 3tn)
)

=
16

3
ε−2 (n+ 1)4

n6
(2.10) supJbd

for any ε > 0. Summing over n, and using the Borel-Cantelli lemma

| exp(−λ1/3s)Js| → 0 a.s.

To get convergence in L2 we use (2.6).

E
∣

∣exp
(

−λ1/3t
)

Jt
∣

∣

2 ≤ 4

3
exp

(

−λ1/3t
)

→ 0 as t→ ∞.

To prove that P (M > 0) = 1 we begin by noting that convergence in L2 implies
that P (M > 0) > 0. Every time a new balloon is born it has positive probability of
starting a process with a positive limit, so this will happen eventually and P (M >
0) = 1.

3 Proof of Theorem 2

Recall that σ(ε) = inf{t : At ≥ εN2} and τ(ε) = inf{t : Ct ≥ εN2}. Also recall the
definitions of a(·), l(·), x(·) and S(·) from (1.7) and (1.8). Note that a(S(ε)) = εN2

and At/a(t), Lt/l(t), Xt/x(t) → M a.s. by Theorem 1. We begin by estimating the
difference between them.
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supbound Lemma 3.1. For any γ, u > 0

P

(

sup
t≥u

|At/a(t)−M | ≥ γ2
)

≤ Cγ−4 exp
(

−λ1/3u
)

for some constant C. The same bound holds for P
(

supt≥u |Lt/l(t)−M | ≥ γ2
)

and
P
(

supt≥u |Xt/x(t)−M | ≥ γ2
)

.

Proof. Using (2.7) At/a(t) = Mt + ω exp
(

−λ1/3t
)

Jt + ω2 exp
(

−λ1/3t
)

Kt. For 0 <
u ≤ t the triangle inequality implies

|At/a(t)−M | ≤ |Mt −M |+
∣

∣exp
(

−λ1/3t
)

Jt
∣

∣ +
∣

∣exp
(

−λ1/3t
)

Kt

∣

∣ . (3.1) bd1

Taking the supremum over t,

P

(

sup
t≥u

|At/a(t)−M | ≥ γ2
)

≤P
(

sup
t≥u

|Mt −M | ≥ γ2/3

)

+ P

(

sup
t≥u

∣

∣exp
(

−λ1/3t
)

Jt
∣

∣ ≥ γ2/3

)

(3.2) supbd

+ P

(

sup
t≥u

∣

∣exp
(

−λ1/3t
)

Kt

∣

∣ ≥ γ2/3

)

.

To bound the first term in the right hand side of (3.2) we note that

E

(

sup
t≥u

|Mt −M |2
)

= lim
U→∞

E

(

max
u≤t≤U

|Mt −M |2
)

.

Using triangle inequality |Mt−M | ≤ |Mt−Mu|+ |Mu−M |. Taking supremum over
t ∈ [u, U ] and using the inequality (a+ b)2 ≤ 2(a2 + b2),

E

(

max
u≤t≤U

|Mt −M |2
)

≤ 2

(

E

(

max
u≤t≤U

|Mt −Mu|2
)

+ E|Mu −M |2
)

.

Using the L2 maximal inequality, (4.3) in Chapter 4 of Durrett (2005), and orthogo-
nality of martingale increments,

E

(

max
u≤t≤U

|Mt −Mu|2
)

≤ 4E(MU −Mu)
2 = 4(EM2

U − EM2
u).

Since the martingale Mt converges to M in L2, EM2 = limt→∞EM2
t = 8/7. Then

using orthogonality of martingale increments and Lemma 2.5,

E(Mu −M)2 = EM2 −EM2
u ≤ exp

(

−λ1/3u
)

.

Combining the last four bounds with Lemma 2.5, and using Chebyshev inequality

P

(

sup
t≥u

|Mt −M | ≥ γ2/3

)

≤ 9γ−4 · 10 exp
(

−λ1/3u
)

. (3.3) supbd1
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To bound the second term in the right hand side of (3.2) we take tn = u +
2λ−1/3 log n for n = 1, 2, . . . and use an argument similar to the one leading to (2.10)
together with Chebyshev inequality to get

P

(

sup
t≥u

∣

∣exp
(

−λ1/3t
)

Jt
∣

∣ ≥ γ2/3

)

≤
∞
∑

n=1

P

(

max
tn≤t≤tn+1

∣

∣exp
(

−λ1/3t
)

Jt
∣

∣ ≥ γ2/3

)

≤ 9γ−4
∞
∑

n=1

E

(

max
tn≤t≤tn+1

∣

∣exp
(

−λ1/3t
)

Jt
∣

∣

)2

≤ 9 · 16
3
γ−4

∞
∑

n=1

exp(λ1/3(2tn+1 − 3tn))

= 48γ−4 exp(−λ1/3u)
∞
∑

n=1

(n+ 1)4

n6
. (3.4) supbd2

Repeating the previous argument for the third term in the right hand side of (3.2)
we get the same upper bound as in (3.4). Combining (3.2), (3.3) and (3.4) we get the
desired bound for At/a(t).

The same bound also works for both Lt/l(t) and Xt/x(t), since using (2.7)

Lt/l(t) =Mt + ω2 exp(−λ1/3t)Jt + ω exp(−λ1/3t)Kt,

Xt/x(t) =Mt + exp(−λ1/3t)Jt + exp(−λ1/3t)Kt,

and so the upper bound in (3.1) also works for Lt/l(t) and Xt/x(t).

We now use Lemma 3.1 to study the limiting behavior of σ(ε).

ALXbd Lemma 3.2. Let Wε = S(ε/M), where S(·) is as in (1.8) and M is the limit random
variable in Theorem 1. Then for any η > 0

lim
N→∞

P (|AWε − εN2| > ηN2) = lim
N→∞

P (|LWε − εN2−α/3| > ηN2−α/3)

= lim
N→∞

P (|XWε − εN2−2α/3| > ηN2−2α/3) = 0.

Proof. Since P (M > 0) = 1, given θ > 0, we can choose γ = γ(θ) > 0 so that γ < η/ε
and

P (M < γ) < θ. (3.5) Mnot0

Using Lemma 3.1 we can choose a constant b = b(γ, θ) such that

P

(

sup
t≥bNα/3

|At/a(t)−M | > γ2

)

< θ.

Combining with (3.5)

P

(

sup
t≥bNα/3

|At/a(t)−M | > γM

)

< 2θ.
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Since a(Wε) = εN2/M , by the choices of γ and b,

P (|AWε − εN2| ≥ ηN2) ≤ P (|AWε − εN2| ≥ εγN2)

= P (|AWε/a(Wε)−M | ≥ γM) < 2θ + P
(

Wε < bNα/3
)

.

By the definition of S(·),

P
(

Wε < bNα/3
)

= P

(

M >
3ε

b
N2−2α/3

)

→ 0

as N → ∞, and so lim supN→∞ P (|AWε − εN2| > ηN2) ≤ 2θ. Since θ > 0 is arbi-
trary, we have shown that

lim
N→∞

P
(

|AWε − εN2| ≥ η)N2
)

= 0.

Repeating the argument for LWε and XWε, and noting that l(Wε) = εN2−α/3/M and
x(Wε) = εN2−2α/3/M , we get the other two assertions.

As a corollary of Lemma 3.2 we get the first conclusion of Theorem 2.

th2part1 Corollary 1. As N → ∞, N−α/3(σ(ε)− S(ε))
P→ − log(M).

Proof. For any η > 0 choose γ > 0 so that log(1 + γ) < η and log(1 − γ) > −η.
Let Wε be as in Lemma 3.2. Clearly W(1+γ)ε = S(ε) +Nα/3[log(1 + γ)− logM ] and
W(1−γ)ε = S(ε) +Nα/3[log(1− γ)− logM ]. Using Lemma 3.2

P
[

N−α/3(σ(ε)− S(ε)) > − logM + η
]

≤ P
(

σ(ε) > W(1+γ)ε

)

= P
(

AW(1+γ)ε
< εN2

)

→ 0,

P
[

N−α/3(σ(ε)− S(ε)) < − logM − η
]

≤ P
(

σ(ε) < W(1−γ)ε

)

= P
(

AW(1−γ)ε
> εN2

)

→ 0

as N → ∞, and the proof is complete.

The second conclusion in Theorem 2 follows from Ct ≤ At. To get the third we
have to show that when At/N

2 is small, Ct/N
2 is not very much smaller. To prepare

for that we need the following result.

renewalineq Lemma 3.3. Let F (t) = λt3/3!. If u(·) and β(·) are functions such that u(t) ≤
β(t) +

∫ t

0
u(t− s)dF (s) for all t ≥ 0, then

u(t) ≤ β ∗ V (t) = β(t) +

∫ t

0

β(t− s)dV (s),

where V (·) is as in Lemma 2.2.
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Proof. Define β̃(t) ≡ β(t) +
∫ t

0
u(t − s)dF (s) − u(t). So β̃(t) ≥ 0 for all t ≥ 0. If

β̂(t) ≡ β(t)− β̃(t), then

u(t) = β̂(t) +

∫ t

0

u(t− s)dF (s).

Solving the renewal equation we get u(t) = β̂ ∗ V (t), where V (·) is as in Lemma 2.2.
Since β̂(t) ≤ β(t) for all t ≥ 0, we get the result.

We now apply Lemma 3.3 to estimate the difference between EAt and ECt.

compare1 Lemma 3.4. For any t ≥ 0 and a(·) as in (1.7),

ECt ≥ EAt −
11a2(t)

N2
.

Proof. In either of our processes, if a center is born at time s, then radius of the
corresponding disk at time t > s will be (t− s)/

√
2π. Thus x will be covered at time

t if and only if there is a center in the space-time cone

Kx,t ≡
{

(y, s) ∈ Γ(N)× [0, t] : |y − x| ≤ (t− s)/
√
2π
}

. (3.6) cone

If 0 = s0, s1, s2, ... are the birth times of new centers in Ct, then

P (x 6∈ Ct|s0, s1, s2, . . .) =
∏

i:si≤t

[

1− (t− si)
2

2N2

]

≤ exp

[

−
∑

i:si≤t

(t− s)2

2N2

]

,

since 1−x ≤ e−x. Let q(t) ≡ P (x 6∈ Ct), which does not depend on x, since we have a
random chosen starting point. Recall that X̃t is the number of centers born by time
t in Ct. Using the last inequality

q(t) ≤ E exp

[

−
∫ t

0

(t− s)2

2N2
dX̃s

]

,

and ECt = N2(1− q(t)). Integrating e−y ≥ 1− y gives 1− e−x ≥ x− x2/2 for x ≥ 0.
So

ECt ≥ N2E

[

1− exp

(

−
∫ t

0

(t− s)2

2N2
dX̃s

)]

(3.7) eq7

≥ N2E

[

∫ t

0

(t− s)2

2N2
dX̃s −

1

2

(
∫ t

0

(t− s)2

2N2
dX̃s

)2
]

.
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For the first term on the right we use EX̃t = 1+λ
∫ t

0
ECsds. For the second term on

the right, we use the coupling between Ct and At described in the introduction, see
(1.1), so that we have

∫ t

0
(t− s)2dX̃s ≤

∫ t

0
(t− s)2dXs. Combining these two facts

ECt ≥
t2

2
+

∫ t

0

(t− s)2

2
λECsds−

1

2N2
E

[
∫ t

0

(t− s)2

2
dXs

]2

=
t2

2
+

∫ t

0

(t− s)2

2
λECsds−

EA2
t

2N2
. (3.8) eq6

The last equality follows from (1.2), as does the next equation for EAt.

EAt =
t2

2
+

∫ t

0

(t− s)2

2
V ′(s) ds =

t2

2
+

∫ t

0

(t− s)2

2
λEAsds. (3.9) eq13

Here V (·) is as in Lemma 2.2 and EAt = V ′(t)/λ by Lemma 2.3. Combining (3.8)
and (3.9), if u(t) ≡ EAt −ECt, and F (s) = λs3/3!, then

u(t) ≤ EA2
t

2N2
+

∫ t

0

(t− s)2

2
λu(s) ds =

EA2
t

2N2
+

∫ t

0

u(t− r) dF (r),

where the last step is obtained by changing variables s 7→ t− r. If β(t) = EA2
t/2N

2,
then by Lemma 2.6 β(t) ≤ 27a2(t)/4N2, and using Lemma 3.3 and (2.5)

u(t) ≤ β ∗ V (t) ≤ 27

4N2
(a2) ∗ V (t) ≤ 27

4N2

3

2
a2(t),

which gives the result, since 81/8 ≤ 11.

We now use Lemma 3.4 to get the last conclusion of Theorem 2.

tausigma Lemma 3.5. For any γ > 0

lim sup
N→∞

P (τ(ε) > σ((1 + γ)ε)) ≤ P
(

M ≤ (1 + γ)ε1/3
)

+ 11
ε1/3

γ
.

Proof. Let U = σ((1 + γ)ε) and T = S(ε2/3), where S(·) is as in (1.8). Now

S(ε2/3)− S((1 + γ)ε) = Nα/3

[

−1

3
log(ε)− log(1 + γ)

]

.

It follows from Corollary 1 that lim supN→∞ P (U ≥ T )

≤ P

(

− log(M) ≥ −1

3
log(ε)− log(1 + γ)

)

= P
(

M ≤ (1 + γ)ε1/3
)

.

Using Markov inequality, Lemma 3.4, and a(T ) = ε2/3N2,

P
(

|AT − CT | > γεN2
)

≤ E(AT − CT )

γεN2
≤ 6(a(T ))2

γεN4
≤ 11 · ε

1/3

γ
. (3.10) b3
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Using these two bounds and the fact that |At − Ct| is nondecreasing in t, we get

lim sup
N→∞

P [τ(ε) > σ((1 + γ)ε)] = lim sup
N→∞

P
[

|AU − CU | > γεN2
]

≤ lim sup
N→∞

P (U ≥ T ) + lim sup
N→∞

P
[

|AU − CU | > γεN2, U < T
]

≤ lim sup
N→∞

P (U ≥ T ) + P
(

|AT − CT | > γεN2
)

,

which completes the proof.

4 Proof of Theorem 3

Let C0
s,t be the set of points covered in Ct at time t by the balloons born before time

s. If we number the generations of centers in Ct starting with those existing at time
s as Ct-centers of generation 0, then C0

s,t is the set of points covered at time t by the
generation 0 centers of Ct. Let C1

s,t be the set of points, which are either in C0
s,t, or are

covered at time t by a balloon born from this area. This is the set of points covered
by Ct-centers of generations ≤ 1 at time t , ignoring births from C1

s,t \ C0
s,t, which are

second generation centers. Continuing by induction, we let Cks,t be the set of points

and Ck
s,t =

∣

∣Cks,t
∣

∣ be the total area covered by Ct-centers of generations 0 ≤ j ≤ k
at time t. Similarly Aks,t denotes the total area of the balloons in At of generations
j ∈ {0, 1, . . . , k} at time t, where generation 0 centers are those existing at time s.

Recall the following definitions from (1.7), (1.8), (1.11) and (1.12).

a(t) = (1/3)N2α/3 exp
(

N−α/3t
)

,

S(ε) = Nα/3[(2− 2α/3) logN + log(3ε)],

R = Nα/3[(2− 2α/3) logN − log(M)],

where M is the limit random variable in Theorem 1, and for log(3ε) ≤ t,

ψ(t) ≡ R +Nα/3t, W ≡ ψ(log(3ε)), and Iε,t = [log(3ε), t].

Note that ψ(t) ≤ 0 only if M ≥ N2−2α/3t.
Obviously C0

s,t ≤ A0
s,t. For the other direction we have the following lemma.

compare2 Lemma 4.1. For any 0 < s < t,

EC0
s,t ≥ EA0

s,t −
a2(s)

N2
p
(

(t− s)λ1/3
)

,

where for some positive constants c1, c2 and c4,

p(x) = c1 + c2x
2/2! + c4x

4/4!. (4.1) pxdef
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Proof. By the definition of A0
s,t,

A0
s,t =

∫ s

0

(t− r)2

2
dXr =

(t− s)2

2
Xs + (t− s)Ls + As. (4.2) Ast

For the second equality we have written (t− r)2 = (t− s)2+2(t− s)(s− r) + (s− r)2

and used (1.2). As in Lemma 3.4, a point x is not covered by time t by the balloons
born before time s, if and only if no center is born in the truncated space-time cone

Kx,s,t ≡
{

(y, r) ∈ Γ(N)× [0, s] : |y − x| ≤ (t− r)/
√
2π
}

.

So using arguments similar to the ones for (3.7) and the inequality 1−e−x ≥ x−x2/2
for x ≥ 0, which comes from integrating e−y ≥ 1− y,

EC0
s,t ≥ N2E

[

1− exp

(

−
∫ s

0

(t− r)2

2N2
dX̃r

)]

≥ N2

[

E

∫ s

0

(t− r)2

2N2
dX̃r −

1

2
E

(
∫ s

0

(t− r)2

2N2
dX̃r

)2
]

.

For the first term on the right, we use EX̃t = 1 + λ
∫ t

0
ECsds. For the second term

on the right, we use the coupling between Ct and At described in the introduction,
see (1.1), to conclude that

∫ s

0

(t− r)2 dX̃r ≤
∫ s

0

(t− r)2 dXr = 2A0
s,t.

Combining these two facts, using the first equality in (4.2), EXt = 1 + λ
∫ t

0
EAs ds,

and Lemma 3.4,

EC0
s,t ≥

t2

2
+

∫ s

0

(t− r)2

2
λECr dr −

E(A0
s,t)

2

2N2

≥ t2

2
+

∫ s

0

(t− r)2

2
λEAr dr − 11

∫ s

0

(t− r)2

2

λa2(r)

N2
dr −

E(A0
s,t)

2

2N2

= EA0
s,t − 11

∫ s

0

(t− r)2

2

λa2(r)

N2
dr −

E(A0
s,t)

2

2N2
. (4.3) eq1

To estimate the second term in the right side of (4.3), we write

(t− r)2/2 = (t− s)2/2 + (t− s)(s− r) + (s− r)2/2,

change variables r = s− q, and note a(s− q) = a(s) exp
(

−λ1/3q
)

, to get
∫ s

0

(t− r)2

2
λa2(r) dr = a2(s)

[

(t− s)2

2
λ2/3

∫ s

0

λ1/3 exp
(

−2λ1/3q
)

dq

+ (t− s)λ1/3
∫ s

0

λ2/3q exp
(

−2λ1/3q
)

dq +

∫ s

0

λ
q2

2
exp

(

−2λ1/3q
)

dq

]

≤ a2(s)

2

[

(t− s)2

2
λ2/3 + (t− s)λ1/3 + 1

]

. (4.4) 2nd
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For the last inequality we have used

∫ s

0

rk exp(−µr) dr ≤
∫ ∞

0

rk exp(−µr) dr = k!

µk+1
.

To estimate the third term in the right side of (4.3) we use (4.2) to get

E(A0
s,t)

2 ≤ 3[EX2
s (t− s)4/4 + EL2

s(t− s)2 + EA2
s].

Applying Lemma 2.6 and using the fact that a(s) = λ−1/3l(s) = λ−2/3x(s),

E(A0
s,t)

2 ≤ 3 · 27
2

[

x2(s)
(t− s)4

4
+ l2(s)(t− s)2 + a2(s)

]

≤ 243a2(s)

[

(t− s)4

4!
λ4/3 +

(t− s)2

2!
λ2/3 + 1

]

. (4.5) 3rd

Combining (4.3), (4.4) and (4.5) we get the result.

To show uniform convergence of Ck
W,ψ(·) to Cψ(·), we also need to bound the dif-

ference At and A
k
s,t for suitable choices of s and t.

Abound Lemma 4.2. If T = S(ε2/3), where S(·) is as in (1.8), then for any t > 0

EAT+tNα/3 − EAkT,T+tNα/3 ≤ ε2/3N2
∞
∑

j=k+1

tj

j!
.

Proof. Using (4.2) EA0
s,t = EAs + ELs(t − s) + EXs(t − s)2/2. If Xk

s,t and Lks,t
denote the number of centers and sum of radii of all the balloons in At of generations
j ∈ {1, 2, . . . , k} at time t, where generation 0 centers are those which are born before
time s, then for t > s,

d

dt
EX1

s,t = N−αEA0
s,t,

d

dt
EL1

s,t = EX1
s,t,

d

dt
EA1

s,t = EL1
s,t.

Integrating and using (4.2) we have

EX1
s,t = N−α

[

(t− s)EAs +
(t− s)2

2!
ELs +

(t− s)3

3!
EXs

]

,

EL1
s,t = N−α

[

(t− s)2

2!
EAs +

(t− s)3

3!
ELs +

(t− s)4

4!
EXs

]

,

EA1
s,t = N−α

[

(t− s)3

3!
EAs +

(t− s)4

4!
ELs +

(t− s)5

5!
EXs

]

.
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Turning to other generations, for k ≥ 2 and t > s,

d

dt

(

EXk
s,t − EXk−1

s,t

)

= N−α
(

EAk−1
s,t −EAk−2

s,t

)

,

d

dt

(

ELks,t −ELk−1
s,t

)

=
(

EXk
s,t − EXk−1

s,t

)

,

d

dt

(

EAks,t − EAk−1
s,t

)

=
(

ELks,t −ELk−1
s,t

)

,

and using induction on k we have

EAks,t =
k
∑

j=0

N−αj

[

(t− s)3j

(3j)!
EAs +

(t− s)3j+1

(3j + 1)!
ELs +

(t− s)3j+2

(3j + 2)!
EXs

]

.

Since Aks,t ↑ At, EAt = limk→∞EAks,t. Replacing s by T and t by T + tNα/3,

EAT+tNα/3 − EAkT,T+tNα/3 (4.6) eq5

=
∞
∑

j=k+1

[

t3j

(3j)!
EAT +

t3j+1

(3j + 1)!
Nα/3ELT +

t3j+2

(3j + 2)!
N2α/3EXT

]

.

Using the fact that EAT +Nα/3ELT +N2α/3EXT − 3a(T ) = 0 and a(T ) = ε2/3N2,
the right hand side of (4.6) is ≤ ε2/3N2

∑∞

j=k+1 t
j/j!, which completes the proof.

Recall that for log(3ε) ≤ t,

g0(t) = ε

[

1 + (t− log(3ε) +
(t− log(3ε))2

2

]

, f0(t) = g0(t)− ε7/6. (4.7) gdef2

B0bounds Lemma 4.3. For any t <∞, there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0,

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣N−2A0
W,ψ(s) − g0(s)

∣

∣ > η

)

= 0 for any η > 0,

P

(

inf
s∈Iε,t

N−2
(

C0
W,ψ(s) −A0

W,ψ(s)

)

< −ε7/6
)

≤ P (M < ε1/3) + ε1/12.

Proof. To prove the first result we use (4.2) to conclude

A0
W,ψ(t) =

(t− log(3ε))2

2
N2α/3XW + (t− log(3ε))Nα/3LW + AW .
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Applying Lemma 3.2

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣N−2A0
W,ψ(s) − g0(s)

∣

∣ > η

)

≤ lim
N→∞

P

(

|N−(2−2α/3)XW − ε| > 2η

3(t− log(3ε))2

)

+ lim
N→∞

P

(

|N−(2−α/3)LW − ε| > η

3(t− log(3ε))

)

+ lim
N→∞

P
(

|N−2AW − ε| > η

3

)

= 0.

Take ε0 = ε0(t) be such that ε
1/12
0 p(t−log(3ε)) ≤ 1, where p(·) is the polynomial in

(4.1). Let T = S(ε2/3), where S(·) is defined in (1.8), and T ′ = T +(t− log(3ε))Nα/3.
Using the fact that A0

s,s+t−C0
s,s+t is nondecreasing in s, Markov’s inequality, and then

Lemma 4.1 we see that

P

(

sup
s∈Iε,t

∣

∣A0
W,ψ(s) − C0

W,ψ(s)

∣

∣ > ε7/6N2,W ≤ T

)

≤ P
(

|A0
T,T ′ − C0

T,T ′| > ε7/6N2
)

≤
E|A0

T,T ′ − C0
T,T ′|

ε7/6N2

≤ a2(T )p(t− log(3ε))

ε7/6N4
.

Noting that P (W > T ) = P (M < ε1/3), a(T ) = ε2/3N2, and ε1/12p(t − log(3ε)) < 1
for ε < ε0 we have

P

(

sup
s∈Iε,t

∣

∣AW,ψ(s) − CW,ψ(s)
∣

∣ > ε7/6N2

)

≤ P
(

M < ε1/3
)

+ ε1/12.

which completes the proof.

Our next step is to improve the lower bound in Lemma 4.3. Let

ρ0t = N−2AW,ψ(t) − ε7/6.

On the event
F =

{∣

∣N−2C0
W,ψ(s)

∣

∣ ≥ ρ0s for all s ∈ Iε,t
}

, (4.8) Fdef

which has probability tending to 1 as ε → 0 by Lemma 4.3, C0
W,ψ(s) can be coupled

with a process B0
ψ(s) so that N−2|B0

ψ(s)| = ρ0s and C0
W,ψ(s) ⊇ B0

ψ(s) for s ∈ Iε,t. If for

k ≥ 1 Bkψ(t) is obtained from B0
ψ(t) in the same way as CkW,ψ(t) is obtained from C0

W,ψ(t),

then on F CkW,ψ(s) ⊇ Bkψ(s) for s ∈ Iε,t. For k ≥ 1 let

ρks = N−2|Bkψ(s)|.
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We begin with the case k = 1. For f0(t) as in (4.7), let

f1(t) = 1− (1− f0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
f0(s) ds

)

. (4.9) f1eq2

f1lb Lemma 4.4. For any t < ∞ there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0 and
any δ > 0,

lim sup
N→∞

P

[

inf
s∈Iε,t

(N−2C1
W,ψ(s) − f1(s)) < −δ

]

≤ P (M < ε1/3) + ε1/12.

Proof. As in Lemma 3.4, if x 6∈ B0
ψ(t), then x 6∈ B1

ψ(t) if and only if no generation 1
center is born in the space-time cone

Kε
x,t ≡

{

(y, s) ∈ Γ(N)× [W,ψ(t)] : |y − x| ≤ (ψ(t)− s)/
√
2π
}

.

Conditioning on G0
t = σ{B0

ψ(s) : s ∈ Iε,t}, the locations of generation 1 centers in

B1
t is a Poisson point process on Γ(N)× [W,ψ(t)] with intensity

N−2 × |B0
s |N−α = ρ0ψ−1(s)N

−α,

Using this and then changing variables s = ψ(r), where ψ(r) = R +Nα/3r,

P
(

x 6∈ B1
ψ(t)

∣

∣G0
t

)

= (1− ρ0t ) exp

(

−
∫ ψ(t)

W

(ψ(t)− s)2

2
ρ0ψ−1(s)N

−α ds

)

= (1− ρ0t ) exp

(

−
∫ t

log(3ε)

(t− r)2

2
ρ0r dr

)

.

Let Ex,t = {x 6∈ B1
t }. Since Kε

x,t and Kε
y,t are disjoint if |x − y| > 2(t −

log(3ε))Nα/3/
√
2π, the events Ex,t and Ey,t are conditionally independent given G0

t if
this holds. Define the random variables Yx, x ∈ Γ(N), so that Yx = 1 if Ex,t occurs,
and Yx = 0 otherwise. From (4.10)

E
(

Yx| G0
t

)

= (1− ρ0t ) exp

(

−
∫ t

log(3ε)

(t− s)2

2
ρ0s ds

)

. (4.10) cmu1

Using independence of Yx and Yz for |x− z| > 2(t− log(3ε))Nα/3/
√
2π, and the fact

that
{

z : |x− z| ≤ 2(t− log(3ε))Nα/3/
√
2π
}

has area 2(t− log(3ε))2N2α/3,

var

(∫

x∈Γ(N)

Yx dx

∣

∣

∣

∣

G0
t

)

=

∫

x,z∈Γ(N)

[

E
(

YxYz| G0
t

)

− E
(

Yx| G0
t

)

E
(

Yz| G0
t

)]

dx dz

≤ N2 · 2(t− log(3ε))2N2α/3. (4.11) cvar1
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Using Chebyshev’s inequality, we see that

P

(∣

∣

∣

∣

∫

x∈Γ(N)

(

Yx − E
(

Yx| G0
t

))

dx

∣

∣

∣

∣

>
η

2
N2

∣

∣

∣

∣

G0
t

)

≤
4var

(

∫

x∈Γ(N)
Yx dx

∣

∣

∣
G0
t

)

η2N4
. (4.12) cch1

Combining (4.10), (4.11), and (4.12) gives

P

(∣

∣

∣

∣

(

1− ρ1t
)

− (1− ρ0t ) exp

(

−
∫ t

log(3ε)

(t− s)2

2
ρ0s ds

)∣

∣

∣

∣

>
η

2

∣

∣

∣

∣

G0
t

)

≤ 8(t− log(3ε))2

η2N2−2α/3
.

The same bound holds for the unconditional probability. By Lemma 4.3 if η > 0 and

F0,η ≡
{

sup
s∈Iε,t

|ρ0s − f0(s)| ≤ η

}

, then lim
N→∞

P (F c
0,η) = 0.

Let η′ = η [1 + (t− log(3ε))3/3!]
−1
/2. Using (4.9) and the fact that for x, y ≥ 0

|e−x − e−y| =
∣

∣

∣

∣

∫ y

x

e−z dz

∣

∣

∣

∣

≤ |x− y|, (4.13) eineq

we see that on the event F0,η′ , we have for any s ∈ Iε,t
∣

∣

∣

∣

(

1− ρ0s
)

exp

(

−
∫ s

log(3ε)

(s− r)2

2
ρ0r dr

)

− (1− f1(s))

∣

∣

∣

∣

≤ |
(

1− ρ0s
)

− (1− f0(s))|+ η′
∫ s

log(3ε)

(s− r)2

2
dr ≤ η′ + η′

(s− log(3ε))3

3!
≤ η

2
.

So for any s ∈ Iε,t

lim
N→∞

P
(∣

∣ρ1s − f1(s)
∣

∣ > η
)

≤ lim
N→∞

P
(

F c
0,η′

)

+ lim
N→∞

P

(∣

∣

∣

∣

(

1− ρ1s
)

−
(

1− ρ0s
)

exp

(

−
∫ s

log(3ε)

(s− r)2

2
ρ0r dr

)∣

∣

∣

∣

>
η

2

)

= 0.

Since η > 0 is arbitrary, the two quantities being compared are increasing and con-
tinuous, and on the event F defined in (4.8) N−2C1

W,ψ(s) ≥ ρ1s for s ∈ Iε,t,

lim sup
N→∞

P

[

inf
s∈Iε,t

(N−2C1
W,ψ(s) − f1(s)) < −δ

]

≤ P (F c) + lim sup
N→∞

P

(

sup
s∈Iε,t

|ρ1s − f1(s)| > δ

)

≤ P (F c),

and the desired conclusion follows from Lemma 4.3.
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To improve this we will let

fk+1(t) = 1− (1− fk(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
(fk(s)− fk−1(s)) ds

)

, (4.14) fiter2

and recall that from (1.15) that as k ↑ ∞, fk(t) ↑ fε(t).

fklb Lemma 4.5. For any t < ∞ there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0 and
any δ > 0,

lim sup
N→∞

P

[

inf
s∈Iε,t

(N−2Cψ(s) − fε(s)) < −δ
]

≤ P (M < ε1/3) + ε1/12.

Proof. Conditioning on Gkt = σ
{

Bjψ(s) : 0 ≤ j ≤ k, s ∈ Iε,t

}

, we have

P
(

x 6∈ Bk+1
ψ(t)

∣

∣

∣
Gkt
)

=
(

1− ρkt
)

exp

(

−
∫ t

0

(t− s)2

2

(

ρks − ρk−1
s

)

ds

)

.

Let Fk,η = {sups∈Iε,t |ρks − fk(s)| ≤ η}, and η′ = η [1 + 2(t− log(3ε))3/3!]
−1
/2. Using

(4.14) and |e−x − e−y| ≤ |x − y| for x, y ≥ 0, we see that on the event Gk,η′ =
Fk,η′ ∩ Fk−1,η′ , for any s ∈ Iε,t

∣

∣

∣

∣

(

1− ρkt
)

exp

(

−
∫ t

log(3ε)

(t− s)2

2

(

ρks − ρk−1
s

)

ds

)

− (1− fk+1(t))

∣

∣

∣

∣

≤ |
(

1− ρkt
)

− (1− fk(t))|+ 2η′
∫ t

log(3ε)

(t− s)2

2
ds

= η′ + 2η′(t− log(3ε))3/3 ≤ η/2.

Bounding the variance as before we can conclude by induction on k that for any
η > 0

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣ρks − fk(s)
∣

∣ > η

)

= 0. (4.15) rhokbd

Next we bound the difference between fk(t) and fε(t). Let G(t) = t3/3! for t ≥ 0,
and G(t) = 0 for t < 0. If ∗k indicates the k-fold convolution, then for k ≥ 1, using
arguments similar to the ones in the proof of Lemma 2.2, G∗k(t) = t3k/(3k)! for t ≥ 0,
and G∗k(t) = 0 for t < 0. Now if f ∗G∗k(t) =

∫ t

0
f(t−r) dG∗k(r), f̃k(·) = fk(·+log(3ε))

and f̃ε(·) = fε(· + log(3ε)), then changing variables s 7→ t − r in (1.14) and (1.15),
and using the inequality in (4.13),

|f̃k(t− log(3ε))− f̃ε(t− log(3ε))|
≤

∣

∣

∣
exp(−f̃k−1 ∗G(t− log(3ε)))− exp(−f̃ε ∗G(t− log(3ε)))

∣

∣

∣

≤ |f̃k−1 − f̃ε| ∗G(t− log(3ε)).
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Iterating the above inequality and using |f̃ε(s)− f̃0(s)| = f̃ε(s)− f̃0(s) ≤ 1.

|fk(t)− fε(t)| = |f̃k(t− log(3ε))− f̃ε(t− log(3ε))|
≤ |f̃0 − f̃ε| ∗G∗k(t− log(3ε)) (4.16) fgap

≤ G∗k(t− log(3ε)) =
(t− log(3ε))3k

(3k)!
.

where the last equality comes from (2.1).
Choose K = K(ε, t) so that (t − log(3ε))3K/(3K)! < δ/2. Since Cψ(t) ≥ Ck

W,ψ(t)

for any k ≥ 0, and on the event F defined in (4.8), we have Ck
W,ψ(t) ≥ |Bkψ(t)|, we have

P

(

inf
s∈Iε,t

(

N−2Cψ(s) − fε(s)
)

< −δ
)

≤ P (F c) + P

(

sup
s∈Iε,t

∣

∣ρKs − fK(s)
∣

∣ > δ/2

)

.

Using (4.15) and Lemma 4.3 we get the result.

It is now time to get upper bounds on Cψ(s). Recall g0(t) defined in (4.7), let
g−1(t) = 0 and for k ≥ 1 let

gk(t) = 1− (1− gk−1(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
(gk−1(s)− gk−2(s)) ds

)

As in the case of fk(t), the equations above imply

gk(t) = 1− (1− g0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
gk−1(s) ds

)

,

so we have gk(t) ↑ gε(t) as k ↑ ∞.

glb Lemma 4.6. For any t <∞ there exists ε0 = ε0(t) > 0 such that for 0 < ε < ε0 and
any δ > 0,

lim sup
N→∞

P

[

sup
s∈Iε,t

(

N−2Cψ(s) − gε(s)
)

> δ

]

≤ P (M < ε1/3) + ε2/3.

Proof. C0
W,ψ(t) ≤ A0

W,ψ(t). If φ0
t = N−2A0

W,ψ(t) is the fraction of area covered by

generation 0 balloons at time ψ(t), generation 1 centers are born at rate N2−αφ0
ψ−1(·).

Let φ1
t denotes the fraction of area covered by centers of generations ≤ 1 at time ψ(t),

then using an argument similar to the one for Lemma 4.4 gives

lim
N→∞

P

(

sup
s∈Iε,t

φ1
s − g1(s) > η

)

= 0
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for any η > 0. Continuing by induction, if φkt is the fraction of area covered by centers
of generations 0 ≤ j ≤ k, then by an argument similar to the one for Lemma 4.5,

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣φks − gk(s)
∣

∣ > η

)

= 0 (4.17) eq9

for any η > 0. Now using an argument similar to the one for (4.16)

sup
s∈Iε,t

|gk(s)− gε(s)| ≤
(t− log(3ε))3k

(3k)!
. (4.18) eq8

Next we bound the difference between Ck
W,ψ(t) and Cψ(t). Let T = S(ε2/3), where S(·)

is as in (1.8). Using the coupling between Ct and At,

Cψ(t) − Ck
W,ψ(t) ≤ Aψ(t) −AkW,ψ(t).

Using the fact that EAs+t − EAks,s+t is nondecreasing in s, the definitions of W and

T , Markov’s inequality, and Lemma 4.2, we have for T ′ = T + (t− log(3ε))Nα/3,

P

(

sup
s∈Iε,t

(

Cψ(s) − CkW,ψ(s)
)

>
δN2

4

)

≤ P (W > T ) + P

(

AT ′ − AT,T ′ >
δN2

4

)

≤ P (M < ε1/3) +
4

δN2
E(AT ′ −AT,T ′)

≤ P (M < ε1/3) +
4ε2/3

δ

∞
∑

j=k+1

(t− log(3ε))j

j!
.

Choose K = K(ε, t) large enough so that
∑∞

j=K+1(t− log(3ε))j/j! < δ/4. If we let

FK =

{

sup
s∈Iε,t

(

Cψ(s) − CK
W,ψ(s)

)

≤ (δ/4)N2

}

, then P (F c
K) ≤ P (M < ε1/3) + ε2/3.

By the choice of K and (4.18), sups∈Iε,t |gK(s)−gε(s)| ≤ δ/2. Combining the last two

inequalities and using the fact that N−2CK
W,ψ(s) ≤ φKs = N−2AKW,ψ(s),

P

(

sup
s∈Iε,t

N−2Cψ(s) − gε(s) > δ

)

≤ P (F c
K) + P

(

sup
s∈Iε,t

∣

∣φKs − gK(s)
∣

∣ > δ/4

)

.

So using (4.17) we have the desired result.

Our next goal is the

29



Proof of Lemma 1.1. We prove the result in two steps. To begin we consider a func-
tion hε(·) satisfying hε(t) = et/3 for t < log(3ε).

hε(t) = 1− exp

(

−
∫ log(3ε)

−∞

(t− s)2

2

es

3
ds−

∫ t

log(3ε)

(t− s)2

2
hε(s) ds

)

(4.19) hep

for t ≥ log(3ε), and prove that hε(·) converges to some h(·) with the desired properties.

hepmono Lemma 4.7. For fixed t, hε(t) in (4.19) is monotone decreasing in ε.

Proof. If we change variables s = t− u and integrate by parts, or remember the first
two moments of the exponential with mean 1, then

∫ t

−∞

(t− s)es ds =

∫ ∞

0

uet−u du = et,

∫ t

−∞

(t− s)2

2
es ds =

∫ ∞

0

u2

2
et−u du = et

∫ ∞

0

ue−u du = et. (4.20) id1

Using (t − s)2/2 = (t − r)2/2 + (t − r)(r − s) + (r − s)2/2 now gives the following
identity.

∫ r

−∞

(t− s)2

2
es ds = er

[

(t− r)2

2
+ (t− r) + 1

]

. (4.21) id

Using (4.19), the inequality 1− e−x ≤ x, (4.20), and changing variables s = t− u,

hε(t)−
1

3
et ≤

∫ t

log(3ε)

(t− s)2

2

(

hε(s)−
1

3
es
)

ds

=

∫ t−log(3ε)

0

(

hε(t− u)− 1

3
et−u

)

u2

2
du.

Applying Lemma 3.3 with λ = 1 and β(·) ≡ 0 to hε(·+ log(3ε))− exp(·+ log(3ε))/3,

hε(t)−
1

3
et ≤ 0 for any t ≥ log(3ε).

This shows that if 0 < ε < δ < 1, then hδ(t) ≥ hε(t) for t ≤ log(3δ). To compare the
exponentials for t > log(3δ), we note that

∫ log(3δ)

log(3ε)

(t− s)2

2

(

hε(s)−
1

3
es
)

ds+

∫ t

log(3δ)

(t− s)2

2
(hε(s)− hδ(s)) ds

≤ 0 +

∫ t−log(3δ)

0

(hε(t− u)− hδ(t− u))
u2

2
ds.

Applying Lemma 3.3 with λ = 1 and β(·) ≡ 0 to hε(·+ log(3δ))− hδ(·+ log(3δ)), we
see that hε(t)− hδ(t) ≤ 0 for t ≥ log(3δ).
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Lemma 4.8. h(t) = limε→0 hε(t) exists. If h 6≡ 0 then h has properties (a)–(d) in
Lemma 1.1

Proof. Lemma 4.7 implies that the limit exists. Since 0 ≤ hε(t) ≤ et/3, 0 ≤ h(t) ≤
et/3 and so limt→−∞ h(t) = 0. To show that

h(t) = 1− exp

(

−
∫ t

−∞

(t− s)2

2
h(s) ds

)

, (4.22) hsatint

we need to show that as ε → 0
∫ t

log(3ε)

(t− s)2

2
hε(s) ds→

∫ t

−∞

(t− s)2

2
h(s) ds. (4.23) eq10

Given η > 0, choose δ = δ(η) > 0 so that

δ
[

1 + (t− log(3δ)) + (t− log(3δ))2/2
]

< η/4.

By bounded convergence theorem, as ε→ 0,

∫ t

log(3δ)

(t− s)2

2
hε(s) ds→

∫ t

log(3δ)

(t− s)2

2
h(s) ds.

So we can choose ε0 = ε0(η) so that the difference between the two integrals is at
most η/2 for any ε < ε0. Therefore if ε < ε0, then

∣

∣

∣

∣

∫ t

log(3ε)

(t− s)2

2
hε(s) ds−

∫ t

−∞

(t− s)2

2
h(s) ds

∣

∣

∣

∣

≤ η

2
+ 2

∫ log(3δ)

−∞

(t− s)2

2

1

3
es ds.

Using the identity in (4.21) we conclude that second term is

≤ 2δ
[

1 + (t− log(3δ)) + (t− log(3δ))2/2
]

≤ η

2
.

This shows (4.23) holds, and with (4.19) and (4.21) proves (4.22).
To prove limt→∞ h(t) = 1 note that if h(·) 6≡ 0, then there is an r with h(r) > 0,

and so for t > r
∫ t

−∞

(t− s)2

2
h(s) ds ≥ h(r)

∫ t

r

(t− s)2

2
ds = h(r)

(t− r)3

3!
→ ∞

as t→ ∞. So in view of (4.22), h(t) → 1 as t→ ∞, if h(·) 6≡ 0.
The last detail is to show if h(·) 6≡ 0, then h(t) ∈ (0, 1) for all t. Suppose, if

possible, h(t0) = 0. (4.22) implies
∫ t0
−∞

h(s)[(t − s)2/2] ds = 0, and hence h(s) = 0
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for s ≤ t0. Changing variables s 7→ t− r, and using (4.22) again with the inequality
1− e−x ≤ x, imply that for any t > t0

h(t) ≤
∫ t

−∞

(t− s)2

2
h(s) ds =

∫ t−t0

0

h(t− r)
r2

2
dr.

Applying Lemma 3.3 with λ = 1 and β(·) ≡ 0 to the function h(· + t0), we see that
h(t) ≤ 0 for any t > t0. But h(t) ≥ 0 for any t, and hence h ≡ 0, a contradiction.

To complete the proof of Lemma 1.1 it suffices to show that |fε(·)− hε(·)| and
|gε(·)− hε(·)| converge to 0 as ε→ 0. To do this, note that if

h0(t) = 1− exp

(

−
∫ log(3ε)

−∞

(t− s)2

2

es

3
ds

)

,

then

hε(t) = 1− (1− h0(t)) exp

(

−
∫ t

log(3ε)

(t− s)2

2
hε(s) ds

)

,

and so using the inequality |e−x − e−y| ≤ |x− y| for x, y ≥ 0,

|hε(t)− gε(t)| ≤ |h0(t)− g0(t)|+
∫ t

log(3ε)

(t− s)2

2
|hε(s)− gε(s)| ds.

Now using the inequality 0 ≤ e−x − 1 + x ≤ x2/2, and the identity in (4.21),

|h0(t)− g0(t)| ≤
1

2

[

ε+ ε(t− log(3ε)) + ε
(t− log(3ε))2

2

]2

≤ 3

2
ε2
[

1 + (t− log(3ε))2 +
(t− log(3ε))4

4

]

.

Now applying Lemma 3.3 with λ = 1 and β(t) = 1 + t2 + t4/4 to the function

|hε(·+ log(3ε))− gε(·+ log(3ε))| ,

we have |hε(t) − gε(t)| ≤ (3ε2/2)β ∗ V (t − log(3ε)), where V (·) is as in Lemma 2.2.
Using λ = 1 in the expression of V (·) and Lemma 2.1,

β ∗ V (t) = β(t) +

∫ t

0

β(t− s)V ′(s) ds

=

∞
∑

k=0

[

t3k

(3k)!
+ 2

t3k+2

(3k + 2)!
+ 6

t3k+4

(3k + 4)!

]

≤ 9et.

So |hε(t)− gε(t)| ≤ (3ε2/2) · 9 exp(t− log(3ε)), and so

sup
s∈Iε,t

|hε(s)− gε(s)| ≤ 9εet/2.
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Repeating the argument for fε(·), and noting that |h0(t)−f0(t)| = |h0(t)−g0(t)|+ε7/6,

sup
s∈Iε,t

|hε(s)− fε(s)| ≤
(

9
3

2
ε2 + ε7/6

)

exp(t− log(3ε)) =

(

1

3
ε1/6 +

9

2
ε

)

et.

This completes the second step and we have proved Lemma 1.1.

Now we have all the ingredients to prove Theorem 3.

Proof of Theorem 3. Let h(·) be as in Lemma 1.1. Choose ε ∈ (0, δ/6) small enough
so that

sup
s∈Iε,t

|gε(s)− h(s)| < δ/2, sup
s∈Iε,t

|fε(s)− h(s)| < δ/2.

Let D =
{

M ≤ 3εN2−2α/3
}

. On the event D, W = ψ(log(3ε)) > 0. So

P

(

sup
s≤t

∣

∣N−2Cψ(s) − h(s)
∣

∣ > δ

)

≤ P (Dc) + P
(

N−2CW + h(log(3ε)) > δ
)

+ P

(

sup
s∈Iε,t

(

N−2Cψ(s) − h(s)
)

> δ

)

+ P

(

inf
s∈Iε,t

(

N−2Cψ(s) − h(s)
)

< −δ
)

.

(4.24) eq11

To estimate the second term in (4.24) note that h(log(3ε)) ≤ (1/3) exp(log(3ε)) <
δ/2, and

P
(

N−2CW > δ/2
)

≤ P
(

AW > (δ/2)N2
)

→ 0

as N → ∞ by Lemma 3.2. To estimate the third term in (4.24) we use Lemma 4.6
to get

lim sup
N→∞

P

(

sup
s∈Iε,t

(

N−2Cψ(s) − h(s)
)

> δ

)

≤ lim sup
N→∞

P

(

sup
s∈Iε,t

(

N−2Cψ(s) − gε(s)
)

> δ/2

)

≤ P (M < ε1/3) + ε2/3.

For the fourth term in (4.24) use Lemma 4.5 to get

lim sup
N→∞

P

(

inf
s∈Iε,t

(

N−2Cψ(s) − h(s)
)

< −δ
)

≤ lim sup
N→∞

P

(

inf
s∈Iε,t

(

N−2Cψ(s) − fε(s)
)

< −δ/2
)

≤ P (M < ε1/3) + ε1/12.

Letting ε→ 0, we see that for any δ > 0,

lim
N→∞

P

(

sup
s∈Iε,t

∣

∣N−2Cψ(s) − h(s)
∣

∣ > δ

)

= 0 (4.25) eq2
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It remains to show that h(·) 6≡ 0. Let ε, γ be such that

P [M ≤ (1 + γ)ε1/3] + 11
ε1/3

γ
< 1.

Fix any η > 0 and let t0 = log(3ε(1 + γ) + 3η). Using Lemma 3.2 and 3.5

lim sup
N→∞

P
(

N−2Cψ(t0) < ε
)

= lim sup
N→∞

P (τ(ε) > ψ(t0))

≤ lim sup
N→∞

P [τ(ε) > σ(ε(1 + γ))] + lim sup
N→∞

P [σ(ε(1 + γ)) > ψ(t0)]

≤ lim sup
N→∞

P [τ(ε) > σ(ε(1 + γ))] + lim sup
N→∞

P
(∣

∣

∣
N−2AWε(1+γ)+η

− ε(1 + γ)− η
∣

∣

∣
> η
)

≤ P [M ≤ (1 + γ)ε1/3] + 11
ε1/3

γ
< 1.

But if h(t0) = 0, we get a contradiction to (4.25). This proves h(·) 6≡ 0.
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