

This relative neighborhood network is part of a family:

Proximity graphs

Write v_- and v_+ for the points $(-\frac{1}{2}, 0)$ and $(\frac{1}{2}, 0)$. The **lune** is the intersection of the open discs of radii 1 centered at v_- and v_+ . So v_- and v_+ are not in the lune but are on its boundary. Define a **template** A to be a subset of \mathbb{R}^2 such that

(i) A is a subset of the lune;

(ii) A contains the line segment (v_-, v_+) ;

(iii) A is invariant under reflection (left - right and top - bottom)

(iv) A is open.

For arbitrary points x, y in \mathbb{R}^2 , define A(x, y) to be the image of A under the transformation (translation, rotation and scaling) that takes (v_-, v_+) to (x, y).

David Aldous

Spatial random networks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

5900

Definition. Given a template A and a locally finite set \mathbf{x} of vertices, the associated **proximity graph** G has edges defined by: for each $x, y \in \mathbf{x}$,

(x, y) is an edge of G iff A(x, y) contains no vertex of **x**.

There are two "named" special cases.

If A is the lune then G is the **relative neighborhood network**.

If A is the disc centered at the origin with radius 1/2 then G is called the **Gabriel network**.

Note that replacing A by a subset A' can only increase the edge-set.

David Aldous

Spatial random networks

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필

590

Gabriel network on 500 cities.

David Aldous

Spatial random networks