Finite Markov Information-Exchange processes

David Aldous

February 14, 2011

The voter model and coalescing MCs.

The two models considered here use the "directed" convention: in the meeting model, when agents i, j meet, choose a random direction and indicate it using an arrow $i \rightarrow j$ or $j \rightarrow i$.

Voter model. Initially each agent has a different "opinion" – agent *i* has opinion *i*. When *i* and *j* meet at time *t* with direction $i \rightarrow j$, then agent *j* adopts the current opinion of agent *i*.

So we can study

 $\mathcal{V}_i(t) :=$ the set of j who have opinion i at time t.

Note that $\mathcal{V}_i(t)$ may be empty, or may be non-empty but not contain *i*. The number of different remaining opinions can only decrease with time.

Minor comments. (i) We can rephrase the rule as "agent *i* imposes his opinion on agent j".

(ii) The name is very badly chosen – people do not **vote** by changing their minds in any simple random way.

(iii) In the classical, infinite lattice, setting one traditionally took only two different initial opinions.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

So $\{\mathcal{V}_i(t), i \in \mathbf{Agents}\}$ is a random partition of **Agents**. A natural quantity of interest is the **consensus time**

 $T^{\text{voter}} := \min\{t : \mathcal{V}_i(t) = \text{Agents for some } i\}.$

Coalescing MC model. Initially each agent has a token – agent *i* has token *i*. At time *t* each agent *i* has a (maybe empty) collection $C_i(t)$ of tokens. When *i* and *j* meet at time *t* with direction $i \rightarrow j$, then agent *i* gives his tokens to agent *j*; that is,

$$\mathcal{C}_i(t+) = \mathcal{C}_i(t-) \cup \mathcal{C}_i(t-), \quad \mathcal{C}_i(t+) = \emptyset.$$

Now $\{C_i(t), i \in Agents\}$ is a random partition of Agents. A natural quantity of interest is the **coalescence time**

$$T^{\mathsf{coal}} := \min\{t : \mathcal{C}_i(t) = \mathsf{Agents} \text{ for some } i\}.$$

Minor comments. Regarding each non-empty cluster as a particle, each particle moves as the MC at half-speed (rates $\nu_{ij}/2$), moving independently until two particles meet and thereby coalesce. Note this factor 1/2 in this section.

The duality relationship.

For fixed *t*,

$$\{\mathcal{V}_i(t), i \in \mathsf{Agents}\} \stackrel{d}{=} \{\mathcal{C}_i(t), i \in \mathsf{Agents}\}.$$

In particular $T^{\text{voter}} \stackrel{d}{=} T^{\text{coal}}$.

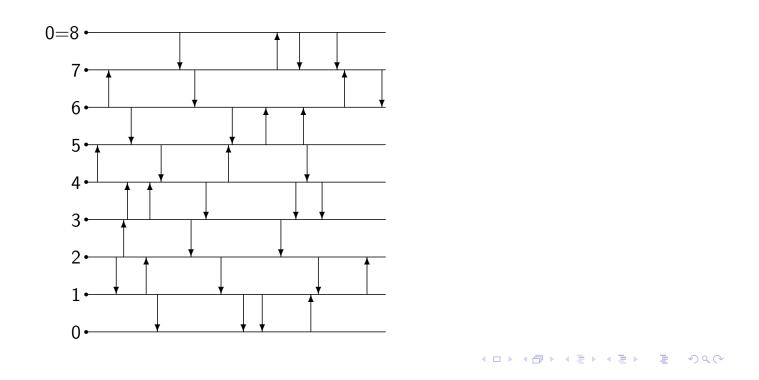
They are different as processes. For fixed *i*, note that $|\mathcal{V}_i(t)|$ can only change by ± 1 , but $|\mathcal{C}_i(t)|$ jumps to and from 0.

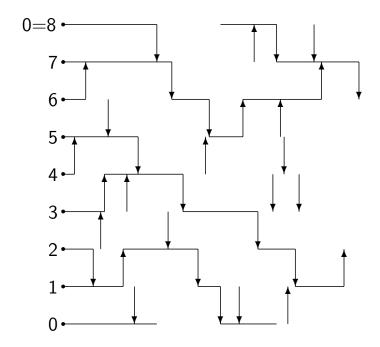
In figures, time "left-to-right" gives CMC, time "right-to-left" with reversed arrows gives VM.

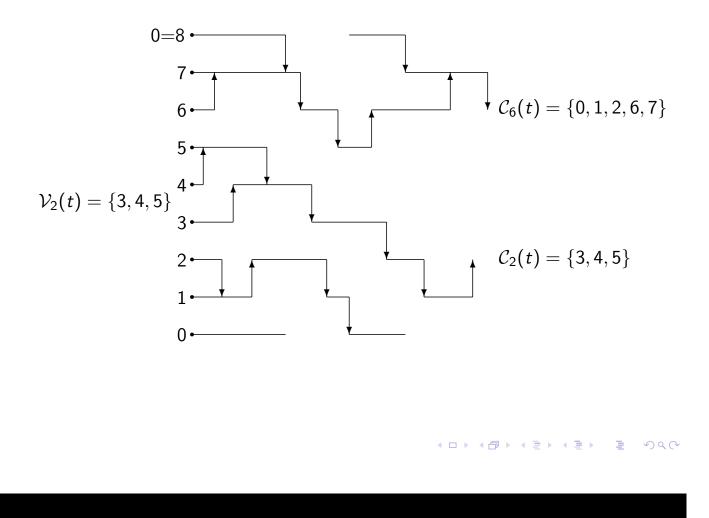
Note this depends on the symmetry assumption $\nu_{ij} = \nu_{ji}$ of the meeting process.

Project. Read the abstract discussion of *duality* in Liggett (IPS sec. 2.3); put the "key identity for averaging processes" in that framework.

Schematic – the meeting model on the 8-cycle.







Voter model on the complete graph

There are two ways to analyze T_n^{voter} on the complete graph, both providing some bounds on other geometries.

Part of **Kingman's coalescent** is the continuous-time MC on states $\{1, 2, 3, ...\}$ with rates $\lambda_{k,k-1} = {k \choose 2}, k \ge 2$. For that chain

$$\mathbb{E}_m T_1^{\mathsf{hit}} = \sum_{k=2}^m 1 / \binom{k}{2} = 2(1 - \frac{1}{m})$$

and in particular $\lim_{m\to\infty} \mathbb{E}_m T_1^{\mathsf{hit}} = 2.$

In coalescing RW on the complete *n*-graph, the number of clusters evolves as the continuous-time MC on states $\{1, 2, 3, ..., n\}$ with rates $\lambda_{k,k-1} = \frac{1}{n-1} {k \choose 2}$. So $\mathbb{E}T_n^{\text{coal}} = (n-1) \times 2(1-\frac{1}{n})$ and in particular

$$\mathbb{E}T_n^{\text{voter}} = \mathbb{E}T_n^{\text{coal}} \sim 2n. \tag{1}$$

The second way is to consider the variant of the voter model with only 2 opinions, and to study the number X(t) of agents with the first opinion. On the complete *n*-graph, X(t) evolves as the continuous-time MC on states $\{0, 1, 2, ..., n\}$ with rates

$$\lambda_{k,k+1} = \lambda_{k,k-1} = \frac{k(n-k)}{2(n-1)}.$$

This process arises in classical applied probability (e.g. as the Moran model in population genetics). We want to study

$$T_{0,n}^{hit} := \min\{t : X(t) = 0 \text{ or } n\}.$$

By general birth-and-death formulas, or by comparison [board] with simple RW,

$$\mathbb{E}_{k} T_{0,n}^{\text{hit}} = \frac{2(n-1)}{n} \left(k(h_{n-1} - h_{k+1}) + (n-k)(h_{n-1} - h_{n-k+1}) \right)$$

where $h_m := \sum_{i=1}^m 1/i$. This is maximized by $k = \lfloor n/2 \rfloor$, and

$$\max_k \mathbb{E}_k T_{0,n}^{\mathsf{hit}} \sim (2\log 2) \ n.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めるの

Now we can couple the true voter model (*n* different initial opinions) with the variant with only 2 opinions, initially held by k and n - k agents. (Just randomly assign these two opinions, initially). From this coupling we see

$$\mathbb{P}_k(T_{0,n}^{\mathsf{hit}} > t) \leq \mathbb{P}(T_n^{\mathsf{voter}} > t)$$

 $\mathbb{P}_k(T_{0,n}^{\mathsf{hit}} > t) \geq \frac{2k(n-k-1)}{n(n-1)}\mathbb{P}(T_n^{\mathsf{voter}} > t)$

In particular, the latter with $k = \lfloor n/2 \rfloor$ implies

$$\mathbb{E}T_n^{\text{voter}} \leq (4\log 2 + o(1)) n.$$

This is weaker than the correct asymptotics (1).

Voter model on general geometry

Suppose the flow rates satisfy, for some constant κ ,

$$u(A, A^c) := \sum_{i \in A, j \in A^c} n^{-1} \nu_{ij} \ge \kappa |A|(n - |A|)/(n - 1).$$

On the complete graph this holds with $\kappa = 1$. We can repeat the analysis above – the process X(t) now moves at least κ times as fast as on the complete graph, and so

 $\mathbb{E}T_n^{\text{voter}} \leq (4\log 2 + o(1)) n/\kappa.$

The optimal κ is (up to a factor (n-1)/n) just $1/\tau_{cond}$ for the Cheeger time constant τ_{cond} , and so

$$\mathbb{E} T^{\mathsf{voter}} \leq (4 \log 2 + o(1)) \ n \ \tau_{\mathsf{cond}}.$$

Coalescing MC on general geometry

Issues clearly related to study of the *meeting time* T^{meet} of two independent copies of the MC, a topic that arises in other contexts. Under enough symmetry (e.g. continuous-time RW on the discrete torus) the relative displacement between the two copies evolves as the same RW run at twice the speed, and study of T^{meet} reduces to study of T^{hit} .

First consider the completely general case. In terms of the associated MC define a parameter

$$\tau^* := \max_{i,j} \mathbb{E}_i T_j^{\mathsf{hit}}.$$

The following result was conjectured long ago but only recently proved. Note that on the complete graph the mean coalescence time is asymptotically $2 \times$ the mean meeting time.

Theorem (Oliveira 2010)

There exist numerical constants $C_1, C_2 < \infty$ such that, for any finite irreducible reversible MC, $\max_{i,j} \mathbb{E}_{i,j} T^{meet} \leq C_1 \tau^*$ and $\mathbb{E} T^{coal} \leq C_2 \tau^*$.

Proof techniques seem special, but perhaps a good "paper-talk".

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

To seek " $1 \pm o(1)$ " limits, let us work in the meeting model setting (stationary distribution is uniform) and write τ_{meet} for mean meeting time from independent uniform starts. In a sequence of chains with $n \to \infty$, impose a condition such as the following. For each $\varepsilon > 0$

$$n^{-2}|\{(i,j): \mathbb{E}_i T_j^{\mathsf{hit}} \notin (1\pm\varepsilon)\tau_{\mathsf{meet}}\}| \to 0.$$
(2)

By analogy with the Kingman coalescent argument one expects some general result like

Open problem. Assuming (2), under what further conditions can we prove $\mathbb{E}T^{\text{coal}} \sim 2\tau_{\text{meet}}$?

This project splits into two parts.

Part 1. For fixed *m*, show that the mean time for *m* initially independent uniform walkers to coalesce should be $\sim 2(1 - \frac{1}{m})\tau_{\text{meet}}$.

Part 2. Show that for $m(n) \to \infty$ slowly, the time for the initial n walkers to coalesce into m(n) clusters is $o(\tau_{meet})$.

Part 1 is essentially a consequence of known results, as follows.

From old results on mixing times (RWG section 4.3), a condition like (2) is enough to show that $\tau_{mix} = o(\tau_{meet})$. So – as a prototype use of τ_{mix} – by considering time intervals of length τ , for $\tau_{mix} \ll \tau \ll \tau_{meet}$, the events "a particular pair of walker meets in the next τ -interval" are approximately independent. This makes the "number of clusters" process behave as the Kingman coalescent.

Note. That is the hack proof. Alternatively, the explicit bound involving τ_{rel} on exponential approximation for hitting time distributions from stationarity is applicable to the meeting time of two walkers, so a more elegant way would be to find an extension of that result applicable to the case involving *m* walkers.

Part 2 maybe needs some different idea/assumptions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 - のへで

(restate) Open problem. Assuming (2), under what further conditions can we prove $\mathbb{E}T^{\text{coal}} \sim 2\tau_{\text{meet}}$?

What is known rigorously? Cox (1989) proves this for the torus $[0, m-1]^d$ in dimension $d \ge 2$. Here $\tau_{\text{meet}} = \tau_{\text{hit}} \sim m^d R_d$ for $d \ge 3$. Cooper-Frieze-Radzik (2009) prove Part 1 for the random *r*-regular graph, where $\tau_{\text{meet}} \sim \tau_{\text{hit}} \sim \frac{r-1}{r-2}n$. (the latter, containing other results, could be a "paper project").

Various variant models are easy to do heuristically – see e.g. Sood-Antal-Radner (2008).

In the 2-opinion case, the process X(t) = number of agents with opinion 1 is a martingale. So starting with k opinion-1 agents, the chance of being absorbed in the all-1 configuration equals k/n.

One can study *biased* voter models where a agent is more likely to copy an opinion-1 neighbor. In this case the submartingale property will imply that the chance above is > k/n. A more challenging situation arises in the following game-theory variant, studied in Manshadi – Saberi (2011).

Symmetric prisoner's dilemma. Each agent in state C or state D. When an agent i plays an agent j

if i is C then i incurs cost c > 0 and j gains benefit b > c.

if i is D then i incurs cost 0 and j gains benefit 0.

Consider a k-regular n-vertex connected graph on agents. Take discrete time. At each time step, each vertex plays each neighbor. Represent states by

 $X_t^i = 1$ (agent *i* in state C).

So the payoff to *i* at time *t* equals

$$u_i^t = -kcX_t^i + b\sum_{j\sim i}X_t^j.$$

590

Agents change state as follows. Fix small $\varepsilon > 0$. At each time pick a uniform random agent. Other agents do not change state. Given we picked agent *i* at time *t*, set $X_{t+1}^i = X_t^J$, where *J* is a random neighbor of *i* chosen according to

$$\mathbb{P}(J=j) = (1-\varepsilon)\frac{1}{k} + \varepsilon\theta_{i,t}(j)$$

where $\theta_{i,t}$ is the measure

$$\theta_{i,t}(j) = \frac{1}{k} (u_j^t + 1 - \frac{1}{k} \sum_{h \sim i} u_h^t)$$

which is a probability measure when we impose the condition

$$k(b+c) < 1.$$

When $\varepsilon = 0$ this is just the voter model. For $\varepsilon > 0$ we are biasing toward copying the state of a currently successful neighbor.

Theorem (Manshadi - Saberi, 2011)

Consider a connected k-regular graph with girth at least 7. Initially let a random pair of neighbors have state C and the others state D; the system then evolves according to the model above. Suppose $b/c > k^2/(k-1)$. Fix $\gamma > 0$ and set $\varepsilon = n^{-(4+\gamma)}$ and suppose n is sufficiently large. Then the probability of absorption into "all C" is $\geq \frac{2}{n} + \frac{\varepsilon}{n}f(b/c)$ for a certain strictly positive function f.