CHAPTER 18

Convergence in Distribution
% on Polish Spaces

e want to extend the concept of convergence in distribution to probability
I' -"_',‘ipnces other than (R, B). Certain metric spaces, known as ‘Polish spaces’, play
~ a central role. Particularly important examples of Polish spaces are the real
VI ;‘I- ﬁne, the extended real line, d-dimensional Euclidean space, infinite products of
~ intervals, and spaces of continuous functions. Thus, this chapter may be viewed
4 a mechanism for extending the concepts and results discussed in Chapter 14
to a wide variety of settings. (Basic facts about metric spaces are treated briefly
s in Appendix B. Some of the topology in Appendix C is also relevant.)
 Particular attention will be given to distributions on R*. A central limit
theorem will be proved by using the ‘Cramér-Wold Device’ which reduces certain
~ problems for R* to problems for R.

Whar

18.1. Polish spaces

uuch of the theory developed in Chapter 14 can be adapted to a certain type of
ic space which we now define.

Definition 1. A Polish space is a complete metric space that has a countable

- The real line R (with the usual Euclidean metric) is a Polish space, with
~ the rational numbers constituting a countable dense subset. As described in
_ - Appendix B, the extended real line Ris a complete metric space with the distance
between z and y defined as |arctany — arctanz|. It is a Polish space because
the rational numbers constitute a countable dense set.

g r Remark 1. Because the definition of Polish space requires completeness of
3 ,‘ﬂh metric, the correct choice of metric is important. For example, if we used
F,"{;h metric p(z,y) = |arctanz — arctany| in R, we would not have completeness,

- “Spite the fact that the open sets arising from this metric are the same as those
: s-.mE from the usual metric.
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348 18. CONVERGENCE IN DISTRIBUTION ON POLISH SPACES

Another important Polish space is R¢ with the usual (Euclidean) metric: the
distance between z and y equals

The set of points having rational coordinates is a countable dense set. Three t
other metrics for R? that give the same open sets as this metric and also make L
R? into a Polish space are -

d d i
>y -l S (lys —zln 1), 0
j=1 j=1 A
and :
(18.1) f: lys — 2l A 1
' = 7 e 1

Although (18.1) is perhaps the most complicated of the alternate metrics ‘.a ;

for R, it has the advantage that it generalizes easily to R™, as shown by the
following example.

Example 1. We use R to denote the space of all sequences (£1,Z2,... Yof
real numbers, with the product topology. We want to metrize this topological 'ci
space; that is, we want to make it into a metric space in such a way that tk _' s
metric gives the same open sets as does the product topology. We define the

distance between two sequences x and y to be 5 "
_ - ‘yj - Ijl Al (L5 1
(182) plz,y) = 3 B -
J=1 2

It is straightforward to check that this definition gives a metric for R®. We ' § ,
- -
check that this metric gives the same open sets as does the product topology.

We must show (i) if O is an open set in the product topology, then for
r € O, there is an open set U in the topology given by the metric p such i)
r €U and U C O, and (ii) if U is an open set in the topology given by p, the e 0 |

and O CU.
Every open set O in the product topology is the union of sets of the form‘_n

(183) {(Ilva)-'-): (Ilv-"axd) € Od} ' j%'

for some positive integer d, where O, is an open set in R4, It follows that #
proving (i) and (i), we may restrict our attention to sets O of the form (184°
Similarly, every open set U in the topology given by the metric p is a unﬂ"
sets that are open balls in that metric, so in (i) and (ii) we only need to €0 *-"
open balls U. :

We will prove (ii), an
pall in R™® with the m
standard argument invo
that the open ball U’ =
of the form (18.3) that
94-1 > L and let Oy be
with radius g, using the
(18.3). Clearly z € 0.\
if y € O, then p(z,y) <

Those sequences cont
different from 0 constitu
also complete, a consequ
of R Therefore R is a
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18.1. POLISH SPACES 349

We will prove (ii), and leave the proof of (i) to the reader. Let U/ be an open
pall in B> with the metric p, and pick a point x = (zy,22,...) € U. By a
standard argument involving the triangle inequality, there exists an € > 0 such
that the open ball U’ = {y: p(x,y) < £} is contained in U. We will find a set
of the form (18.3) that contains z and is contained in U’. Choose d such that
9d-1 > L and let Oy be the open ball centered at the point (x1,...,z4) in R4
with radius , using the metric (18.1). Let O be defined in terms ot Oq4 as in
(18.3). Clearly x € 0. Moreover, it is easy to check from the definition of p that
if y € O, then p(x,y) <&,50 0 C U’ as desired.

Those sequences containing only rational terms and only finitely many terms
Jdifferent from O constitute a countable dense set in R*®. The metric space R> is
also complete, a consequence of the second problem below and the completeness
of R Therefore R* is a Polish space.

Problem 1. Decide if the following sequence in R™ converges and if so to what:

((1,0,0.0,0,...), (0,2,0,0,0,...), (0,0,4,0,0,...), (0,0,0,8,0,...), ).

Problem 2. Let z,, n=1,2,..., and y be members of R®. Prove that z, — y as
i — ~o if and only if x5, — y; where Zj.n is the ]“‘ term of r, and y; is the j'h
term of y. (Comment: One says that the topology that we have given R™ is the
topology of ceordinate-wise convergence.)

The method used in Example 1 to find a suitable metric for R generalizes
casily to countable products of arbitrary Polish spaces.

Proposition 2. For j = 1,2,..., let (¥;,p;) be a Polish space, and let ¥ =
®jx:1 W, with the topology on ¥ being the product topology. Forz = (xy,z2,...)
and y = (Y1, y2,-..) in U, define

xj,yj Al

nMx

Then (. p) is a Polish space.

In Example 1 and the preceding proposition, the setting is one in which the
space of interest already has a natural topology attached to it. Therefore the
problem was to construct a metric consistent with the topology so that the re-
sulting metric space is a Polish space. The following problem presents a situation
vhere there is already a natural choice for the metric.

Problem 3. Let C[0, 1] denote the metric space of continuous R-valued functions

on {0, 1] with the distance between two functions f and ¢ being defined as the
quantiry

(18.4) wax{| /() - g(t)]: £ € [0,1]}.
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Prove that C[0,1] is a Polish space and that the Borel o-field equals

o({f: ft) € B}: te [0,1], Borel BCR).

The following proposition provides further examples of Polish spaces.

Proposition 3. A closed subset of a Polish space is a Polish space with the -

inherited metric.

Proof. Let (U, p) denote the Polish space and C the closed subset. By
Problem 1 of Appendix B, (C,p) is a metric space.

Consider a Cauchy sequence in C. It converges to a member of ¥ of ¥. Thig
# must be a member of C; otherwise C' would not be closed. Thus C ig

point
complete.

Let D be a countable dense subset of ¥. For each positive integer n let D,
consist of those members of D whose distance from C is less than L. For each
member 3 of Dy choose a member of C, conceivably ¥ itself, whose distance
from ¢ is less than % and let E, denote the set of such chosen points. Every =
point in C is within a distance of % of some member of £,. Hence, U, Ey, is

2 countable dense subset of C. O

Problem 4. Explain why {f € CI[0, 1]: f(0) =0} is a Polish space, with the dis-.
tance between f and g being specified by (18.4). ;

* Problem 5. Give the set C[0,00) of continuous R-valued functions on [0,00) &

)
i
netric so that it becomes a Polish space with the topology of uniform convergence BN
i
=

on bounded sets. ey
B
g
Example 2. [Infinite-dimensional cube] Consider the space [0, 1] Thisb_t;;':f"a---_;
the set of all sequences (r1,x2,...) of real numbers belonging to the interval *
[0, 1]. It is a subset of the space R introduced in Example 1, and it is easy 10 t
check that it is closed, since it is a product of closed sets. By Proposition 3, L3 et 3

is itself a Polish space, with distance function p given by (18.2).
We may also take the point of view that [0,1]™ is a countable product of
Polish spaces, and hence is itself a Polish space by Proposition 2. And sinee
it is also the product of compact sets, it is compact by the Tychonoff Theorem
{ Theorem 3 of Appendix C). This fact gives importance to the next result, which”
says that an arbitrary Polish space is topologically equivalent to a Borel subset.

of the infinite-dimensional cube.

Lemma 4. For any Polish space ¥, there exists a function p from W onto &
Borel subset of [0,11 such that p is continuous and one-to-one on ¥ and ¢

is continuous {and one-to-one) on (W) R

PROOF. Let
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defined by

We claim tha
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The continui
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We will prove
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18.1. POLISH SPACES 351

PRrROOF. Let ¥ be an arbitrary Polish space with metric ¢, and let (1,: n =
1,2,.--) be a countable dense subset of ¥. Consider the function p: ¥ — [0, 1]*
defined by

¥ (0@ ) AL oW, Y2) AL, L)

We claim that ¢ is one-to-one and that both ( and ¢! (defined on the image
of ) are continuous.

The continuity of ¢ is an immediate consequence of the continuity of the
functions ¥ ~» o (¥, ¥,) for all n. To prove that v is one-to-one, let ¢ and n be
two distinct members of ¥, and let ¢ = (3, 7) A2. By the definition of a metric,
¢ > 0. Using the fact that the set (y,: n = 1,2,...) is dense, choose k so that
o(, %) < £/2. It follows from the triangle inequality that o(n, ¢x) > £/2, so
o(n) and () necessarily differ at the k*® coordinate. Therefore, p(n) # @(1),
and we may conclude that  is one-to-one.

To show that ¢! is continuous at an arbitrary point (zy,z2,...) in (¥), set
o @1, T2, 00) = 0, fix £ € (0, é), and then consider an arbitrary (y1,y2,...) €
o(¥) for which

£
p((xy 22, ), (W1, 02,2 )) < TR

where p is given by (18.2) and k is chosen so that o(y,yy) < /3. Let =
¢ Hyi.y2,...). Note that, by the definition of v, o(n,¥x) = yx and o (¥, Y) =
k. It follows from the definition of the metric p that
£
|U(n"¢7k) - U('llH wk)l < Qkp((xlazﬁy 50 )7 (y11y27 o0 )) < § 3

.,

so o(n, ¥r) < 2¢/3. Thus
U(wan) S U(L/)”llfk) + U(’ka) <E.

The continuity of ¢! follows.

We will prove that () is a Borel set by writing it in terms of countably many
operations involving open and closed subsets of [0,1]°°. Let D be a countable
dense subset of ¥. For each d € D and each positive integer k, let B(d,1/k)
be the open ball of radius 1/k centered at d. By the continuity of ¢!, the set
9(B(d,1/k)) is an open subset of ¢(¥) in the relative topology, so there exists
aset V(d. k) which is open in the topology of [0.1]* such that

P(B(d,1/k)) = V(d, k) N p(T).
Let Vi(k) = J,cp V(d, k). We claim that

(18.5) () = () N (ﬂ V(k)) ,
k=1

where (W) is the closure in [0, 1} of ¢(¥). Clearly, (18.5) implies that ()
is Borel.

Each member of ¢(¥) belongs to each V (k) and thus to the set on the right
side of (18.5). It remains to show that if v belongs to the set on the right side of
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existence of dx € D such that v € V(dk, k). Since v is in the closure of p(¥), |

(18.5), then v belongs to ©(¥). For each k, the fact that v € V(k) implies the

every open neighborhood of v contains a member of ¢(¥). In particular, for each
k, we may choose vy € @(®) such that
ve € V(d, )N -0V (de, k) N {u €0, 1%°: p(u,v) < £}
Note that vy — v as k — 0o. Also note that (g~ (vk): k = 1,2,...) is ;;.'. ,
Cauchy sequence in ¥, since for j,k > m, v; and v, are both members of '-"‘
V(dm,m) and hence o(p ;)¢ k) < 2 Since ¥ is a Polish space, ¢ =
limg ¢~ (vg) exists. By the continuity of ¢, p(1) = limg vx = v. Thus v € (%), dy
as desired. O 4

Problem 6. [Infinite-dimensional space-filling curve] It is a well-known fact, often
discussed in topology texts, that there exists a continuous function h from [0,1],
onto [0,1)?. Such a function is a Peano curve, named after its discoverer. Use =
h to construct a continuous function from [0, 1] onto [0,1]*. Hint: Since hisa
continuous [0, 1)*-valued function, it can be expressed in terms of two continuous %
[0, 1}-valued functions as h = (hy,hs). Consider the function

(h1,h1th,hxohzohg,hlthohzohg,..‘).

18.2. Definition of and criteria for convergence

When we view Polish spaces as measurable spaces we follow our customary on-
vention that the o-field is the Borel o-field unless something to the contra
is explicitly stated. In particular, throughout this section this convention is
force. The following definition is motivated by Proposition 7 of Chapter 14.

Definition 5. Let Q and Qn, n = 1,2,..., be probability measures on. '
Polish space ¥. Then (Q,:n=1,2,.. .) converges to @, denoted by @n = @
n — 00, if, for every R-valued bounded continuous function g on ¥, [ 9dQn

[ 9dQ as n — oo.

For random variables having values in a Polish space, we say that a sequence
(X,) converges to X in distribution and write ol

D
X, — X asn— oo,

if Qn — @, where @, and Q) denote the distributions of X,, and X, respecti

The following theorem generalizes Proposition 7 of Chapter 14 to the setting
of Polish spaces. The name of the theorem refers to the fact that it contains &
many conditions. Note the new condition (vi) and the change in condition (B
We leave it to the reader to check that the set which appears in conditioﬂ{ﬂ, L
is a Borel set. As in Proposition 7 of Chapter 14 we use A for the boundar¥ d

a set A.

18.2

Theorem
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the ‘ Theorem 6. [Portmanteau] Let ) and Qn,n =1,2,..., be probability mea-
T) sures on & Polish space W. Then the following conditions are equivalent:

1
ach (i) Qn = @ asn — o0;

(ii) limp oo [ 9dQn = [ gdQ for each bounded uniformly continuous
function g on ¥;
(i) limsup,,_, . @n(C) < Q(C) for each closed subset C' of ¥,

sa (iv) Hminf,, 00 @n(O) > Q(O) for each open subset O of ¥;

i of (v) im0 @n(A) = @(A) for each Borel subset A of ¥ for which

b = Q(04) = 0;

¥), (vi) limy, 00 fng,, = fng for each bounded measurable function g

for which Q({y € ¥: g 1s discontinuous at 1}) = 0.

Proor. That (i) = (ii) and (vi) = (i) are both obvious.

)t 811; I The proof that (ii) == (iii) is essentially the same as the proof of the cor-
’se responding part of Proposition 7 of Chapter 14, since the functions introduced
3 aif in that proof are uniformly continuous and are defined in a manner that works
s . - equally well in a metric space.
The proofs that (iii) <= (iv) and {(iii), (iv)} == (v) are also the same as
the corresponding parts of the proof of Proposition 7 of Chapter 14.
Finally we prove that (v) == (vi). Let g be a bounded measurable function
from ¥ to R, and let
D = {3 € ¥: g is discontinuous at 1} .
»u-‘ Assume that Q(D) = 0. For each n, ¢ may be regarded as a bounded random
J-:} variable from (¥, 4,Q,) to (R, B), where .4 and B are the respective Borel o-
fields. Let R, be the distribution of this random variable. Similarly, ¢ is a
bounded random variable from (¥,.4,Q) to (R, B) whose distribution will be
a : denoted by R. We will first show that R,, — R as n — oo.
" : Let B be a Borel subset of R for which R(OB) = 0. Then Q(¢g~*(4B)) = 0.
-+ It is easily checked that if ¥ € ¢~ 1(B), then either g is discontinuous at o,
‘ or g() € OB. Hence 9~ (B) € DU g }(dB), so that Q(dg~*(B)) = 0.
o Thus, Q,(¢71(B)) — Qg1 (B)) as n — oo, or equivalently, R, (B) = R(B) as
‘ n—+ . By (v) of Proposition 7 of Chapter 14, R,, ~ R as n — oc.
By (ii) of Proposition 7 of Chapter 14, [ hdR,, — [hdR as n — oo for each
bounded continuous R-valued function h on R. We apply this fact with
iﬁ : r iflz] <e
4," g h(z) =< —¢ ifr < —c
) c ifz>e
i} ‘

f , where ¢ = sup{lg(¥)]: ¥ € ¥}. Doing so completes the proof since [ gdQ, =
~ [hdR, and [4dQ = [hdR. O
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Corollary 7. Let Q and R be two distributions on a Polish space. If

(18.6) / gdR = / 9dQ | 4 f

for each bounded uniformly continuous function g on ¥ then R = Q.

PROOF. Suppose that (18.6) holds. By letting R = Q. for all n in the Port- -
manteau Theorem one gets R(O) > Q(O) for every open set O. Interchanging
the roles of Q and R gives Q(0) > R(O). Since R(0) = Q(O) for every open
set, O, it follows by the Uniqueness Theorem that R = (. O

Corollary 8. Let Q and R be two distributions on a Polish space. If both R
and @) are limits of the same sequence of distributions, then R = Q. '

Proor. If R and Q are both limits of the same sequence, then by the Port- "1

manteau Theorem, (18.6) holds. [J

It is not immediately apparent from the definition of convergence for a se-
quence of distributions on a Polish space that a given sequence can converge to
only one distribution, but the preceding corollary shows that to be the case. (Of
course, a sequence that does not converge might have various subsequences that 'I};iﬂ.

converge to different limits.) e )ﬁ 5

In Chapter 14 we found a connection hetween convergence in distributionon
R and convergence in probability of sequences of R-valued random variables. ;*
This connection will carry over to Polish spaces, once we have appropriately !.1"’
generalized the definition of convergence in probability. b1

Let (X,:n = 1,2,...) be a sequence of random variables with values ina
Polish space (¥, p). The sequence (X,) converge in probability to a P-valued
random variable X if, for every € > 0, ‘

lim P[p(X,Xn)>¢e]=0. ;
n-—+0G .
¥

It is Cauchy in probability if, for every & > 0, there is an integer [ such that

Pp(Xn, Xin) > gl <e

whenever m,n > L. ’
Since a Polish space is a complete metric space, a sequence of random variables
with values in a Polish space converges almost surely if and only if it is almost

surely Cauchy. The statements and proofs of Theorem 2 and Lemma 924, bothof 'f' :

Chapter 12, carry over to the present setting along with Lemma 3 and Problem3¥ >
of that same chapter. Thus, a sequence is Cauchy in probability if and only if it LR
converges in probability. Moreover, almost sure convergence implies convergence

in probability. Also, convergence in probability implies almost sure Corl\’E’Ig"":":e "; "

. ~ b
for an appropriate subsequence. T

G R 1 R ¢

Foan

Proposition
mon probability .
the sequence (Xn
Xn Py X oasn -

Problem 7. P:
bounded R-val
{(goXn:n=1
R-valued rand

The next resu
space converges i
continuous functi

Proposition
common Polish s
T, and let R and
fQn—Qasn-

* Problem 8. P1

Problem 9. Le
suppose that

as n —+ 0o

In this section we

duce the concept
- distributions on a
.- sequentially comp

As described i1

¢ contained in the 1

Proposition 1

Problem 10. F
sition 3, both ¢

Problem 11. F
show that {x:
space C[0, 1] d




r———

18.3. RELATIVE SEQUENTIAL COMPACTNESS 355

Proposition 9. Let X and X,, n=1,2...., be random variables on a com-
son probability space having values in a common Polish space. Suppose that

the sequence (Xp:n = 1,2....) converges lo X in probability as n — . Then

n -
Y, — Y asn = .

problem 7. Prove the preceding proposition. Hint: Let g be a uniformly continuous
bounded Revalued function defined on the Polish space, and show that the sequence
fgoXp:n= 1,2,...) of R-valued random variables converzes in probability to the
Z.valued random variable go X

[he next result says that if a sequence of probability measures on a Polish
Space COUVETEes in distribution, then so does any sequence induced from it by a
contintous function into another Polish space.

Proposition 10. Let Q and Qu.m =1.2,..., be probability measures on a
common Polish space ¥. Let h be a continuwous function from ¥ to « Polish space
1. und let R and Ry, be the measures induced by h from @ and Q,,, respectiwely.
IfQn = asn— 00, then R, — Il as n — .

Problem 8. Prove the preceding proposition.

Problem 9. Let X and X,, n = 1.2,..., be Cl0, 1}-valued randoms variables and

aippose that Xy, 2Ly X as n — . Prove that
max{ Xn(0): 0 < £ <1} -5 max{X(): 0 <t <1}

FENSTERES S O

18.3. Relative sequential compactness

[ this secrion we prove a basis fact about compactness in Polish spaces, intro-
duce the concept of relative sequential compactness for families of probability
distributions on a Polish space, and finally prove that any such family s relatively
wqentially compact if the Polish space itself is compact.

As deseribed in Appendix B, a set is totally bounded it tor every = > 0.1t is
cattained in the union of a finite collection of balls of radius less than =

; Proposition 11. A Polish space is compact if and only of it is totally bounded.
Problem 10. Prove the preceding proposition. Hint: Use Proposition 2 and Propo-

N

sition 3. borh of Appendix B.

u

Problem 11. Either by using the preceding proposition or by a direct arguient,

e

“how that {o: be(0! < 1 for all ¢ € {01 is not a compact subset of the Polish

space Cly, 1] described in Problem 3.
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Problem 12. Without using Proposition 11, give a direct proof of the total bound-
edness of the infinite-dimensional cube defined in Example 2.

Definition 12. A family
relatively sequentially compact if every sequence (@n:n =1,2,. ..} of members

of Q has a convergent subsequence.

The following lemma constitutes a major step in the identification of the
relatively sequentially compact families of distributions on a Polish space.

Lemma 13. Every family of probability distributions on the infinite-dimen- -
sional cube [0,1]% s relatively sequentially compact. ‘

PROOF. Let (Qn:n = 1,2,...) be a sequence of probability measures on
[0,1]°°. By Problem 6 there exists a continuous function g from [0,1] onto
[0,1]°. Define f: [0,1]® — [0,1] by »

f(z) =inf{t € [0,1]: g(t) = ), zel0,1]™.

It follows from the continuity of g that g o f is the identity function. The
measurability of f follows from the fact that {z: f(x) < a} is compact, being
the image under g of the compact set [0,a] (see Problem 7 of Appendix B).
For n = 1,2,..., let R, be the sequence of probability measures induced on
[0,1] by f from Qn. By Theorem 13 of Chapter 14, there exists a convergent

subsequence (Ry,: k=1,2,.. .} with limit equal to some probability measure J; 54
[0,1]® by g. Note that for each n, ;

Q) is the measure induced by g from R,. By Proposition 10, the subsequence
(Qn.: k=1,2,...) converges to Q. [J -

on [0,1]. Let @ be the measure induced on

The following result is worth remembering,
the forthcoming Theorem 17.

'

i
-4
=

s

Proposition 14. Every family of probability distributions on a compact Pol
ish space is relatively sequentially compact. - A

chapter to prove the preceding proposition.

We conclude this section with a simple result that is quite useful for proving
convergence in distribution in Polish spaces. 3

Proposition 15. Let (Qn:n=1,2,...) be a relatively sequentially compact

sequence of probability measures
subsequence has the same limiting probability measure Q. Then Qn = Qm

n — OQ.

Q of probability distributions on a Polish space ¥ ijs

even though it is a special case of
gg
~ "fg.
: .:.......]
Problem 13. Use Problem 7 of Appendix B and Lemma 4 and Lemma 13 of this -'f"t i |

on a Polish space such that every convergent .

%
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Problem 14. Prove the preceding proposition. Hint: See the solution of Proposi-
tion 4 of Appendix B.

18.4. Uniform tightness and the Prohorov Theorem

In this section we identify necessary and sufficient conditions for a family of
probability measures on a Polish space to be relatively sequentially compact.

Definition 16. A probability distribution on a Polish space ¥ is tight if, for
every € > 0, there exists a compact subset K of ¥ such that Q(K¢) < e. A
family @ of probability distributions on ¥ is uniformiy tight if, for every € > 0,
there exists a compact subset K of ¥ such that Q(K°) < e for every Q € Q.

Some use the term ‘tight’ for a family to mean ‘uniformly tight’, but we will
not use the abbreviated term.

Theorem 17. [Prohorov] A family of probability measures on a Polish space
¥ is relatively sequentially compact if and only if it is uniformly tight.

Proor. Let @ be a uniformly tight family of probability measures on ¥, and
let (Qn: n=1,2,...) be asequence of members of Q. By definition, there exists,
for each = > 0, a compact set K, C ¥ with the property that Q,(K.) > 1 —¢ for
all n. We use the function ¢ defined in Lemma 4 to transfer everything to the
Polish space [0, 1]*°. Let C. = ¢(K,). By Problem 7 of Appendix B, each C. is a
compact subset of [0, 1]°. Let (R,: n = 1,2,...) be the sequence of probability
measures on [0, 1]°° induced by ¢ from the sequence (Q,,: n = 1,2,...). Note
that R,(C.) > 1 — ¢ for all n and e.

By Lemma 13 there is a subsequence (R,,: k = 1,2,...) that converges to a
probability measure R on [0,1]™. By the Portmanteau Theorem, R(C.) > 1—¢
for all e. Since C. C (P) for all ¢, it follows that R(p(¥)) = 1. Let Q be the
measure induced by ™! on ¥ from R. It follows from the continuity of ¢~! and
Proposition 10 that Q,, — Q as k — oo.

To prove the converse, suppose that Q is a relatively sequentially compact
family of probability measures on W. Let (1,: n = 1,2,...) be a countable
dense subset of ¥, and for each § > 0, let B(v,,8) be the open ball of radius &
about the point 1,,. Let B(t,,6) be the closure of B(i,, ).

We now show that for each &, there exists an integer p(d) such that for all

QeQ,

p(8)
Q(U B(ll’n,d)) >1-6.
n=1

Suppose that such an integer p(4) does not exist for some particular choice of
§>0. Then for each positive integer m, there exists a probability measure
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Qm € Q such that
Qm< Bwn,é)) <1-3.
1

n=
By relative sequential compactness, the sequence (Qm:m = 1,2,...) has g
convergent subsequence with limit equal to some probability measure Q). By the -

Portmanteau Theorem,

Q(ng(?/Jmé)) <1-

for all m. Since the collection of balls (B(in,0):n=1,2,.. _) covers the space ¥,
it follows, by Continuity of Measure, that Q(¥) < 1-4. Since () is a probability -
measure, we have derived a contradiction, so the integer p(6) must exist for al}-
§ > 0 as asserted.

For each § > 0, let

p(d)
Cs = |J B¥n.,0) -
n=1

Each set (5 is the union of a finite number of closed sets, and hence is closed

(but not necessarily compact!). Fix ¢ >0 and let

K=()Ceom-

n=1

Since K is an intersection of closed sets,

totally bounded, so K is compact by Proposition 11. Since Q(Cs) > 1~ 8 for o)
‘i

G

all 6 > 0 and all Q € @, an elementary calculation shows that Q(K) > 1 —¢ for
alQe @ O ,‘
Corollary 18. Every probabuity measure on 4 Polish space 13 tight.

T

it is closed. By construction, K is
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known as the projection of U onto the coordinates indezed by A. It is easily
checked that any such projection is continuous.

If Q is a distribution on the Polish space ¥, then the measure induced from
Q by ha is called the marginal of Q corresponding to A. If A is finite, then
the measure induced from @ by h4 is known as a finite-dimensional marginal.
if A has cardinality n, then the corresponding marginal is sometimes called
an n-dimensional morginal. If A = {j}, then the corresponding 1-dimensional
marginal is called the jt coordinate marginal.

It is easy to use the Uniqueness Theorem to show that a probability measure
on a countable product of Polish spaces is determined by its finite-dimensional
marginals. The next theorem says that convergence in distribution on a count-
able product of Polish spaces is equivalent to convergence in distribution of each
of the finite-dimensional marginal distributions.

Theorem 19, Let Q,, n = 1,2,..., and @ be distributions on the Polish
space ¥ = ® 2 ¥ that was deﬁned in Proposition 2. If @, — @ as n — 00,
then for each set 4 C{1,2,...}, Q¥ - Q% as n = oo, where Q2 and Q* a
the measures induced from Qn and @ by the projection h4. On the other hand,
if for all finite sets A, there exists a measure Q" such that Q2 — Q4 asn — oo,
then there exists a measure Q such that Q, — Q asn — oo, and Q* = Q4.

ProoF. The first part of the theorem follows immediately from Proposi-
tion 10 and the fact that each of the functions h 4 is continuous.

For the proof of the second part, assume that for each finite A, there exists
a measure Q' such that Q7 — Q4 as n — co. We use the convergence of the
I-dimensional marginals to prove that the sequence (Q),,) is uniformly tight. For
each j = 1,2,..., let @J, be the j*M coordinate marginal of Q,,. Since QJ, — QU}
asn — 20, t,he sequence (@) is uniformly tight for each fixed j. Fix ¢ > 0, and
for each j, choose a compact set K; C ¥; such that QJ(K;) > 1 — /27 for all
n. Let K = Ky x Ky x.... By the Tychonoff Theorem (see Appendix C), K is
a compact subset of ¥. For each n,

Qn(K)=Q ﬂ{(.m To,..)izj e K > 11— ZQ } > 1—c.
J=1

Thus the sequence (Q,,) is uniformly tight.

Since (),,) is uniformly tight, there exists a measure B and a subsequence
{@n,) such that @n, —+ R as k — oo. By the first part of the theorem, the
fnite-dimensional marginals of the terms in the sequence ((Qn, ) converge to the
fnite-dimensional marginals of B. Thus, the finite-dimensional marginals of
R are the measures Q*. Any other subsequential limit must have these same

marginals, and thus be equal to R. An application of Proposition 15 completes
the proof.
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Problem 16. Let ¥ = ¥y x W2 x... be a countable product of Polish spaces, as in“l :
Theorem 19, and let (@) be a sequence of probability measures on ¥. Show that -L-
(Q-) is uniformly tight if and only if (@?,) is uniformly tight for each j, where Q4 *°
is the j*P coordinate marginal of Qx. ‘ %;"

Problem 17. Let ¥ be as in the preceding problem, and for each n, let X, beg ;-.
P, -valued random variable. Show that as n = 0o, e

(X1, X2, Xn, Xy Xy o) 2y (X1, X2, X3,..0)

Problem 18. Describe how to use the previous result to quickly obtain Theorem 1§ 8
of Chapter 9 as a corollary of Theorem 7 of that same chapter in the Polish space i
setting. _1__
¥

In general, the hypothesis of the second part of Theorem 19 cannot be weak- g

ened in any significant way. For example, it would not be enough for all tlu'i
i . =P -
n-dimensional marginals to converge for some fixed n. But there is one im-

portant special case in which the convergence of the 1-dimensional marginals is 1{;

sufficient.

space. Set e
v=QY;, R
jEJ
viewed as a Polish space via Proposition 9. Forn=12,..., let
Qn = ® Q'l;
jed

be a product measure on ¥, where for each j and n, @3, is a probability de
tribution on the Borel subsets of ¥;. Then the sequence (Qr) converge&b_ w
distribution Q) as n — oo if and only if for each j, the sequence (@) converges
to a distribution QJ on ¥j, in which case s

Q=R

jed
ParTIAL PROOF. For the ‘only if’ aspect, note that for each j and 7, :t:h"
probability measure QY is the jth coordinate marginal of Qn. Thus, if Qn =4 ikﬂ
as n — o0, it follows from Theorem 19 that for each j, the sequence | _.‘.;;i[“’ .
converges as n — 00 to the ' coordinate marginal of @, as desired. . s
For the proof of the ‘if’ portion we focus on the case J = {1,2} and leaw
the rest to the reader. Let g be an R-valued bounded continuous function
¥, x ¥,. By the Fubini Theorem, it is enough to show that S
(18.7) lim hndQ? = / hdQ?,
va

n-—+00 Yo

where
ha(y,
Let e >0a
(18.8)
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where
hn(y)=/ g(z,y) Q),(dr) and h(yl=j; a(z,y) Q' (dy).
W,y 1

Let £ > 0 and note that

I];, hin Q' - /*, th*l < |A’ hdQ;, —[ygthzl

(18.8) +f |hy — h|dQ?
W\ C

+ [ 1ha ~ hla@3
i

for any compact C' C ¥y. There exists [ such that the first term on the right is
less than £/3 for n > [, since h inherits continuity and boundedness from g and
since Q2 = Q? as n = co. The second term on the right is less than £/3 for all
n and some C, since all |h,| and |h| inherit a common bound from g and since
the sequence (Q?) is uniformly tight.

For the last term on the right of (18.8), cover C' by a finite number of sets
By,.... B having the property that |g(xy,u) — g(z,.v)| < £/9 whenever u and
v are in a common B;. Fix u; € B;. There exist [; such that for n > [;, the
following calculation is valid for all v; € B;:

ha(vi) = h()] < [hn(vi) = ha(ui)| + ha (i) = h(u) |+ 1h(w) = h(vi)] < 3(5) = 5.

Therefore |hy(v) = h(v)| < £/3 for v € C and n > max{l;: 1 <i < k}, and thus
the left side of (18.8) is less than € for n > [Vmax{l;: 1 <i < k}. O

Problem 19. Complete the proof of the preceding theorem by first treating the
case of #.J < oo by mathematical induction and then treating the case of J being
countably infinite.

18.6. The Continnity Theorem for !

The following result generalizes Theorem 15 of Chapter 11.

Theorem 21. [Continuity (for Characteristic Functions in BY)] A sequence
of probability distributions on R converges to a probability distribution Q if and
only if the sequence of corresponding characteristic functions converges pointunse
' a function v which is continuous at 0, in which case the convergence to v is
wniform on cach compact subset of RY, and v is the characteristic function of Q.

- PARTIAL PrOOF. We leave it as a problem to prove that if (Q,: n=1,2,...)
% 4 sequence of probability measures on R that converges to a probability
Teasure Q. then (3,:n = 1,2....) converges to 3 uniformly on each compact
%, where 3, and 3 are the characteristic functions of Q,, and Q, respectively.
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For the converse, assume that the sequence (Bn:n =1,2,...) converges point- In view of the
| ] {@n:n = L2,

wise to a function 7 that is continuous at 0 € R*. It follows from Problem 58
of Chapter 13 that, for each j, the characteristic functions of the j** coordinate
marginals converge to a function that is continuous at 0 € R By the Conti.. =i
nuity Theorem for R, the 1-dimensional marginals converge. By Problem 16, - ~
the sequence (@) is uniformly tight. By the first part of this theorem, every -
convergent subsequence of (Qn) has a limit with characteristic function 7. By
Theorem 16 of Chapter 13, these convergent subsequences all have the same g

2 P,k

e B

peal to Proposi
with 1 in the
b coordinates
coordinate mar
Problem 16. [

- AN

o

Problem 23.
preceding th
in some basi

linit. An application of Proposition 15 completes the proof. [J

Problem 20. Complete the proof of the preceding theorem by doing the first por.k,g

tion of the proof.
; " Theorem 2

1 Let ()(1, 4\’2, L
© mean vector [ :

Probiem 21. Find a sequence (Xn,Ya):n = 1,2,.. .} which does not converge
in distribution (as a sequence of R*-valued random variables), but for which both
.Yand (Ya:n=12,.. .} converge in distribu-

of the sequences (Xn:n = 1,2,. ’
for which E(exp(i{w, (Xn,Yn)))) does not =

tion. For your example, find a w € R?
converge. :
- where [Xh — p]

Problem 22. Let (X,:n =1,2,...) bean iid sequence of R-valued random vag- HT denotes tra

ables. Show that as n — 00,

(X s Xogr + £X0) =2 (X1, X2)

~where Z is a n

The preceding problem shows that the lack of independence is not necessar N 0 and covarianc

ily preserved when passing to a limit. Theorem 20 says that independence is _f‘r";,

preserved. o * Probiem 24
In the proof of Theorem 21, we found it useful to analyze a sequence of . ’
distributions on R¢ in terms of related distributions on R. The following theorem ::5?__ I. y RS
extends this idea. ~ _ Problem 25.
. quence (Zy,)

Theorem 22. [Cramér-Wold Device] Let d < co. A sequence (Xn:n 3%‘-’-' Z of Probler

bution to o random

1,2,...) of R4 _yalued random variables converges m distri
), w € RY, ol

variable X if and only if each sequence ((w, Xn):n = 1,2,
verges in distribution in which case

fa

R N S g

(18.9) (w, Xn) -2 (0, X) B ) deno
. :‘?;;{@,p). Our fin:

8, ’ff" for each w € Re. i - imetric pso t

lows immediately from Propositiun‘lu- ) “liivalent to cc
distribution for ea.dl L )
nvergent subsequenct

PrOOF. The convergence in (18.9) fol
For the converse, suppose that ((w, X)) converges in
nl‘,.l()) HQ, kR

It is clear that if (X,,) converges in distribution or has a co
the limit must have that unique distribution whose characteristic function ¥ i3 Where

¥ r'h use is callec

w o~ lim E(efw ).
n~—+oQ




an-

Ii-

10.

€8s

3
ks
b
:
2
¥
3
11
,
£

18.7. THE PROHOROV METRIC 363
in view of the Prohorov Theorem, we only need show uniform tightness of
(Quin =12, ..}, where @, is the distribution of X, because then an ap-
peal 0 Proposition 15 completes the proof. By setting w = (0,...,0,1,0,...,0),
with 1 in the j*™® position, we see that the sequence (Xj,:n = 1,2,...) of
jth coordinates converges in distribution. Thus, for each j, the sequence of j
coordinate marginals of (@) is uniformly tight, so (Qn) is uniformly tight by
problem 16. O

Problem 23. Show that the hypothesis of convergence of ({w, X)) for all w in the
preceding theorem cannot be replaced by the hypothesis of convergence for all w
in some basis of RY.

Theorem 23. [Multi-dimensional Central Limit] Let d be a positive integer.
Let (X1, X5, ...) be an iid sequence of RY -valued random variables having finite
mean vector = FE(Xy) and finite covariance matriz

= E([%0 — 471X - ),

where [\ — p] denotes the row matriz corresponding to the vector X1 — pu and
(F denotes transpose. Then

ZZ:I, ‘Yk' —np —B> Z,
T

where 7 is a normally distributed R -valued random variable with mean vector
0 and covariance matriz X.

Problem 24. Use the Classical Central Limit Theorem and the Cramér-Wold De-
vice to prove the preceding theorem.

Problem 25. Apply the Multi-dimensional Central Limit Theorem to the iid se-
quence (Zy, Za,...) where each Z; has the same distribution as the random vector
Z of Problem 60 of Chapter 13.

18.7. ¥ The Prohorov metric
Let Q) denote the family of all probability distributions on a Polish space
¥.p). Our final goal of this chapter is to turn Q(¥) into a Polish space with
& metric ;5 so that convergence of sequences in the Polish space (Q(W),p) is
Muivalent to convergence of sequences of distributions on ¥. The metric p we
#ill use is called the Prohorov metric and is defined by

A810) 5. R) = inf{e: R(A) < Q(A,) + ¢ for every Borel A C ¥},
where

Ae = {z: pla.y) < e for some y € A}.
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(Note: It is important that A. be Borel; indeed, it is open, since it 1s the union

of open balls.) S %

* problem 26. Choose §,¢ > 0. Prove that if R(A) < Q(A.) + 6 for all Borel sets
AC ¥, then Q(4) < R(A.) + 6 for all Borel sets ACWY. B
Problem 27. Prove that p defined by (18.10) is a metric. ; a:

. - . .
From the preceding problem we see that (Q(¥), p) is a metric space. Let C
be a countable dense subset of ¥. Then it is easy to show that the set C of '
4

probability distributions whose values are rational and whose supports are finite
subsets of C' is a countable dense subset of Q(¥). We have almost proved the W

following theorem. ;
Theorem 24. Let (¥,p) be a Polish space and let Q(¥) denote the famﬂ' ] "g
of all probability measures on (¥, p). Define p by (18.10). Then (Q(¥),p) isa

Polish space. B

PARTIAL PROOF. In view of the discussion preceding the theorem, we need "'fl-
only show that (Q(¥),p) is complete. Let (Qn:n =1,2,. ..) be an arbitra;y",‘-g‘}_,"
Cauchy sequence. To prove the convergence of a Cauchy sequence, it is enough to J‘L'i:.
find a subsequence that converges. By the Prohorov Theorem, it is enough to find 33
a subsequence that is uniformly tight. Using the definition of Cauchy sequencé,.;ﬁ- '
routine argument shows that there exists a subsequence (Rn:n=1,2,.. ) . ,_
the property that the p(Rpy Rnt1) < /2"t forn =1,2,.... We will provet i
this subsequence is uniformly tight. : _

Fix ¢ > 0. We will define a sequence of compact subsets of ¥. Choose & & -
positive integer ! such that 1 /2! < e/2. By Corollary 18 we can find a compaet
set K such that R,(K) >1—¢/2 forn=1,...,0. Let K; = K for j = 1,00 -_.'
We now proceed recursively to define compact sets K1, Kig2,- -+ such that 0

alln >,

1
Rn(Kn) >1- (1 . -2—7;_?1-_—1)6

and

(18.11) Kp+1 € (Kp)p-tntn)

where
for some y € Kn} -

1
(Kn)l/T“H = {I e¥: p(Iay) < gn+1

We have already defined K; with the desired properties. Assume that
K, ..., K, have been defined with the desired properties for some n 2 L B"-:_
definition of p and our choice of the integer , i

1 1
Rn+1<(Kn)1/2n+l) > Rn(Kn) - 5”1:{ > ]. - (1 - —2—,’-‘1—2—:7)5

1t follows from

such that R(K

sequence (K :
Let
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e z
3 it is the union r% It follows from Problem 15 that there exists a compact set K, satisfying (18.11)
E- such that R(K,41) > 1 = (1 — 2-("*2-D)e. The recursive construction of the
e sequence (K,:n=1,2,...) of compact sets is complete. ]
for all Borel sets f Let - :
E K = the closure of U K,. i
; n=1 t ¥
Clearly R,(K) > 1 —¢ for all n. The proof of uniform tightness is completed by ¥
showing that K is compact. By Proposition 11, it is enough to prove that K is

ic space. Let ¢

1at the set C of
pports are finite
nost proved the

totally bounded. This final step is left as a exercise. [J

Problem 28. Prove that the set K defined in the preceding proof is totally bounded.
Hint: Show that for each ¢ > 0, a sufficiently large value of n can be found so that
any covering of Ky U U K, by £-balls can be ‘inflated’ to a covering of K by
doubling the diameters of each of the balls.

5 - A

enote the family {x:f
n(Q(¥),p) isa

Problem 29. For the metric space of distributions on R, calculate the distance 3
between the uniform distribution on [0, 1] and the uniform distribution on [a,a + 1]. £
Also calculate the distance between the uniform distributions on [0, 8] and [0, 9].

weorem, we need
be an arbitrary
e,it is enoughto
is enough to ﬁm’
uchy sequence,a
=1,2,...) with
‘e will prove that

Problem 30. For the metric space of distributions on R*, calculate the distance
between the delta distribution at (0,0) and the uniform distribution on the square
region with vertices at (+a, +a).

Problem 31. For the metric space of distributions on R*, calculate the distance -
between the delta distribution at (0,0,0,...) and the distribution Q4 induced by i
the uniform distribution on [~1, 1] in R and the function @4: R -+ R™ defined by :

i s . e A Vi T B B i T A
B e e

r—— ey s -

T W 0 e e b e

e e e e = AT B

i Ut R SR D, G AT L B R e T, S s b

of ¥. Choose a

[ L
| ind a compedl walz) = (0,...,0,2,0,0,...), :» :g-.;
“forj=1,....k where ¢ on the right side is the d'® term. ' ¢ !
.., such that fo

: Theorem 25. Let Q(W) be the Polish space described in Theorem 24. Then
1 /Q,Q.) -+ 0 asn - x if and only if Q,, = Q as n = .

PROOF. Suppose that 4(Q, Q,) — 0 and let C be a closed set. For each & > 0

exists an integer [ such that : j '
5 . Qu(C) S Q(C.) + I
Kn}' : ; &l'ﬂ?_ l. Hence, I E&
«ssume that i limsup Q,,(C) < Q(C;) +=. ? !
menZl-B’ it No' n—s0 -? _
R let = , 0 through a sequence and use the equation i
L - C= n C., E
=1)¢ $

>0

T e g
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g! which is a consequence of the fact that C' is closed, to conclude n__'__j:
B lim sup Qa(C) < Q(C).
}‘I b 300 BE- %
ll L An appeal to the Portmanteau Theorem completes this half of the proof. L
f 3 For the converse assume that [ gdQ, — [¢dQ for all continuous bounded
| functions g. By the Portmanteau Theorem, ’

(18.12) lim Qn(4) = Q(A)

for every Borel set A for which Q(94) = 0. .

Let € > 0 and let (z;:j = 1,2,...) be a dense sequence in ¥. For each j, let
__ Bj be a ball centered at z; with radius strictly between § and § and having the B
i additional property that Q(dB,) = 0. For each j, set By
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Cj = B;j \ U B;. In this chapter, we bring

i=1 "  construct one of the mos

It is clear that: pre  ‘Brownian motion’. In or

¢ C;NC;=0ifi #J; . ,"" k- first take the point of vie

: « ¥ =U2,Ch : -‘-_F, . values in the Polish spax
at « 1= Zf‘i_l Q(Cy); ' 8 We will find that when

B e Q(OC;) = 0 for each j; B SRR C[0, 1]-valued rand

g e the distance between any two members of any one Cj is less thane. - and scaled so that its dis
; ° Choose k so that ZLI Q(C;) > 1 — § and then use (18.12) to deduce~5 __.' c:axiiiqgence, r‘nuch i

v existence of ! such that g y e

o ~ on the material concerni

: : Q(C}) < Qu(Cj) + 55, forj<k,n>1l. ~ Limit Theorem (Chapte

B Let A be any Borel set and denote by A, the set of points that each lie no more F3 gopendix B) also play i

B than distance ¢ from some point in A. Let (Cj,,Cjs, - - -, Cj,) be the subsequen ~ Weinclude only a sm:

~motion on [0, 00) that h:
include indicate the vari
: ?nvnlve stopping times,
§ 10 extend ideas from Cl
Therefore the distance between Q,, and @ is less than ¢ forn > 1. 3 - Ji e ous e setting

e - Random variables X t
- Thus, X(w) is a continue
b denoted by X, (w). He
~ Wotation for X is

of (C;) consisting of those C; for which j <k and C; N A # 0. Then, for n >

QU < 5 +3°Q(C;) <e+ ) @n(Ci) L&+ Qnlde).
i=1 i=1

1 When speaking of events
- 'FC_! a0 R-valued random

LX)
: ‘Mﬂm variables.




