This relative neighborhood network is part of a family:

Proximity graphs

Write v_{-}and v_{+}for the points $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, 0\right)$. The lune is the intersection of the open discs of radii 1 centered at v_{-}and v_{+}. So v_{-} and v_{+}are not in the lune but are on its boundary. Define a template A to be a subset of \mathbb{R}^{2} such that
(i) A is a subset of the lune;
(ii) A contains the line segment $\left(v_{-}, v_{+}\right)$;
(iii) A is invariant under reflection (left - right and top - bottom)
(iv) A is open.

For arbitrary points x, y in \mathbb{R}^{2}, define $A(x, y)$ to be the image of A under the transformation (translation, rotation and scaling) that takes (v_{-}, v_{+}) to (x, y).

D.G. Kirkpatrick and J.D. Radke

Definition. Given a template A and a locally finite set \mathbf{x} of vertices, the associated proximity graph G has edges defined by: for each $x, y \in \mathbf{x}$,
(x, y) is an edge of G iff $A(x, y)$ contains no vertex of \mathbf{x}.
There are two "named" special cases.
If A is the lune then G is the relative neighborhood network.
If A is the disc centered at the origin with radius $1 / 2$ then G is called the Gabriel network.
Note that replacing A by a subset A^{\prime} can only increase the edge-set.

Gabriel network on 500 cities.

