Finite Markov Information-Exchange processes

David Aldous

February 14, 2011

The voter model and coalescing MCs.

The two models considered here use the "directed" convention: in the meeting model, when agents i, j meet, choose a random direction and indicate it using an arrow $i \rightarrow j$ or $j \rightarrow i$.

Voter model. Initially each agent has a different "opinion" - agent i has opinion i. When i and j meet at time t with direction $i \rightarrow j$, then agent j adopts the current opinion of agent i.

So we can study
$\mathcal{V}_{i}(t):=$ the set of j who have opinion i at time t.
Note that $\mathcal{V}_{i}(t)$ may be empty, or may be non-empty but not contain i. The number of different remaining opinions can only decrease with time.

Minor comments. (i) We can rephrase the rule as "agent i imposes his opinion on agent $j "$.
(ii) The name is very badly chosen - people do not vote by changing their minds in any simple random way.
(iii) In the classical, infinite lattice, setting one traditionally took only two different initial opinions.

So $\left\{\mathcal{V}_{i}(t), i \in\right.$ Agents $\}$ is a random partition of Agents．A natural quantity of interest is the consensus time

$$
T^{\text {voter }}:=\min \left\{t: \mathcal{V}_{i}(t)=\text { Agents for some } i\right\} .
$$

Coalescing MC model．Initially each agent has a token－agent i has token i ．At time t each agent i has a（maybe empty）collection $\mathcal{C}_{i}(t)$ of tokens．When i and j meet at time t with direction $i \rightarrow j$ ，then agent i gives his tokens to agent j ；that is，

$$
\mathcal{C}_{j}(t+)=\mathcal{C}_{j}(t-) \cup \mathcal{C}_{i}(t-), \quad \mathcal{C}_{i}(t+)=\emptyset .
$$

Now $\left\{\mathcal{C}_{i}(t), i \in\right.$ Agents $\}$ is a random partition of Agents．A natural quantity of interest is the coalescence time

$$
T^{\text {coal }}:=\min \left\{t: \mathcal{C}_{i}(t)=\text { Agents for some } i\right\} .
$$

Minor comments．Regarding each non－empty cluster as a particle，each particle moves as the MC at half－speed（rates $\nu_{i j} / 2$ ），moving independently until two particles meet and thereby coalesce．Note this factor $1 / 2$ in this section．

The duality relationship．

For fixed t ，

$$
\left\{\mathcal{V}_{i}(t), i \in \text { Agents }\right\} \stackrel{d}{=}\left\{\mathcal{C}_{i}(t), i \in \text { Agents }\right\} .
$$

In particular $T^{\text {voter }} \stackrel{d}{=} T^{\text {coal }}$ ．
They are different as processes．For fixed i ，note that $\left|\mathcal{V}_{i}(t)\right|$ can only change by ± 1 ，but $\left|\mathcal{C}_{i}(t)\right|$ jumps to and from 0 ．

In figures，time＂left－to－right＂gives CMC，
time＂right－to－left＂with reversed arrows gives VM．
Note this depends on the symmetry assumption $\nu_{i j}=\nu_{j i}$ of the meeting process．
Project．Read the abstract discussion of duality in Liggett（IPS sec． 2．3）；put the＂key identity for averaging processes＂in that framework．

Schematic - the meeting model on the 8 -cycle.

Voter model on the complete graph

There are two ways to analyze $T_{n}^{\text {voter }}$ on the complete graph, both providing some bounds on other geometries.
Part of Kingman's coalescent is the continuous-time MC on states $\{1,2,3, \ldots\}$ with rates $\lambda_{k, k-1}=\binom{k}{2}, k \geq 2$. For that chain

$$
\mathbb{E}_{m} T_{1}^{\mathrm{hit}}=\sum_{k=2}^{m} 1 /\binom{k}{2}=2\left(1-\frac{1}{m}\right)
$$

and in particular $\lim _{m \rightarrow \infty} \mathbb{E}_{m} T_{1}^{\text {hit }}=2$.
In coalescing RW on the complete n-graph, the number of clusters evolves as the continuous-time MC on states $\{1,2,3, \ldots, n\}$ with rates $\lambda_{k, k-1}=\frac{1}{n-1}\binom{k}{2}$. So $\mathbb{E} T_{n}^{\text {coal }}=(n-1) \times 2\left(1-\frac{1}{n}\right)$ and in particular

$$
\begin{equation*}
\mathbb{E} T_{n}^{\text {voter }}=\mathbb{E} T_{n}^{\text {coal }} \sim 2 n . \tag{1}
\end{equation*}
$$

The second way is to consider the variant of the voter model with only 2 opinions, and to study the number $X(t)$ of agents with the first opinion. On the complete n-graph, $X(t)$ evolves as the continuous-time MC on states $\{0,1,2, \ldots, n\}$ with rates

$$
\lambda_{k, k+1}=\lambda_{k, k-1}=\frac{k(n-k)}{2(n-1)} .
$$

This process arises in classical applied probability (e.g. as the Moran model in population genetics). We want to study

$$
T_{0, n}^{\text {hit }}:=\min \{t: X(t)=0 \text { or } n\} .
$$

By general birth-and-death formulas, or by comparison [board] with simple RW,

$$
\mathbb{E}_{k} T_{0, n}^{\text {hit }}=\frac{2(n-1)}{n}\left(k\left(h_{n-1}-h_{k+1}\right)+(n-k)\left(h_{n-1}-h_{n-k+1}\right)\right)
$$

where $h_{m}:=\sum_{i=1}^{m} 1 / i$. This is maximized by $k=\lfloor n / 2\rfloor$, and

$$
\max _{k} \mathbb{E}_{k} T_{0, n}^{\text {hit }} \sim(2 \log 2) n
$$

Now we can couple the true voter model (n different initial opinions) with the variant with only 2 opinions, initially held by k and $n-k$ agents. (Just randomly assign these two opinions, initially). From this coupling we see

$$
\begin{gathered}
\mathbb{P}_{k}\left(T_{0, n}^{\text {hit }}>t\right) \leq \mathbb{P}\left(T_{n}^{\text {voter }}>t\right) \\
\mathbb{P}_{k}\left(T_{0, n}^{\text {hit }}>t\right) \geq \frac{2 k(n-k-1)}{n(n-1)} \mathbb{P}\left(T_{n}^{\text {voter }}>t\right)
\end{gathered}
$$

In particular, the latter with $k=\lfloor n / 2\rfloor$ implies

$$
\mathbb{E} T_{n}^{\text {voter }} \leq(4 \log 2+o(1)) n .
$$

This is weaker than the correct asymptotics (1).

Voter model on general geometry

Suppose the flow rates satisfy，for some constant κ ，

$$
\nu\left(A, A^{c}\right):=\sum_{i \in A, j \in A^{c}} n^{-1} \nu_{i j} \geq \kappa|A|(n-|A|) /(n-1) .
$$

On the complete graph this holds with $\kappa=1$ ．We can repeat the analysis above－the process $X(t)$ now moves at least κ times as fast as on the complete graph，and so

$$
\mathbb{E} T_{n}^{\text {voter }} \leq(4 \log 2+o(1)) n / \kappa .
$$

The optimal κ is（up to a factor $(n-1) / n$ ）just $1 / \tau_{\text {cond }}$ for the Cheeger time constant $\tau_{\text {cond }}$ ，and so

$$
\mathbb{E} T^{\text {voter }} \leq(4 \log 2+o(1)) n \tau_{\text {cond }} .
$$

Coalescing MC on general geometry

Issues clearly related to study of the meeting time $T^{\text {meet }}$ of two independent copies of the MC，a topic that arises in other contexts． Under enough symmetry（e．g．continuous－time RW on the discrete torus） the relative displacement between the two copies evolves as the same RW run at twice the speed，and study of $T^{\text {meet }}$ reduces to study of $T^{\text {hit }}$ ．

First consider the completely general case．In terms of the associated MC define a parameter

$$
\tau^{*}:=\max _{i, j} \mathbb{E}_{i} T_{j}^{\text {hit }} .
$$

The following result was conjectured long ago but only recently proved． Note that on the complete graph the mean coalescence time is asymptotically $2 \times$ the mean meeting time．

Theorem（Oliveira 2010）

There exist numerical constants $C_{1}, C_{2}<\infty$ such that，for any finite irreducible reversible $M C$ ， $\max _{i, j} \mathbb{E}_{i, j} T^{\text {meet }} \leq C_{1} \tau^{*}$ and $\mathbb{E} T^{\text {coal }} \leq C_{2} \tau^{*}$ ．

Proof techniques seem special，but perhaps a good＂paper－talk＂．

To seek " $1 \pm o(1)$ " limits, let us work in the meeting model setting (stationary distribution is uniform) and write $\tau_{\text {meet }}$ for mean meeting time from independent uniform starts. In a sequence of chains with $n \rightarrow \infty$, impose a condition such as the following. For each $\varepsilon>0$

$$
\begin{equation*}
n^{-2}\left|\left\{(i, j): \mathbb{E}_{i} T_{j}^{\text {hit }} \notin(1 \pm \varepsilon) \tau_{\text {meet }}\right\}\right| \rightarrow 0 \tag{2}
\end{equation*}
$$

By analogy with the Kingman coalescent argument one expects some general result like
Open problem. Assuming (2), under what further conditions can we prove $\mathbb{E} T^{\text {coal }} \sim 2 \tau_{\text {meet }}$?
This project splits into two parts.
Part 1. For fixed m, show that the mean time for m initially independent uniform walkers to coalesce should be $\sim 2\left(1-\frac{1}{m}\right) \tau_{\text {meet }}$.
Part 2. Show that for $m(n) \rightarrow \infty$ slowly, the time for the initial n walkers to coalesce into $m(n)$ clusters is $O\left(\tau_{\text {meet }}\right)$.

Part 1 is essentially a consequence of known results, as follows.

From old results on mixing times (RWG section 4.3), a condition like (2) is enough to show that $\tau_{\text {mix }}=o\left(\tau_{\text {meet }}\right)$. So - as a prototype use of $\tau_{\text {mix }}-$ by considering time intervals of length τ, for $\tau_{\text {mix }} \ll \tau \ll \tau_{\text {meet }}$, the events "a particular pair of walker meets in the next τ-interval" are approximately independent. This makes the "number of clusters" process behave as the Kingman coalescent.

Note. That is the hack proof. Alternatively, the explicit bound involving $\tau_{\text {rel }}$ on exponential approximation for hitting time distributions from stationarity is applicable to the meeting time of two walkers, so a more elegant way would be to find an extension of that result applicable to the case involving m walkers.

Part 2 maybe needs some different idea/assumptions.
(restate) Open problem. Assuming (2), under what further conditions can we prove $\mathbb{E} T^{\text {coal }} \sim 2 \tau_{\text {meet }}$?
What is known rigorously?
Cox (1989) proves this for the torus $[0, m-1]^{d}$ in dimension $d \geq 2$. Here $\tau_{\text {meet }}=\tau_{\text {hit }} \sim m^{d} R_{d}$ for $d \geq 3$.
Cooper-Frieze-Radzik (2009) prove Part 1 for the random r-regular graph, where $\tau_{\text {meet }} \sim \tau_{\text {hit }} \sim \frac{r-1}{r-2} n$.
(the latter, containing other results, could be a "paper project").
Various variant models are easy to do heuristically - see e.g.
Sood-Antal-Radner (2008).
In the 2-opinion case, the process $X(t)=$ number of agents with opinion 1 is a martingale. So starting with k opinion 1 agents, the chance of being absorbed in the all-1 configuration equals k / n.

One can study biased voter models where a agent is more likely to copy an opinion-1 neighbor. In this case the submartingale property will imply that the chance above is $>k / n$. A more challenging situation arises in the following game-theory variant, studied in Manshadi - Saberi (2011).

Symmetric prisoner's dilemma. Each agent in state C or state D. When an agent i plays an agent j
if i is C then i incurs cost $c>0$ and j gains benefit $b>c$.
if i is D then i incurs cost 0 and j gains benefit 0 .
Consider a k-regular n-vertex connected graph on agents. Take discrete time. At each time step, each vertex plays each neighbor. Represent states by

$$
X_{t}^{i}=1(\text { agent } i \text { in state } \mathrm{C})
$$

So the payoff to i at time t equals

$$
u_{i}^{t}=-k c X_{t}^{i}+b \sum_{j \sim i} X_{t}^{j}
$$

Agents change state as follows. Fix small $\varepsilon>0$. At each time pick a uniform random agent. Other agents do not change state. Given we picked agent i at time t, set $X_{t+1}^{i}=X_{t}^{J}$, where J is a random neighbor of i chosen according to

$$
\mathbb{P}(J=j)=(1-\varepsilon) \frac{1}{k}+\varepsilon \theta_{i, t}(j)
$$

where $\theta_{i, t}$ is the measure

$$
\theta_{i, t}(j)=\frac{1}{k}\left(u_{j}^{t}+1-\frac{1}{k} \sum_{h \sim i} u_{h}^{t}\right)
$$

which is a probability measure when we impose the condition

$$
k(b+c)<1 .
$$

When $\varepsilon=0$ this is just the voter model. For $\varepsilon>0$ we are biasing toward copying the state of a currently successful neighbor.

Theorem (Manshadi - Saberi, 2011)

Consider a connected k-regular graph with girth at least 7. Initially let a random pair of neighbors have state C and the others state D; the system then evolves according to the model above. Suppose $b / c>k^{2} /(k-1)$. Fix $\gamma>0$ and set $\varepsilon=n^{-(4+\gamma)}$ and suppose n is sufficiently large. Then the probability of absorption into "all C " is $\geq \frac{2}{n}+\frac{\varepsilon}{n} f(b / c)$ for a certain strictly positive function f.

