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PARTICLE REPRESENTATIONS FOR MEASURE-VALUED
POPULATION MODELS1

BY PETER DONNELLY 2 AND THOMAS G. KURTZ3

University of Oxford and University of Wisconsin

Models of populations in which a type or location, represented by a
point in a metric space E, is associated with each individual in the
population are considered. A population process is neutral if the chances
of an individual replicating or dying do not depend on its type. Measure-
valued processes are obtained as infinite population limits for a large class
of neutral population models, and it is shown that these measure-valued
processes can be represented in terms of the total mass of the population
and the de Finetti measures associated with an E"-valued particle model

Ž . Ž Ž . Ž . .X ! X , X , . . . such that, for each t " 0, X t , X t , . . . is exchange-1 2 1 2
able. The construction gives an explicit connection between genealogical
and diffusion models in population genetics. The class of measure-valued
models covered includes both neutral Fleming!Viot and Dawson!
Watanabe processes. The particle model gives a simple representation of
the Dawson!Perkins historical process and Perkins’s historical stochastic
integral can be obtained in terms of classical semimartingale integration.
A number of applications to new and known results on conditioning,
uniqueness and limiting behavior are described.

1. Introduction. We begin by considering two models for the evolution
of a finite population. Although we concentrate mainly on continuous-time
processes, we indicate the analogous results for discrete-time processes later.

Ž .1.1. Model I. Let N t denote the total size of a population at time t, let
Ž . Ž .N t denote the number of births up to and including time t and let N tb d

denote the number of deaths, so

N t ! N 0 # N t $ N t .Ž . Ž . Ž . Ž .b d

Ž .Note that we are assuming that N, N and N are right continuous. Web d
allow simultaneous and%or multiple births and deaths, but we assume that
all the births that happen simultaneously come from the same parent. At a

Žbirth event, the parent is selected at random by which here and throughout
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.we mean uniformly at random from the population; at a death event, the
individuals that are eliminated from the population are selected at random,

N t $Ž .Ž .that is, if there are k deaths, the possible subsets of the populationk

immediately prior to the death event are equally likely to be eliminated. For
definiteness, assume that if birth and death events happen simultaneously,
then the individuals who die are removed from the population before the
parent of the new individuals is selected. We assume that at each time t, each
individual in the population has a type or location in a space E, which we

Žtake to be a complete separable metric space. Typically, in a genetic model,
type is the appropriate interpretation, while in a model of a dispersing

.population, location is appropriate. We assume that at a birth event, the
offspring are given the same type as the parent and in between birth and
death events, the types evolve as independent, E-valued Markov processes
corresponding to a specified generator B. Therefore, the population at time t

Ž Ž . . N Ž t .can be described by a vector Y t , . . . , Y in E in which we order the1 N Ž t .
population by decreasing age or, since age and hence the above order do not
play a role in the birth and death events, by the empirical measure

Ž .N t
IZ t ! # .Ž . Ý Y Ž t .i

i!1

Note that if N is Markov, then Z I will be also. This model is neutral in the
sense that the type of an individual does not affect its chances of dying or
giving birth.

1.2. Model II. The population size is defined as in Model I, and in
between birth and death events, the types or locations of the individuals
evolve as independent Markov processes with generator B; however, the

Ž Ž . Ž ..order of X t , . . . , X t plays a significant role in the birth and death1 N Ž t .
events. The description of a death event is simple: the individuals removed
are the individuals with the highest indices. Birth events, however, are more
complex. Suppose there is a birth event at time t at which there are k
offspring. The type of the offspring will again be the type of the parent. We
must specify how to select the parent and how to specify the indices of the
population after the birth event. Select k # 1 indices, i ! $$$ ! i , at1 k#1

# Ž .4random from 1, . . . , N t . Note that the smallest of these indices, i , will be1
the index of some individual in the population immediately before the birth
event. That individual will be the parent. After the birth event, the parent

Ž .and the k offspring will be indexed by i , . . . , i . The remaining N t $1 k#1
Ž . # Ž .4 # 4k # 1 individuals are reindexed by 1, . . . , N t $ i , . . . , i , maintain-1 k#1

Ž . Ž .ing their previous order. For example, if k ! 1, then X t ! X t $ fori i
Ž . Ž . Ž . Ž .i ! i , X t ! X t $ , and X t ! X t $ for i " i .2 i i i i$1 22 1

Model II may seem strange; however, the following theorem explains its
interest.

Ž Ž .THEOREM 1.1. Suppose that the initial population vectors Y 0 , . . . ,1
Ž .. Ž Ž . Ž ..Y 0 in Model I and X 0 , . . . , X 0 in Model II have the sameN Ž0. 1 N Ž0.
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exchangeable distribution and define
Ž .N t

IIZ t ! # .Ž . Ý X Ž t .i
i!1

II I Ž Ž .Then Z has the same distribution as Z and, for each t " 0, X t , . . . ,1
Ž ..X t is exchangeable.N Ž t .

Theorem 1.1 is proved in Section 2 using a coupling argument. We also
give the corresponding result for models with discrete generations. Intu-
itively, Model II can be obtained from Model I by looking into the future and
ordering the individuals in terms of the time of survival of their line of
descent. Neutrality assures that, conditioned on all information up to time t,
each particle alive at time t has the same chance of having the longest line of
descent, the second longest line of descent, etc. Consequently, this ordering is

Ž Ž . .a random permutation of Y t , . . . , Y . For example, this interpretation1 N Ž t .
explains why in Model II we require the individuals with highest index to die
first. The randomness of the permutation explains the exchangeability prop-

Ž Ž . .erty for X t , . . . , X .1 N Ž t .
Our primary interest in Theorem 1.1 is its implications for large popula-

tion approximations. Special cases of Model I include neutral Moran models
& Ž . Ž .'from population genetics let N t # N t and branching Markov processesb d

in which the offspring distribution does not depend on the location of the
parent. Consequently, large population approximations of the measure-val-
ued process Z I ! Z II include neutral Fleming!Viot processes and a large

Ž . & Ž .class of Dawson!Watanabe super processes. See Dawson 1993 for a
'general discussion of these processes.

In Section 3, for a sequence of these models, we assume that the nor-
malized population size P n ! n$1N n converges in distribution to a process
P and show that, under additional technical assumptions, Model II
Ž n n . "X , . . . , X converges to a process with values in E . The limiting process1 Nn

Ž Ž . Ž . .has the property that, for each t " 0, X t , X t , . . . is exchangeable and1 2
the sequence of normalized empirical measures

nŽ .N t1
n#Ý X Ž t .kn k!1

converges in distribution to PZ, where Z is the de Finetti measure
m1

Z t ! lim # .Ž . Ý X Ž t .kmm!" k!1

Section 4 discusses the martingale properties of the infinite population
models and, in particular, gives conditions under which the measure valued
process PZ is the unique solution of a martingale problem. Section 5 de-
scribes how the population genealogy is embedded in the model. In particular,
the Dawson!Perkins historical process is constructed.
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Section 6 includes a number of applications of the E"-representation of the
measure-valued processes. In particular, generalizations of a variety of re-
sults on Dawson!Watanabe and Fleming!Viot processes can be obtained.

One of the advantages of the E"-valued limit process over the simpler
measure-valued limit is that the E"-valued process retains information about
the ancestral relationships of the individual particles. In the Fleming!Viot
Ž . Ž .genetic setting, the model incorporates the full genealogical coalescent tree
for the population at each time t. This fact is explored in more detail for a

Ž .related but somewhat different construction in Donnelly and Kurtz 1996 . In
the Dawson!Watanabe setting, the model incorporates the ‘‘historical pro-

Ž . Ž . Žcess’ as studied by Dawson and Perkins 1991 and Perkins 1992, 1995 cf.
.Section 5.2 . In particular, we are able to represent the stochastic equation

given by historical Brownian motion studied by Perkins in terms of an
Ž .infinite system of ordinary Ito equations cf. Section 6.5 .ˆ

1.3. Conditions on the type%location process. Throughout we will assume
Ž .that P t, x, % is the transition function for a Markov process with sample

& . Ž .paths in D 0," , where E, r is a complete, separable metric space. TheE
Ž .corresponding semigroup on B E is defined by

T t f x ! f y P t , x , dy ,Ž . Ž . Ž . Ž .H
& Ž .'and the weak infinitesimal operator in the sense of Dynkin 1965 is defined

by
T t f $ fŽ .

Bf ! bp- lim
tt!0

& .when the limit exists. Let P denote the distribution on D 0," correspond-x E
ing to the Markov process with initial position x. Under these assumptions,
we have the following lemmas.

Ž .LEMMA 1.2. There exists a countable subset D ( DD B that is separating in
Ž . Ž .PP E in the sense that, for &, ' ) PP E , Hf d& ! Hf d' for all f ) D, implies

that & ! ' .

Ž .PROOF. See Donnelly and Kurtz 1996 , Lemma 1.1.

# 4 Ž . $ $Let D ! f , k " 1 ( DD B be separating and assume that f * 1.k k
Define the metric

" 1
1.1 ( & , ' ! f d& $ f d'Ž . Ž . Ý H HB k kk2k!1

Ž .on PP E . The notation ( is not really appropriate, since the metric dependsB
on D rather than B. But B is part of the primary ‘‘data’’ for the process and

Ž .the main restriction on D is that D ( DD B . Consequently, it seems more
important to emphasize the connection to B. Typically, D can be taken to be
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convergence determining, and the topology generated by ( will be the weakB
ˆŽ . Ž .topology. In particular, if E is locally compact and DD B is dense in C E , D

can be selected to be convergence determining. In general, it is desirable to
select D so as to make the topology generated by the metric as strong as

& Ž .possible. See Donnelly and Kurtz 1996 , Remark 2.5, for an example in
'which the topology is not the weak topology.

Ž .LEMMA 1.3. There exists a probability space ) , FF , P and a measur-0 0 0
& . Ž .able mapping M: E % 0," % ) ! E such that, for each x ) E, * t !0 0

Ž . Ž .M x , t, $ is a Markov process with transition function P t, x, % and0
Ž .* 0 ! x . If x ! P is weakly continuous, then the mapping from E into0 x

& . Ž .D 0," given by x ! M x, $ , + can be taken to be almost surely continuousE
# Ž . Ž .4at each x ) E. If x ! P is weakly continuous and P * t ! * t $ ! 1 forx x

Ž .all x ) E and t " 0 that is, * has no fixed points of discontinuity , then for
Ž . & . Ž . Ž .each t , x ) 0," % E, with probability 1, the mapping t, x ! M t, x, $0 0

Ž .is continuous at t , x .0 0

PROOF. The lemma follows by the construction of Blackwell and Dubins
Ž .1983 and the continuous mapping theorem. !

2. A coupling of finite population models.

2.1. A coupling lemma. The proof of Theorem 1.1 relies on a coupling of
the two models

Y t , . . . , Y ! X t , . . . , X t ,Ž . Ž . Ž .Ž . Ž .1 N Ž t . , Ž t . , Ž t .1 N Ž t .

Ž . Ž Ž ..in which , t is uniformly distributed over all permutations of 1, . . . , N t
Y Ž Ž . .and is independent of FF ! - Y s : s * t . , will change only at birth%deatht

event times, and we next describe an inductive procedure for its construction
in a somewhat more general context.

# 4For n " 0, let S denote the collection of permutations of 1, . . . , n , let Pn n
# 4denote the collection of all subsets of 1, . . . , n and let P ( P be then, k n

subcollection of subsets with cardinality k. We think of a permutation as a
# 4 # 4mapping from 1, . . . , n onto 1, . . . , n .

# 4Let n be a positive integer and let k ( !, k & 0. Define n ! n #0 m m m m$1
# 4k and m* ! min m: n * 0 . We construct a sequence of random permuta-m m

# 4tions , , that is, a sequence of random variables with , taking values inm m
# 4S , and a sequence of random subsets . , . taking values in P , in then m m nm m$1

#following way. Let , be uniformly distributed over S . Let / : 1 * m ! m*,0 n m0
4k " 0 be independent random sets, independent of , , such that / ism 0 m

# 4uniformly distributed over P , and let - : 1 * m ! m*, k " 0 ben , k #1 m mm m

# 4independent random permutations, independent of , and / such that -0 m m
Ž .is uniformly distributed over S . / i will denote the ith largest elementk #1 mm

in / . Proceeding inductively, assume that , is defined, m ! m*, and thatm m$1
, is uniformly distributed over S .m$ 1 nm$ 1
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Ž . $1 ŽIf k ! 0 corresponding to a death event , let . ! , n #m m m$1 m
.1, . . . , n and let , be the permutation in S with the same order asm$ 1 m nm

# 4, restricted to 1, . . . , n $ . . Note that , is uniformly distributedm$ 1 m$1 m m
Žover S and is independent of . . The indices of the individuals removedn mm

from the population in Model II are n # 1, . . . , n . . determines them m$1 m
.individuals to be removed from the population in Model I.

Ž .If k " 0 corresponding to a birth event , let 0 ! min / . Define . !m m m m
$1 Ž . Ž, 0 . In this case, . is a singleton subset. We use . to denote bothm$ 1 m m m

.the subset and the value of the index in the subset. Let , restricted tom
# 4 Ž . Ž Ž .. Ž .. , n # 1, . . . , n satisfy , . ! / - 1 and , n # i !m m$1 m m m m m m m$1

Ž Ž .. # 4/ - i # 1 . Let , restricted to 1, . . . , n $ . be the mapping ontom m m m$1 m
# 4 # 41, . . . , n $ / having the same order as , restricted to 1, . . . , n $m m m$1 m$1

Ž. . / gives the set of indices determining the parent and the indices of them m
.offspring in Model II. . determines the parent in Model I.m

# 4Let FF ! - , , . : k * m . The independence properties of the / and -m k k m m
imply that

2.1 E f , , . FF ! E f , , . , .Ž . Ž . Ž .m m m$1 m m m$1

LEMMA 2.1. For each m, . , . . . , . , , are independent. If k ! 0, . is1 m m m m
uniformly distributed over P ; if k " 0, . is uniformly distributedn , ' k ' m mm$ 1 m

# 4over 1, . . . , n ; and , is uniformly distributed over S .m$ 1 m nm

PROOF. Proceeding by induction, assume that the result holds for m
Ž .replaced by m $ 1. Then by 2.1 and the induction hypothesis, we have, for

any choice of f and h ,k

m m$1

E f , h . ! E E f , h . FF h .Ž . Ž . Ž . Ž . Ž .Ł Łm k k m m m m$1 k k
k!1 k!1

m$1

! E E f , h . , h .Ž . Ž . Ž .Łm m m m$1 k k
k!1

m$1

! E f , h . E h . .Ž . Ž . Ž .Łm m m k k
k!1

It remains only to show that , is independent of . and that they have them m
correct distributions. If k ! 0, these observation follow immediately fromm
the fact that , is uniformly distributed. If k " 0, conditioning on . andm$ 1 m m
/ , it is clear that , is uniformly distributed over all permutations thatm m

# 4map . , n # 1, . . . , n onto / and that conditioning on . , / ism m$1 m m m m
uniformly distributed on P . It follows that the conditional distributionn , k #1m m

of , given . is uniform on S , giving the desired independence andm m nm

distribution. The uniformity of , implies that . is uniformly distributedm$ 1 m
# 4over 1, . . . , n , completing the proof of the lemma. !m$ 1
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2.2. Proof of Theorem 1.1. Suppose a realization of Model II is given. Let
# 4t denote the sequence of times at which birth or death events occur,m
0 * t * t * $$$ . If there are simultaneous birth and death events at time t,1 2
then, for the appropriate m, we have t ! t ! t. Under our convention ofm m#1
doing removals first, k is the negative of the number of deaths occurring atm
time t and k is the number of births. If k " 0, then / is the subset inm# 1 m m
Model II determining the indices of the parent and the offspring. Finally, let

Ž # 4., be independent of X and hence of / and uniformly distributed over0 m
Ž .S ; for k " 0, let - be independent of everything and uniformlyN Ž0. m m

Ž .distributed over S ; and define , as above. Set , t ! , for t * t !k #1 m m mm
# 4t . Then by the properties of . given in Lemma 2.1,m# 1 m

Y t , . . . , Y ! X t , . . . , X tŽ . Ž . Ž .Ž . Ž .1 N Ž t . , Ž t , 1. , Ž t , N Ž t ..

Ž . Ž . # 4is the desired version of Model I. Since Y t depends only on Y 0 , . : t * tm m
Ž .and the evolution of the type processes between birth and death events, , t

Y Ž Ž . . Ž .must be conditionally independent of FF ! - Y s : s * t given N t . Moret
Ž Ž . Ž . Ž . . Y Ž .generally, let HH ! - N 0 , N s , N s : s " 0 and GG ! FF + HH. Then , t isb d t t

Ž .conditionally independent of GG given N t . Consequently, the inverse per-t
$1Ž .mutation , t will also be conditionally independent of GG and uniformlyt

distributed over S . SinceN Ž t .

X t , . . . , X ! Y $1 t , . . . , Y $1 t ,Ž . Ž . Ž .Ž . Ž .1 N Ž t . , Ž t , 1. , Ž t , N Ž t ..

Ž Ž . Ž ..it follows that X t , . . . , X t is exchangeable. !1 N Ž t .

2.3. Exchangeability at stopping times. As in the proof of Theorem 1.1, let
Y Ž Ž . . Ž Ž . Ž . Ž . . YFF ! - Y s : s * t , HH ! - N 0 , N s , N s : s " 0 and GG ! FF + HH.t b d t t

# 4 Ž Ž . Ž ..PROPOSITION 2.2. Let 1 be a GG -stopping time. Then X 1 , . . . , X 1t 1 N Ž1 .
Žis exchangeable. In particular, 1 can be any nonnegative HH-measurable
. # 4random variable. If in addition, 1 is a GG -predictable stopping time, thent

Ž Ž . Ž ..X 1 $ , . . . , X 1 $ is exchangeable.1 N Ž1$.

Ž .PROOF. As in the proof of Theorem 1.1, it is enough to show that , 1 is
Ž .conditionally independent of GG given N 1 . Assume first that 1 is discrete.1

Let 2 denote the uniform distribution over S . Then, for A ) GG ,n n 1

"

E h , 1 I ! E h , t IŽ . Ž .Ž . Ž .ÝA k A, #1!t 4k
k!1
"

! E h , 2 d, IŽ . Ž .Ý H N Ž t . A, #1!t 4k k
k!1

! E h , 2 d, I ,Ž . Ž .H N Ž1 . A

Ž .where the second equality follows from the fact that , t is conditionallyk
# 4independent of GG and A , 1 ! t ) GG . This identity gives the desiredt k tk k
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conditional independence. The result for general 1 follows by approximating
1 by a decreasing sequence of discrete stopping times. If 1 is predictable,

# 4 # 4then there exists an increasing sequence 1 of GG -stopping times such hatn t
Ž Ž .1 !1 , a.s. and lim 1 ! 1 . Consequently, the exchangeability of X 1 $ ,n n!" n 1

Ž .. Ž Ž . Ž ... . . , X 1 $ follows from the exchangeability of X 1 , . . . , X 1 .N Ž1$. 1 n N Ž1 . nn

!

2.4. Models with discrete generations. We now consider the analogue of
Theorem 1.1 for models with discrete generations. Let N , N , . . . be positive0 1
integer-valued random variables giving the population size for each genera-
tion, and, for each m " 1, let K , 1 * K * N , and Lm, . . . , Lm bem m m$1 1 K m

positive integer-valued random variables satisfying ÝK m Lm ! N . The Lm
i!1 i m i

are the litter sizes for the K members of generation m $ 1 that havem
descendants in the mth generation.

MODEL III. Let Y m, . . . , Y m denote the types of the individuals in genera-1 Nm

tion m. The parent of each litter in generation m is selected randomly,
without replacement, from the members of generation m $ 1. For definite-
ness, the Lm members of the first litter are numbered 1, . . . , Lm, the Lm

1 1 2
members of the second litter are numbered Lm # 1, . . . , Lm # Lm, etc. If x is1 1 2
the type of the parent of litter i, then the type of each member of litter i has

Ž .distribution / x, $ , where / is a transition function from E to E, and types
of different individuals are conditionally independent given the types of their
parents.

MODEL IV. Let X m$ 1, . . . , X m$ 1 denote the types of the individuals in1 Nm$ 1
# 4generation m $ 1. Let the integers 1, . . . , N be partitioned randomly intom

m m ' m ' mset A , . . . , A satisfying A ! L , that is, the1 K i im

Nm
m mL . . . Lž /1 K m

m Ž .distinct partitions are equally likely. Let - be the permutation of 1, . . . , Km
defined so that the indices 3 m ! min Am are orderedi i

3 m
m ! 3 m

m ! $$$ ! 3 m
m .- - -1 2 K m

Then X m$ 1 becomes the parent for litter Am
m , X m$ 1 the parent for litter1 - 21

Am
m , etc. Conditioned on X m$ 1, the types of the individuals in generation m-2 m Ž m$ 1 .mwith indices in A are iid with distribution / X , $ .- ii

The proof of the following theorem is similar to that of Theorem 1.1.

THEOREM 2.3. Suppose that the initial population vector in Model IV
Ž 0 0 .X , . . . , X is exchangeable and that the initial population vector1 N00 0 0 N0 ˜0 N0Ž . 0 0Y , . . . , Y in Model III satisfies Z # Ý # ! Z # Ý # . Define1 N i!1 Y i!1 X0 i i

N Nm m
m m˜m mZ ! # , Z ! # .Ý ÝY Xi i

i!1 i!1
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˜ m mŽ .Then Z and Z have the same distribution, and, for each m " 0, X , . . . , X1 Nm

is exchangeable.

0 Ž 0 0 . # m4PROOF. Let Y ! Y , . . . , Y be given. Let L be as above, and define1 N i0
Ž m .LL ! - L : 1 * i * K , m ! 1, 2, . . . . Let H , H , . . . be a sequence of ran-i m 0 1

dom permutations independent of Y 0 such that, conditioned on LL , H , H , . . .0 1
are independent and H is uniformly distributed over S . Let J m ! 0, andm N 0m

for i ! 1, . . . , K , define J m ! Ýi Lm andm i k!1 k

Am ! H j : J m ! j * J m .# 4Ž .i m i$1 i

Note that Am, . . . , Am gives a random partition as in the description of1 K m 0 Ž 0 0 .Model IV. Starting with exchangeable X ! Y , . . . , Y , constructH Ž1. H ŽN .0 0 01 2 # m 4X , X , . . . as prescribed in Model IV using the partitions A , 1 * i * K .i m
Ž . Ž . m mDefine , k ! j if H j ! k and set Y ! X . The parent of the ithm m k , Žk .m

litter in the mth generation is Y m$ 1 ! X m$ 1, and if H is independentH Ž i. i m$1m$ 1
# 0 m$14 m m$1of Y , . . . Y , then the parents of Y are selected randomly from Y

and Y 0, Y 1, . . . will be a version of Model III. To see that this independence
holds, first observe that Y 0 is independent of H by assumption. Proceeding0

# 0 m$14by induction, suppose H is independent of Y , . . . , Y . Let GG !m$ 1 m
Ž 0 m$1 0 m$1. Ž 0 m$1 0 m.- Y , . . . , Y , H , . . . , H + LL and HH ! - Y , . . . , Y , H , . . . , Hm

+LL . Then
mE f H h Y HHŽ . Ž .m m

K J m
m i

m$ 1! f H $$$ h y , . . . , y / Y , dy ,Ž . Ž . Ł ŁH H Ž .m 1 N H Ž i. jm m$1mi!1 j!J #1i$1

and since H is independent of GG ,m m

mE f H h Y GGŽ . Ž .m m

K J m
m i

m$ 1! E f H $$$ h y , . . . , y / Y , dy ,Ž . Ž . Ł ŁH H Ž .m 1 N H Ž i. jm m$1mi!1 j!J #1i$1

so the desired independence follows. !

2.5. Models with simultaneous births to multiple parents. The discrete
generation model described in the previous section is a special case of a class

Žof models in which simultaneous births may occur to multiple parents in
contrast to Models I and II in which only one parent is involved in each birth

.event . The analogous coupling for the more general models can be handled
using essentially the same construction as in the previous section. For
example, a birth event in which one parent has L offspring and another L1 2
offspring, increasing the population size from N to N # L # L , can be1 2
treated as creating a ‘‘new generation’’ with one litter of size L # 1, one of1
size L # 1 and N $ 2 litters each of size 1. Note that mutation%movement2
does not affect the coupling as long as it is defined the same way for both
models and depends only on parental type.
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3. Infinite population limit. In this section, we concentrate on continu-
ous-time models in which each birth event involves only a single parent.

3.1. Limit of total population size.

3.1.1. Birth and death processes. In order to motivate the scaling that
will be used in our general limit theorem, first consider a sequence of simple
linear birth and death processes. These can be obtained as solutions of the
equation

tn n n n3.1 N t ! N 0 # V 4 N s ds $ V & N s ds ,Ž . Ž . Ž . Ž . Ž .H Hb n d nž / ž /0 0

where V and V are independent, unit Poisson processes. If we rescale N n,b d
nŽ . $1 nŽ . Ž .defining P t ! n N nt , 3.1 becomes

1 1t tn n 2 n 2 nP t ! P 0 # V n 4 P s ds $ V n & P s dsŽ . Ž . Ž . Ž .H Hb n d nž / ž /n n0 0

1 1t tn 2 n 2 n˜ ˜3.2Ž . ! P 0 # V n 4 P s ds $ V n & P s dsŽ . Ž . Ž .H Hb n d nž / ž /n n0 0

t n#n 4 $ & P s ds,Ž . Ž .Hn n
0

˜Ž . Ž .here V u ! V u $ u. Note that
1 1

2 2˜ ˜V n $ , V n $Ž . Ž .b dž /n n
Ž .is normalized so that it converges in distribution to W , W , a pair ofb d

independent, standard Brownian motions. Consequently, if we assume that
Ž . nŽ . Ž . n4 ! 4, n 4 $ & ! c and P 0 " P 0 , P converges in distribution to an n n

solution of

t t t
3.3 P t ! P 0 # W 4P s ds $ W 4P s ds # c P s ds.Ž . Ž . Ž . Ž . Ž . Ž .H H Hb dž / ž /0 0 0

Note, in addition, that the normalized total number of births satisfies
n

$N n $Ž .b " 4P s ds.Ž .H2n 0

More generally, we can consider birth and death processes satisfying

t tn 2 n 2 n˜N t ! V n 4 P s ds # V n 4 P s ds ,Ž . Ž . Ž .Ž . Ž .H Hb 1 n 3 nž / ž /0 0

t tn 2 n 2 n˜N t ! V n & P s ds # V n 4 P s ds ,Ž . Ž . Ž .Ž . Ž .H Hd 2 n 3 nž / ž /0 0

1 1
n n n nP t ! P 0 # N t $ N t .Ž . Ž . Ž . Ž .b dn n
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n ˜ ˜Ž . Ž . Ž . Ž . Ž . Ž . Ž Ž . Ž .. Ž .If P 0 " P 0 and 4 $ ! 4 $ , 4 $ ! 4 $ and n 4 $ $ & $ ! b $ uni-n n n n
formly on compact sets, then P n converges to a solution of

t
P t ! P 0 # W 4 P s dsŽ . Ž . Ž .Ž .H1 ž /03.4Ž .

t t$W 4 P s ds # b P s dsŽ . Ž .Ž . Ž .H H2 ž /0 0
and

n
$N $Ž .b ˜3.5 " 4 P s # 4 P s ds,Ž . Ž . Ž .Ž . Ž .Ž .H2n 0

Ž .provided the solution of 3.4 does not blow up in finite time. In this case, P is
a diffusion with generator

Gf z ! 4 z f 5 z # b z f 6 zŽ . Ž . Ž . Ž . Ž .
& Ž . 'see Ethier and Kurtz 1986 , Theorem 6.5.4 .

3.1.2. Branching processes. Another example of interest is for N n to be a
# n 4branching process. For each n, let . , k ! 1, 2, . . . be independent, integer-k

valued random variables with . n " $1. Suppose that there exist 3 ! "k n
such that

3n1
n3.6 sup E . ! "Ž . Ý knn k!1

Ž . 3n nand 1%n Ý . " Y . Let V be a unit Poisson process and define ak!1 k 1
compound Poisson process

Ž .V 3 tn
n nV̂ t ! . .Ž . Ý k

k!1
n $1 ˆn Ž . Ž .Then Y # n V " Y in the Skorohod topology , where Y 1 has the same

nŽ .distribution as Y . Let N 0 ! n. Then the solution of1

tn n n $1 nˆN t ! N 0 # V n N s dsŽ . Ž . Ž .Hž /0

is a continuous-time Markov branching process. Normalizing N n, we have
tn n nP t ! 1 # Y P s dsŽ . Ž .Hž /0

and P n " P satisfying
t

P t ! 1 # Y P s ds .Ž . Ž .Hž /0

& Ž . 'See Ethier and Kurtz 1986 , Theorem 9.1.4.
The limiting process Y can be any Levy process with generator of the form´

1Hf z ! af 5 z # bf 6 zŽ . Ž . Ž .2

# f z # y $ f z $ yf 6 z ' dy ,Ž . Ž . Ž . Ž .Ž .H
Ž .0, "
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Ž . Ž .where ' satisfies H y y - 1 ' dy ! ". In particular, Y has no negativeŽ0, ".
jumps. The condition on ' is stronger than necessary for a general

Ž ' ' 2 Ž . .Levy measure H y - 1' dy ! " . The stronger condition assures that´
& ' Ž . ''E Y t ! " and that P does not blow up in finite time. The generator for P

is

Gf v ! vHf v .Ž . Ž .
Ž . 3n nIn addition, the convergence of 1%n Ý . implies the convergence ofk!1 k

Ž 2 . 3n Ž n.2 &1%n Ý . . This assertion follows from the central convergence crite-k!1 k
Ž . 'rion in Loeve 1963 , Section 22.4. This convergence implies the convergence

& ' & ' & n ' & 'of the quadratic variation Y " Y which in turn implies P " P .n $ $ $ $
& 'Note that Y is a process with independent increments with generator

"
2H f y ! af 6 y # f y # u $ f y ' du ,Ž . Ž . Ž . Ž .Ž .Ž .H2

0

Ž . t Ž . & ' & 'and setting 1 t ! H P s ds, P ! Y .0 t 1 Ž t .
3.1.3. Population models with multiple simultaneous births and deaths.

Suppose that V and V are independent, unit Poisson processes and that1 2
# b4 # d47 and 7 are iid sequences of nonnegative integer-valued random vari-k k

& & b ' Ž b. 2 & d 'ables with finite mean and variance. E 7 ! m , Var 7 ! - , E 7 !k b k b k
Ž d . 2 'm , Var 7 ! - . Letd k d

tn 2 nN̂ t ! V n 4 P s ds ,Ž . Ž .Ž .Hb 1 nž /0

ˆnŽ .N tb
n bN t ! 7 ,Ž . Ýb k

k!1

tn 2 nN̂ t ! V n & P s ds ,Ž . Ž .Ž .Hd 2 nž /0

ˆnŽ .N td
n dN t ! 7 ,Ž . Ýd k

k!1

1 1
n n n nP t ! P 0 # N t $ N t .Ž . Ž . Ž . Ž .b dn n

nŽ . Ž . Ž . Ž . Ž Ž . Ž . . Ž .If P 0 " P 0 and 4 $ ! 4 $ and n 4 $ m $ & $ m ! b $ uniformlyn n b n d
on compact sets, then P n converges in distribution to a solution of

t t
P t ! P 0 # - W 4 P s ds # m W 4 P s dsŽ . Ž . Ž . Ž .Ž . Ž .H Hb 1 b 2ž / ž /0 0

m mt tb b$ - W 4 P s ds $ m W 4 P s dsŽ . Ž .Ž . Ž .H Hd 3 d 4ž / ž /m m0 0d d

t# b P s ds,Ž .Ž .H
0
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where the W are standard Brownian motions, provided the solution does noti
blow up in finite time. The quantity

n nN # N tŽ .b btU t ! ,Ž .n 2n

& n ' nwhere N denotes the quadratic variation of N , will play a critical role inb t b
our discussion. Note that under the above assumptions, U " U given byn

t2 23.7 U t ! m # - # m 4 P s ds.Ž . Ž . Ž .Ž .Ž .Hb b b
0

nŽ .3.1.4. Models with constant population size. Assume that N 0 ! n and
n n nŽ .that N ! N , so that N t ! n for all t " 0. Under our convention ofb d

nŽ . nŽ .‘‘killing first,’’ we must have N t $ N t $ ! n. Again, considerb b

n nN # N tŽ .b btnU t ! .Ž . 2n

If N n has stationary, independent increments, then so does U n. Under thisb
hypothesis, the possible limits U n " U are the nondecreasing processes with
stationary, independent increments and jumps bounded by 1, that is, pro-
cesses with generators of the form

1
Df u ! af 6 u # f u # v $ f u ' dv ,Ž . Ž . Ž . Ž . Ž .Ž .H

0

1 Ž .where ' satisfies H v' dv ! ". In Section 5, we will see that this model is0
Ž .related to coalescent models of Pitman 1997 .

3.2. Conditions on total population size. With the above examples in
mind, define

1 1 1
n n n nP t ! N 0 # N t $ N t ,Ž . Ž . Ž . Ž .b dn n n
8 n ! inf t : P n t ! 0 ,# 4Ž .

n nN # N tŽ .b btnU t ! ,Ž . 2n
3.8Ž .

1tn nH t ! dU s ,Ž . Ž .H 2n0 P sŽ .
& n ' nwhere N denotes the quadratic variation of N . In the birth and deathb t b

n & n ' nŽ .examples, Section 3.1.1, N is a counting process and N ! N t , sob b t b
Ž .by 3.5 ,

t ˜U " 2 4 P s # 4 P s ds.Ž . Ž .Ž . Ž .Ž .Hn
0
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For the branching process examples, Section 3.1.2,
Ž t nŽ . .V 3 H P s dsn 0

n nN t ! . + 0,Ž . Ýb k
k!1

Ž n .2 n nŽ n .and observing that . + 0 # . + 0 ! . . # 1 , we see thatk k k k

1
n n& ' & 'U t ! P # P t " P .Ž . Ž .t tn n

Ž .For the models in Section 3.1.3, the limit of U is given in 3.7 . For then
constant population size models of Section 3.1.4, the limit of U has station-n
ary, independent increments.

We assume that there are no further births after 8 n. Our basic convergence
assumption is that

3.9 P n , U n " P , U .Ž . Ž . Ž .
n # nŽ . 4 # Ž . 4For 9 " 0, let 8 ! inf t: P t * 9 and 8 ! inf t: P t * 9 . In general,9 9

Ž . n3.9 does not imply 8 " 8 ; however, this convergence will hold for all but9 9

countably many 9 " 0. Define

3.10 8 # lim 8 ! inf t : P t - P t $ ! 0# 4Ž . Ž . Ž .9
9!0

and
1t-8

H t ! dU s .Ž . Ž .H 2
0 P sŽ .

Ž .Then 3.9 implies the existence of a sequence 9 ! 0 such thatn

3.11 P n , U n , H n $- 8 n , 8 n " P , U, H , 8 ,Ž . Ž .Ž .Ž .9 9n n

& . & 'where the convergence in distribution is in D 0," % 0," with&0, ".% &0, ".% &0, "'
& .the Skorohod topology on D 0," . Note that we allow H and H&0, ".% &0, ".% &0, "' n

to assume the value " if the integrals diverge in finite time. For simplicity,
we will usually assume

3.12 P n , U n , H n , 8 n " P , U, H , 8 .Ž . Ž . Ž .
Ž . Ž n n n. Ž .In particular, if 8 ! " a.s., then 3.12 holds. If P , U , 8 " P, U, 8 and

Ž . # 4 Ž .H 8 ! " on 8 ! " , then 3.12 also holds.

3.3. Limit in E". Let X n be a version of Model II of the previous section
determined by N n, N n and a fixed Markov evolution with generator Bb d
satisfying the conditions in Section 1.3. In particular, a process * correspond-
ing to B has cadlag sample paths. We also assume that, for every initial

& # Ž .condition, the process has no fixed points of discontinuity i.e., P * t !
Ž .4 ' Ž* t $ ! 1 for all t " 0 . This last condition is unnecessary most of the

time, in particular, if the population size processes are Markov birth and
.death processes as described above.
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Ž . Ž .Let X 0 , X 0 , . . . be an infinite exchangeable sequence in E, and as-1 2
sume that, for each n,

X n 0 , . . . , X n
n 0 ! X 0 , . . . , X n 0 .Ž . Ž . Ž . Ž .Ž . Ž .1 N Ž0. 1 N Ž0.

We will refer to X n as the kth level process. It will be convenient to definek
nŽ . nŽ . Ž . nŽ . nŽ nŽ . .X t for k " N t to be X 0 if max N s ! k and to be X : t $ ,k k s* t k k

nŽ . # nŽ . 4where : t ! sup s ! t: N s " k , otherwise.k
Note that the first-level process X n is just an E-valued Markov proc-1

n #ess with generator B and fixed initial distribution stopped at 8 ! inf t:
nŽ . 4 n n ŽN t ! 0 , so X converges in distribution provided 8 does. The assump-1

tion of no fixed points of distinuity is needed here unless the limit of the 8 n

.‘‘misses’’ all such points with probability 1.
Next, recall that X n evolves as a Markov process with generator B except2

at those tims when the first two levels are involved in a birth event. At each
such time, the second-level process ‘‘copies’’ the value of the first-level pro-

n Ž .cess. Let N t denote the number of birth events up to time t that involve12
Ž n n.the levels 1 and 2. Then X , X converges in distribution provided the1 2

n Žcounting process N converges in distribution. Again, we need the assump-12
tion of no fixed points of discontinuity unless the jump times of the limit of

n .N miss these. Note that if there is a birth event at time t with k offspring,12
n n Ž .then, conditioning on N and N for all time not just up to time t , theb

probability that levels 1 and 2 are involved is just

N n t $ 2Ž .ž / k k # 1Ž .k $ 1 ! .n nn N t N t $ 1Ž . Ž .Ž .N tŽ .ž /k # 1

Consequently,

k k # 1Ž .m mnN t $Ž . Ý12 n nN t N t $ 1Ž . Ž .Ž .m m# 4m : t *t , k "0m m3.13Ž .
1tn n! N t $ dU sŽ . Ž .H12 n nP s P s $ 1%nŽ . Ž .Ž .0

is a martingale with respect to the filtration

GG n ! - X n s , N s , s * t , 1 * i ! j; N n u , N n u , u " 0 ,Ž . Ž . Ž . Ž .Ž .t i j b

at least if the process is stopped the first time the sum exceeds an arbitrary
Ž .constant K. By 3.12 , the sum converges in distribution to

1$-8
3.14 H $ ! dU s .Ž . Ž . Ž .H 2

0 P sŽ .
& nŽ . Ž nŽ . . nNote that the ratio P t % P t $ 1%n is bounded by 2 for t ! 8 and

& n ' 'converges to 1 uniformly on 0, 8 $ # for each # " 0. By Lemma A.1, it
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follows that N n converges in distribution to a counting process with distribu-12
Ž n n.tion determined by H and hence that X , X converges in distribution.1 2
# 4 ' 'In general, fix a level l, and let K ( 1, . . . , l . K will denote the cardinal-

ity of the set. Define

n # 4N t ! m: t * t , / , 1, . . . , l ! K .# 4Ž .K m m

Then

N n t $ lŽ .m

' 'ž /k # 1 $ Kmn3.15 N t $Ž . Ž . ÝK nN tŽ .m# ' '4m : t *t , k #1" Km m ž /k # 1m

# n4 nŽ . Ž .is a martingale with respect to GG . Let H t denote the sum in 3.15 andt K
U denote the continuous part of U. The summands can be rewritten asc

N $ lž / k # 1 !' ' Ž .k # 1 $ K
!

' ' ' 'k # 1 $ K ! N . . . N $ K # 1N Ž . Ž .ž /k # 1

' 'N $ k $ 1 . . . N $ k $ l # KŽ . Ž .
% .

' 'N $ K . . . N $ l # 1Ž . Ž .

' ' Ž . nIf K ! 2, it follows from 3.12 that H converges in distribution toK

l$2'1 ;U s ;U sŽ . Ž .$-8
3.16 dU s # 1 $ ,Ž . Ž . ÝH c2 2 ž /P sŽ .0 P s P sŽ . Ž .s*$-8

Ž . Ž . Ž . Ž . Ž .where ;U s ! U s $ U s $ . Note that if l ! 2, then 3.16 is just 3.14 . If
' 'K " 2, then the sum converges in distribution to

' ' ' 'K l$ K' ';U s ;U sŽ . Ž .
3.17 1 $ .Ž . Ý ž / ž /P s P sŽ . Ž .s*$-8

' ' nIn particular, if U is continuous and K " 2, then N " 0, that is, in theK
limit, only two levels are involved in any birth event. Note that typically U is
continuous even when the original model has multiple simultaneous births.
Ž .See Section 3.1.3.

Ž .In general, if ;U s " 0, then conditioned on U and P, levels are included
Ž .'in the birth event independently with probability ;U s %P s . In any case,Ž .

# n # 44by Lemma A.1, the family of counting processes N : K ( 1, . . . , l con-K
l& .2verges in distribution in the Skorohod topology on D 0," ."
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Given U and P, we can construct the limiting process in the following
# 4manner. Let V , i ! j be independent unit Poisson processes, independenti j

of U and P. Define

1t-8
3.18 L t ! V dU s .Ž . Ž . Ž .Hi j i j c2ž /0 P sŽ .

L determines the times of the birth events that involve only i and j. Leti j
# 41 be some ordering of the times of discontinuity of U, let 3 !m m

Ž . # 4 & ';U 1 %P 1 and let v be independent, uniform 0, 1 random vari-' Ž .m m jm
ables that are independent of U, P and the V . Definei j

3.19 L t ! I ,Ž . Ž . Ýj #v * 3 4jm m
1 *tm

# 4and, for K ( 1, . . . , l ,

3.20 Ll t ! I I .Ž . Ž . Ý Ł ŁK #v * 3 4 #v " 3 4jm m jm m
j)K # 4j) 1, . . . , l $K1 *tm

L determines whether or not level j is involved in the birth event at eachj
l # 4discontinuity of U and the L track the subsets of 1, . . . , l that are involvedK

in birth events at each discontinuity of U.
Ž .We can construct the limit process X ! X , X , . . . inductively. X is just1 2 1

Ž .a Markov process with generator B stopped at 8 . Suppose that X , . . . , X1 l$1
has been constructed. Then between the jump times of L , j * l, and L ,j i j
i ! j * l, and before 8 , X evolves as a Markov process with generator B,l
dependent on the other levels only through its value at the most recent jump

Ž . Ž .time. For t " 8 , X t ! X 8 $ . At a jump time t of L , the level processesl l i j
satisfy

X t ! X t $ , k ! j,Ž . Ž .k k

X t ! X t ,Ž . Ž .j i

X t ! X t $ , k " j,Ž . Ž .k k$1

# Ž . 4and at a discontinuity time t of U, defining i ! min j: ;L t " 0 andj
Ž . Ž .K t ! Ý ;L t $ 1, the level processes satisfyk j* k j

X t ! X t $ , k * i ,Ž . Ž .k k

X t ! X t , k " i , ;L t " 0,Ž . Ž . Ž .k i k

X t ! X t $ , otherwise.Ž . Ž .k k$K Ž t .k

Ž .Note that X can be explicitly constructed using the mappings M x, t, $
described in Lemma 1.3, or X can be characterized by the requirement that
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# 4there exists a filtration GG such that L is GG -measurable for all i, j andt i j 0

t
f X t $ Bf X s dsŽ . Ž .Ž . Ž .Hk k

0

t$ f X s $ $ f X s $ dL sŽ . Ž . Ž .Ž . Ž .Ž .Ý H k$1 k i j
01*i!j!k

t$ f X s $ $ f X s $ dL sŽ . Ž . Ž .Ž . Ž .Ž .Ý H i k ik
01*i!k

t k$ f X s $ $ f X s $ dL sŽ . Ž . Ž .Ž .Ž .Ý H Ž .minŽK . k K
0# 4K( 1, . . . , k , k)K

t k$ f X s $ $ f X s $ dL sŽ . Ž . Ž .Ž .Ž .Ý H Ž .k$ ' K '#1 k K
0# 4K( 1, . . . , k , k"K

# 4 Ž .is a GG -martingale for all f ) DD B .t
For t ! 8 n, define

nŽ .N t1
n

nZ t ! # ,Ž . Ý X Ž t .n kN tŽ . k!1

and, for all t " 0, define
l1

Z t ! lim # .Ž . Ý X Ž t .kll!" k!1

Ž Ž . Ž . .PROPOSITION 3.1. For each t " 0, X t , X t , . . . is exchangeable. More1 2
Ž Ž . . Ž Ž . Ž . .generally, let HH ! - Z s : s * t + - U s , P s : s " 0 and let 1 be ant

# 4 Ž Ž . Ž . . # 4HH -stopping time. Then X 1 , X 1 , . . . is exchangeable. If 1 is HH -pre-t 1 2 t
Ž Ž . Ž . .dictable, then X 1 $ , X 1 $ , . . . is also exchangeable.1 2

n # nŽ . 4 Ž n n. Ž .PROOF. Let 8 ! inf t: N t * l . The fact that P , 8 " P, 8 impliesl
Ž n n. Ž . nŽ n. Ž nŽ n.P , 8 " P, 8 , since P 8 " 0. The exchangeability of X t - 8 ,l l 1 l

nŽ n.. Ž Ž . Ž ... . . , X t - 8 then implies the exchangeability of X t , . . . , X t and,l l 1 l
Ž Ž . Ž . .since l is arbitrary, of X t , X t , . . . . The remainder of the proof is similar1 2

to the proof of Proposition 2.2. !

THEOREM 3.2. Let X n be a version of Model II of the previous section
determined by N n, N n and a fixed Markov evolution with generator Bb d
satisfying the conditions in Section 1.3. Assume that, for each initial condi-
tion, the cadlag process corresponding to B has no fixed points of discontinu-

Ž . Ž .ity. Let X 0 , X 0 , . . . be an infinite exchangeable sequence in E and assume1 2
that, for each n,

X n 0 , . . . , X n
n 0 ! X 0 , . . . , X n 0 .Ž . Ž . Ž . Ž .Ž . Ž .1 N Ž0. 1 N Ž0.

n n n n Ž . Ž .Let P , 8 , U and H be defined as in 3.8 , and assume that 3.12 holds.
Then
3.21 P n , U n , P nZn , X n " P , U, PZ, XŽ . Ž . Ž .
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& . Ž .2 "in D 0," . If, in addition, U is continuous, then, for each f ) DD B ,# %MM ŽE .%E

f x Z $- 8 , dxŽ . Ž .H
Ž .is continuous a.s., and hence Z $- 8 is continuous in the ( metric.B

Ž . Ž . Ž .REMARK 3.3. a If 3.9 holds but not 3.12 , then there exists a sequence
9 ! 0 such thatn

3.22 P n , U n , P nZn , X n $- 8 n " P , U, PZ, X .Ž . Ž .Ž .Ž .9n

Ž .b As noted in Section 1.3, continuity in ( is usually equivalent toB
continuity in the weak topology.

PROOF OF THEOREM 3.2. The assumptions and discussion above give
Ž n n n. Ž . Ž .P , U , X " P, U, X . To see that 3.21 holds, define

l1
n

nZ t ! # ,Ž . Ýl X Ž t .kl k!1

n nŽ n. Ž .and similarly for Z . Then P Z $- 8 " PZ $- 8 by the convergence ofl l l l
Ž n n.P , X .

Consequently, the theorem will follow if we show that Zn approximates Zn
l

well enough. The following lemmas verify the necessary approximation.
Ž . Ž . $ $Since the discontinuities of Hf x Z $- 8 are bounded by f %l, the lastl

statement follows by Lemma 3.5. !

Ž .LEMMA 3.4. For each T " 0, c " 0 and 9 " 0 and each f ) DD B , there
exists a sequence # such that Ý # ! " andl l l

n n n n nP sup f x Z t - 8 , dx $ f x Z t - 8 , dx " 119 , U T * cŽ . Ž . Ž .Ž . Ž .H Hl l l½ 5
t*T

* # .l

PROOF. By Lemma A.2, for any t " 0 and 9 " 0,

n n n n $/ lP f x Z t - 8 , dx $ f x Z t - 8 , dx " 9 * 2 e ,Ž . Ž .Ž . Ž .H Hl l l½ 5
$ $where / depends only on f and 9 . More generally, let

HH n ! - P n s , U n s : s " 0 + - Zn s : s * t .Ž . Ž . Ž .Ž . Ž .t

# n4 nThen for any HH -stopping time 3 with 3 * 8 ,t l

n n $/ lP f x Z 3 , dx $ f x Z 3 , dx " 9 * 2 e .Ž . Ž . Ž . Ž .H H l½ 5
Fix l and 9 . Define

3 n ! inf t : U n t " l$4 - l$4 - 8 n# 4Ž .1 l
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and

3 n ! inf t : U n t " U n 3 n # l$4 - 3 n # l$4 - 8 n .Ž .# 4Ž . Ž .k#1 k k l

In addition, define

n n n n n n3 ! inf t " 3 : f x Z t , dx $ f x Z 3 , dx " 69 - 8 .Ž . Ž . Ž . Ž .˜ H Hk k k l½ 5
Ž . 4 # n n nŽ n . 4Note that, for k ! 2 c # T l , P 3 ! T - 8 , U 3 ! c ! 0. Definingl k l kl l

n n n n nH ! f x Z 3 , dx $ f x Z 3 , dxŽ . Ž .Ž . Ž .H Hk k l k

n n n n+ f x Z 3 , dx $ f x Z 3 , dx ,Ž . Ž .Ž . Ž .˜ ˜H Hk l k

we have that

P sup H n " 9 * 8 c # T l4e$/ l .Ž .k½ 5
k*kl

Ž n n .It remains to estimate the variation in the intervals 3 , 3 .k k#1
To simplify the notation, we suppress the index n. For each k and j, let

# Ž . 41 ! inf s " 3 : X 3 has no descendants at time s . For 3 * s ! 1 , letjk k j k k jk
˜Ž . Ž . Ž .: s be the smallest index of a descendant of X 3 and define X s !jk j k j

Ž .X s - 1 . Then, for 3 * u ! 3 ,: Ž s. jk k k#1j

f x Zn u , dx $ f x Zn 3 , dxŽ . Ž . Ž . Ž .H Hl l k

l1
n! f x Z u , dx $ f X uŽ . Ž . Ž .ÝH Ž .l : Žu.jl j!1

3.23Ž .
l1 ˜# f X u $ f X 3 .Ž . Ž .Ž .Ý ž /ž /j j kl j!1

Let

l1
n nK ! max sup f x Z u , dx $ f X uŽ . Ž . Ž .ÝH Ž .1 l : Žu.jlk*kl 3 *u!3 j!1k k#1

and
l1

n ˜ ˜K ! max sup f X u $ f X 3 .Ž . Ž .Ý ž / ž /ž /2 j j klk*kl 3 *u!3 j!1k k#1

Ž . $ $Note that the first term on the right of 3.23 is bounded by 2 f $
nŽ . nŽ .N 3 , 3 %l, where N 3 , 3 is the number of new individuals addedl k k#1 l k k#1

Ž .to the population in the time interval 3 , 3 with initial index less thank k#1
or equal to l. Then, with k and t as in the construction in the previousm m
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section, using the fact that

k# # 1 k#Ž .m mn n $43.24 U 3 $ $ U 3 ! * l ,Ž . Ž . Ž . Ýk#1 k n n $ 1Ž .m m3 !t !3k m k#1

we have

# #k # 1 k 1Ž .m mln n nE N 3 , 3 U , P * * .Ž . Ýl k k#1 2ž /2 n n $ 1 2 lŽ .m m3 !t !3k m k#1

$ $ $3Consequently, for f l ! 9 ,

P K n " 29# 41

k $1l 9
n n n n* P N 3 , 3 $ E N 3 , 3 U , P " l .Ž . Ž .Ý l k k#1 l k k#1½ 5$ $2 fk!0

We can write
#nN 3 , 3 ! 7 $ 1 ,Ž . Ž .Ýl k k#1 m

3 !t !3k m k#1

where, conditional on U n and P n, the 7 are independent hypergeometricm
Ž .random variables. Let 7 ! 0 if k ! 0. Using the fact that, for k " 0,m m m

E 7 7 $ 1 $$$ 7 $ qŽ . Ž .m m m

k # 1 . . . k # 1 $ qŽ . Ž .m m! l l $ 1 . . . l $ q ,Ž . Ž .
n n $ 1 . . . n $ qŽ . Ž .m m m

3.25Ž .

the inequalities

2#z $ 1 * z z $ 1 ,Ž . Ž .
4#z $ 1 * 3z z $ 1 z $ 2 z $ 3 # 3z z $ 1 ,Ž . Ž . Ž . Ž . Ž .

Ž .and 3.24 , we can estimate fourth moments to obtain

9
n n n nP N 3 , 3 $ E N 3 , 3 U , P " lŽ . Ž .l k k#1 l k k#1½ 5$ $2 f

$ $ 416 f
$4 $2& '* 5l # 3l4 49 l

and hence

$ $ 4k 16 fln $4 $2& 'P K " 29 * 5l # 3l .# 41 4 49 l
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Ž .The second term on the right-hand side of 3.23 can be rewritten as
l1 ˜ ˜f X u $ f X 3Ž . Ž .Ý ž / ž /ž /j j kl j!1

l1 u-1 jk˜ ˜ ˜! f X u $ f X 3 $ Bf X s dsŽ . Ž . Ž .Ý Hž / ž / ž /j j k jž /l 3kj!1
3.26Ž .

l1 u-1 jk ˜# Bf X s ds.Ž .Ý H ž /jl 3kj!1

Then
l1 u-1 jk˜ ˜ ˜M u ! f X u $ f X 3 $ Bf X s dsŽ . Ž . Ž . Ž .Ý Hž / ž / ž /lk j j k jž /l 3kj!1

$4 $ $is a martingale, and if l Bf * 9 , we have
k $1l

n $/ l2P K " 29 * P sup M u " 9 * Ce ,# 4 Ž .Ý2 lk½ 5
3 *u!3k!0 k k#1

$ $ $4 $ $where C and / depend only on 9 and 2 f # l Bf .2
Finally, note that if max H n * 9 , K n * 29 and K n * 29 , then 3 n "˜k * k k 1 2 kln ' Ž . nŽ . Ž . nŽ n . 'n n3 and sup Hf x Z t, dx $ Hf x Z 3 , dx * 69 . Hence, un-k#1 3 * t ! 3 kk k#1

der these conditions,

n n n nsup f x Z t - 8 , dx $ f x Z t - 8 , dx * 119 ,Ž . Ž .Ž . Ž .H Hl l l
nt*3kl

and the conclusion of the lemma follows with

$ $ 4k 16 fl4 $/ l $4 $2 $/ l2& '# ! 8 c # T l e # 5l # 3l # Ce . !Ž .l 4 49 l

Ž .LEMMA 3.5. For each T " 0, c " 0 and 9 " 0 and each f ) DD B , there
exists a sequence # such that Ý # ! " andl l l

P sup f x Z t - 8 , dxŽ . Ž .H½
t*T

$ f x Z t - 8 , dx " 119 , U T * c * # .Ž . Ž . Ž .H l l5
PROOF. For # as in Lemma 3.4, by the same argument as above, we havel

P sup f x Z t - 8 , dxŽ . Ž .H m½
t*T

$ f x Z t - 8 , dx " 119 , U T * c * # ,Ž . Ž . Ž .H l l5
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for all m " l. This inequality and the fact that Ý # ! " implies by thel l
Borel!Cantelli lemma that, with probability 1,

3.27 f x Z $- 8 , dxŽ . Ž . Ž .H l½ 5
& .is a Cauchy sequence in the complete metric on C 0," ,#

"
$td x , y ! e sup 1 - x s $ y s dt ,Ž . Ž . Ž .Hu

0 s*t

giving the topology of uniform convergence on bounded time intervals. Since
# Ž . Ž .4 Ž . Ž .for each fixed t, Hf x Z t - 8 , dx converges a.s. to Hf x Z t - 8 , dx , thel

lemma follows. !

4. Martingale properties. In this section, we examine more carefully
the martingale properties of the processes constructed in Section 3. In
particular, we consider the martingale problem satisfied by the particle
model, and more importantly, the martingale problem satisfied by the mea-
sure-valued process assuming that the order of the particles is unknown. We
restrict our attention to models in which the population size process is given

Ž . Ž Ž ..as a function of a Markov process Q, that is, P t ! p Q t , where Q has
state space E and generator G. For simplicity, we assume that E is a0 0
locally compact, separable, metric space with metric r and that the strong0

ˆ# Ž .4 Ž .closure of G is the generator of a Feller semigroup S t on C E extended0
Ž .so that 1 ) DD G and G1 ! 0. In addition, we assume

t
U t ! q Q s ds # q Q s $ , Q s ,Ž . Ž . Ž . Ž .Ž . Ž .ÝH 1 2

0 s*t

Ž . cŽ . t Ž Ž .. Ž . Ž Ž .where q v, v ! 0, that is, U t ! H q Q s ds and ;U s ! q Q s $ ,2 0 1 2
Ž .. Ž . Ž . Ž .2Q s " 0 only if Q has a discontinuity at time s. Define 3 v ! q v %p v1

Ž . Ž . Ž Ž ..and : v, v6 ! q v , v6 %p v6 , that is, 3 Q t is the intensity for the L' Ž .2 i j
Ž Ž . Ž ..and : Q t $ , Q t is the probability that a level is involved in a birth event

at time t if there is a discontinuity in Q at time t. We assume that there
exists a kernel / such that, for each < " 0, the closure of G defined by9

G f v ! Gf v $ f v6 $ f v / v , dv6 , f ) DD G ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .H9
# Ž . 4v6 : r v , v6 "90

generates a Feller semigroup corresponding to a Markov process Q satis-9

fying
sup r Q s $ , Q s * 9 a.s.Ž . Ž .Ž .0 9 9

s

Of course, / is just the jump intensity measure for the process. For the
Ž . Ž . Ž .branching process example Section 3.1.2 , : v, v6 ! v6 $ v %v6 and

Ž . Ž ./ v, dv6 ! v' dv6 .
Let E denote the type space which we continue to assume is a complete,

separable, metric space. We do not require B to be all of the weak infintesi-
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Ž . Ž . Ž .mal operator. We assume that DD B ( C E and is separating, 1 ) DD B
Ž . Ž .with B1 ! 0 and RR B ( B E . In addition, we assume that the martingale

Ž .problem for B is well posed, that is, for each & ) PP E , there exists a unique
Ž .solution of the martingale problem for B, & , and that any solution of the

& .martingale problem for B has a modification with sample paths in D 0," .E
It follows immediately that the martingale problem is well posed for the
operator

m

C f v , x , . . . , x ! Gf v , x , . . . , x # B f v , x , . . . , x ,Ž . Ž . Ž .Ým 1 m 1 m i 1 m
i!1

where G operates on f as a function of v only and B operates on f as ai
& Ž . 'function of x only. See Ethier and Kurtz 1986 , Theorem 4.10.1. Note thati

C is the generator of the process with state space E % Em consisting of Qm 0
and m independent copies of the mutation process. We can take the domain
for C to bem

m

4.1 DD C ! f v f x : f ) DD G , f ) DD B , i ! 1, . . . , m ,Ž . Ž . Ž . Ž . Ž . Ž .Łm 0 i i 0 i½ 5
i!1

although for some purposes we may want to extend C to the closure of itsm
linear extension.

The martingale problem for the first m levels in the particle model has
generator

A f v , x ' mŽ .m

! C f v , x ' m # 3 v f v , , x ' m $ f v , x ' mŽ . Ž . Ž . Ž .Ž .Ý ž /m i j
1*i!j*m

' '' ' m$ KK# : v , v6 1 $ : v , v6Ž . Ž .Ž .Ý H
E0# 4K( 1, . . . , m

4.2Ž .

% f v6, , x ' m $ f v6, x / v , dv6 ,Ž . Ž . Ž .Ž .Ž .K

" ' m Ž .where, for x ) E , x ! x , . . . , x ,1 m

, x , . . . , x ! x , . . . , x , x , x , . . . , x ,Ž .i j 1 m 1 j$1 i j m$1

Ž ' m. m ' mand , x is the element in E obtained from x by inserting copies ofK
# Ž .4 ' 'x at the levels in K $ min K and dropping the K $ 1 componentsminŽK .
# 4with highest indices. If K ! i, j , then , ! , .i j K

Ž .2 Ž .If 3 and : # H : $, v6 / $, dv6 are bounded, there is essentially no/ E0

difficulty in verifying existence and uniqueness for the martingale problem
for A . Existence follows by a direct construction. If B satisfies them
Hille!Yosida range condition, then so will C . The range condition for Am m
then follows since A is a bounded perturbation of C . Uniqueness for them m
martingale problems will typically follow from Theorem 4.4.1 or Corollary

Ž . Ž .4.4.4 of Ethier and Kurtz 1986 . If : ! 0 i.e., U is continuous , uniqueness
Ž .follows from Theorem 4.10.3 of Ethier and Kurtz 1986 , at least if the state

description is expanded to include the counting processes, V . If the mutationi j
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process can be obtained as the unique solution of a stochastic differential
equation, then a system of sde’s can be written for X, and uniqueness of the
solution of the system used to prove uniqueness for the martingale problem.
See, for example, Section 6.4.

We will simply assume that the martingale problem is well posed for Am
Ž .for any 3 and : such that 3 and : are bounded. Taking DD A !/

" Ž . Ž . Ž ' m. Ž .# DD A and defining Af v, x ! A f v, x for f ) DD A , we seem! 1 m m m
that the martingale problem for A is well posed.

Models with unbounded 3 and%or : can be treated by a localization/

argument. Assume that there exist open subsets U ( E such that, for eachk 0
" # Ž . Ž . 4 Žk, 3 and : are bounded on U and # U ! U # v: 3 v # : v ! " . In/ k k!1 k /

# Ž .the diffusion models discussed in Section 3, we could take U ! v: p v "k
$14 . # Ž . Ž . 4k . Let 8 ! inf t: Q t " U or Q t $ " U , and define 8 ! lim 8k k k k !" k

& Ž .'which, for the diffusion models, is the extinction time defined in 3.10 . Then
Ž ".the stopped martingale problem for A, ' , U % E is well posed for each k0 k

& Ž . 'see Ethier and Kurtz 1986 , Theorem 4.6.1 and hence the sequence of
stopped martingale problems uniquely determines the process up to time 8 . If
we assume that 8 ! 8 a.s., then 8 is predictable, and since by Ethier andk

&Ž . ' Ž .Kurtz 1986 , Theorem 4.3.12 , Q, X is quasi-left continuous, we have1
Ž . Ž . Ž . Ž . # 4 ŽQ 8 ! Q 8 $ and X 8 ! X 8 $ on 8 ! " . Note that A is independent1 1 1

Ž . . 8 Ž Ž Ž ..of 3 and :, so Q, X is uniquely determined for all time. If H 3 Q s #1 0
Ž Ž ... Ž .: Q s ds ! " i.e., there are infinitely many lookdowns prior to time 8 ,/

Ž . Ž . Ž .then as in Theorem 6.1, X 8 $ ! X 8 $ ! X 8 a.s. for each i, and wei 1 1
Ž . Ž . Ž . 8 Ž Ž Ž .. Ž Ž ..will simply define X 8 ! X 8 $ ! X 8 . If H 3 Q s # : Q s ds ! ",i i 1 0 /

then, for each i, there is a last lookdown at or below level i at a time strictly
less than 8 , and the exchangeability of the historical paths discussed in
Section 5.2 shows that X and X have the same distribution on the intervali 1

Ž .between the last lookdown and 8 . Consequently, we will again set X 8 !i
Ž .X 8 $ .i
With the understanding that we can treat unbounded 3 and : by the/

above localization argument, we will focus our attention on the bounded case.
Since any process of this form arises as a limit of the type discussed in

Ž . Ž .Section 3, we have that, if X 0 , X 0 , . . . is exchangeable and independent1 2
Ž . Ž . Ž .of Q 0 , then X t , X t , . . . is exchangeable for each t " 0. More generally,1 2

we have the following.

THEOREM 4.1. Let A be as above, and assume that the martingalem
Ž ". Ž .problem for A is well posed. Let ' ) PP E % E , and let Q, X , X , . . . bem 0 0 1 2
Ž .a solution of the martingale problem for A, ' . If there exists a transition0

Ž . Ž . Ž .function / from E to PP E such that, for all % ) BB E and H ) BB E ,0 0 0 i

' % % H % $$$ % H % E"Ž .0 1 m
m

0! & H / v , d& ' d' ,Ž . Ž . Ž .ŁH H i 0 0ž /Ž .% PP E i!1

4.3Ž .

0 Ž . Ž .where ' is the E -marginal of ' , then, for each t " 0, X t , X t , . . . is an0 0 0 1 2
exchangeable sequence. Denoting the corresponding de Finetti measure by
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Ž .Z t , we have
Q , ZE h X t , . . . , X t FFŽ . Ž .Ž .1 m t

! $$$ h x , . . . , x Z t , dx . . . Z t , dx .Ž . Ž . Ž .H H 1 m 1 m

Ž .REMARK 4.2. Note that 4.3 is essentially just the exchangeability of the
initial distribution.

PROOF. The result is an immediate consequence of Proposition 3.1. !

Ž .One consequence of Theorem 4.1 is that, for h ) DD A ,m

tm mh Q t , $ , Z t $ A h Q s , $ , Z s ds² : ² :Ž . Ž . Ž . Ž .Ž . Ž .H m
0

# Q, Z4is a martingale with respect to the filtration FF . Consequently, if wet
define an opertor

$: DD $ ( C E % PP E ! B E % PP EŽ . Ž . Ž .Ž . Ž .0 0

by taking

² m:DD $ ! F : F v , & ! h v , $ , & , h ) DD A , m ! 1,2, . . .# 4Ž . Ž . Ž . Ž .m

and defining

² m:4.4 $ F v , & ! A h v , $ , & ,Ž . Ž . Ž .m

we have existence of solutions of the martingale problem for $. Note that for
3 a constant, $ gives the standard martingale problem for the Fleming!Viot

& Ž . 'process. See, e.g., Ethier and Kurtz 1993 . We now consider the conditions
for uniqueness of the martingale problem.

THEOREM 4.3. Let 3 and : be bounded and suppose that there exists a/
Ž . Ž . &4 " 0 such that RR 4 $ B is bp-dense in B E . Recall that we are assuming

Ž̂ . Ž .that the closure G of G generates a Feller semigroup on C E , so RR 4 $ G !0
Ž̂ . ' Ž .C E for every 4 " 0. Then, for every 4 " 0, RR 4 $ $ is bp-dense in0
Ž Ž ..B E % PP E and the martingale problem for $ is well posed.0

PROOF. Note that the conclusion of the theorem is valid if and only if it is
valid with G replaced by G, so without loss of generality, we assume G ! G.
If X is a solution of the martingale problem for B, then it is a solution of the

ˆ & Ž .martingale problem for B, the bp-closure of B. See Ethier and Kurtz 1986 ,
ˆProposition 4.3.1. In general, B will be multivalued and should be considered

to be a set of ordered pairs; however, we will continue to use the more
ˆ 'intuitive notation Bf. Since the martingale problem for B is well posed, for

Ž .h ) RR 4 $ B we have
"$1 $4t4.5 4 $ B h x ! E e h X t dt ,Ž . Ž . Ž . Ž .Ž .H x

0
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Ž .where X is a solution of the martingale problem for B, # , which, byx x
# 4assumption, we can take to be right continuous. Consequently, if h (n

Ž . Ž .$1RR 4 $ B and h ! bp-lim h , then the bp-limits of f ! 4 $ B h andn!" n n n
Ž .Bf ! 4 f $ h will exist. It follows from the assumption that RR 4 $ B isn n n

ˆ ˆŽ . Ž . Ž .bp-dense in B E that B satisfies RR 4 $ B ! B E . Consequently, we may
Ž . Ž .as well assume that B is bp-closed and hence that RR 4 $ B ! B E . But if
&this condition holds for one 4 " 0, it holds for all 4 " 0 See Ethier and Kurtz

ˆ $1 ˆŽ . Ž .1986 , Lemma 4.2.3. Note that 4 $ B will be single-valued even if B is
'multivalued.

ˆ ˆ#Ž . 4Let B ! f , g ) B: g ) DD B . Then B generates a strongly continu-Ž .0 0
ˆŽ . &ous in the sup norm contraction semigroup on L ! DD B . Ethier and KurtzŽ .

ˆŽ . ' Ž .1986 , Theorem 1.4.3. The fact that X is right continuous implies DD B isx
Ž .bp-dense in B E , so linear combinations of functions of the form

f v , x , . . . , x ! f v f x . . . f x ,Ž . Ž . Ž . Ž .1 m 0 1 1 m m

f ) DD G , f ) DD B , 1 * i * m ,Ž . Ž .0 i 0

Ž m.will be bp-dense in B E % E . Call this collection of functions D , and note0 m
# Ž .4 Ž .that the semigroup S t corresponding to the process Q, X , . . . , X ,m 1 m

where X , . . . , X are independent solutions of the martingale problem for B,1 m
&Ž . 'maps D into D . It follows by Ethier and Kurtz 1986 , Proposition 1.3.4 ,m m

that the closure of C restricted to the linear span of D generates am m
strongly continuous contraction semigroup on L , the closure of the linearm

Ž .span of D . Since the strong closure of the linear span of RR 4 $ C containsm m
Ž m.L , the bp-closure must equal B E % E . Finally, since A is a boundedm 0 m

Ž .perturbation of C , it follows that the linear span of RR 4 $ A is bp-densem m
Ž m. Ž . Ž . ² Ž . m:in B E % E . Since, for f ) DD A and F v, & ! f v, $ , & ,0 m

² m:4F v , & $ $ F v , & ! 4 f v , $ $ A f v , $ , & ,Ž . Ž . Ž . Ž .m

Ž . Ž Ž ..it follows that RR 4 $ $ is bp-dense in B E % PP E . Consequently, by0
&Ž . 'Ethier and Kurtz 1986 , Theorem 4.4.1 , the martingale problem for $ is

well posed. !

Ž .THEOREM 4.4. Let D be a countable subset of DD G that separates points0
in E , is closed under multiplication and vanishes nowhere, and let D be a0 1

Ž .countable subset of DD B that separates points in E, is closed under multipli-
Ž .cation and vanishes nowhere. Suppose that, for f ) D , Bf ) C E and that1

the martingale problems for G restricted to D and for B restricted to D are0 1
Ž .well posed. If 3 and : are bounded and continuous and / v, $ is weakly

continuous in v, then the martingale problem for $ is well posed.

Ž . Ž . Ž .PROOF. Recall that we are assuming that DD B ( C E and DD G (
Ž .C E . Note that the martingale problem for A restricted to the domain0

generated by D and D is still well posed and satisfies the conditions of0 1
Ž . & Ž .Theorem 2.6 of Kurtz 1998 i.e., Bhatt and Karandikar 1993 , Theo-
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' Ž . Ž . Ž .rem 4.1 . Define 1 v, x , x , . . . ! v, & ) E % PP E if the limit1 2 0

n1
& ! lim #Ý x inn!" i!1

Ž . Ž .exists, and define 1 v, x , x , . . . ! v, # for some fixed a ) E otherwise.1 2 a
Ž .Then uniqueness for the martingale problem for $ follows by Kurtz 1998 ,

Corollary 3.7, where the mapping 1 is defined above and the transition
Ž .function 3 not to be confused with 3 in the present paper is determined by

m
"3 v , & , % % % % $$$ % % % E ! # % & % . !Ž . Ž .Ž . Ł0 1 m v 0 i

i!1

If Q is continuous, the formulation of the martingale problem for $ can be
& Ž .'simplified cf. El Karoui and Roelly 1991 .

Ž . & .THEOREM 4.5. Let Q, Z be a process with sample paths in C 0," ,E %PPŽE .0
Ž . Ž .and assume that DD G is an algebra. Suppose that, for f ) DD G and0

Ž .f ) DD B ,1

t² : ² :f Q t f , Z t $ f $ Gf Q s # f Q s Bf $ , Z s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .H0 1 1 0 0 1
0

# Q, Z4is a continuous FF -martingale with quadratic variationt

t 2 2² :f , Z s Gf Q s $ 2 f Q s Gf Q sŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž .H 1 0 0 0ž
0

22 2 ² :#3 Q s f Q s f , Z s $ f , Z s ds.² :Ž . Ž . Ž . Ž .Ž . Ž . ž /0 1 1 /
Ž .Then Q, Z is a solution of the martingale problem for $.

² Ž Ž . . Ž .m: Ž . Ž .PROOF. Apply Ito’s formula to h Q t , $ , Z t for h ) DD A ! DD Cˆ m m
Ž .defined by 4.1 . !

Ž . & . Ž .EXAMPLE 4.6 Dawson!Watanabe process . Let E ! 0," , Gf v !0 0
(Ž . ) Ž . Ž .avf v # bvf v , and let p v ! v, that is, the population size is given by Q.0 0

"& .Then C 0," , the space of continuously differentiable functions with compactc
& .support in 0," , is a core for G. Note also that 0 is absorbing, that is, if

# Ž . 4 Ž . Ž .8 ! inf t: Q t ! 0 , then Q t ! 0 for all t " 8 . Let K be an MM E -valued
Ž .process such that, for f ) DD B ,

t² : ² :f , K t $ bf # Bf , K s dsŽ . Ž .H
0

# K 4is a continuuous FF -martingale with quadratic variationt

t 2² :2 a f , K s ds.Ž .H
0
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Ž . ' Ž . ' & Ž .' Ž .Taking f ! 1, and setting Q t ! K t the total mass of K t and Z t !
' Ž . '$1 Ž .K t K t , we see that

t
Q t $ bQ s dsŽ . Ž .H

0

is a continuous martingale with quadratic variation
t
2 aQ s ds.Ž .H

0

Consequently, Q is a solution of the martingale problem for G. Let U !k
Ž $1 . Ž .k ," , and set a v ! 2 a%v, v & 0. Applying Ito’s formula, we can see thatˆ
Ž .Q, Z satisfies the martingale conditions of Theorem 4.5, provided we stop

# Ž . 4 Ž Ž . Ž ..the process at 8 ! inf t: Q t " U . Consequently, Q $- 8 , Z $- 8 is ak k k k
Ž Ž ..solution of the stopped martingale problem for $, U % PP E . Since Qk

absorbs at zero, if B satisfies the conditions of Theorem 4.3 or 4.4, the
martingale conditions on K uniquely determine its distribution for any

Ž .initial distribution on MM E . This result is a special case of the characteriza-
Ž .tion of the Dawson!Watanabe process in El Karoui and Roelly 1991 . !

Ž .EXAMPLE 4.7 General diffusion population size . More generally, let E !0
& . Ž . Ž . Ž . (Ž . Ž . ) Ž . "& .0," , p v ! v and Gf v ! a v f v # b v f v , and assume that C 0,"0 0 0 c

& Ž .is a core for G. See Ethier and Kurtz 1986 , Theorem 8.2.1 for sufficient
ˆ' Ž . Ž . Ž . Ž .conditions on a and b. Setting b v ! b v %v and a v ! a v %v, let K beˆ

Ž . Ž .an MM E -valued process such that, for f ) DD B ,
t ˆ² : ² : ² :f , K t $ b K s f , K s # Bf , K s dsŽ . Ž . Ž . Ž .Ž .Ž .H

0

# K 4is a continuous FF -martingale with quadratic variationt

t 2² :2 a K s f , K s ds.Ž . Ž .Ž .ˆH
0

Ž . ' Ž . ' Ž . ' Ž . '$1 Ž .As in Example 4.6, let Q t ! K t and Z t ! K t K t . Taking f ! 1,
we see that

t
Q t $ b Q s dsŽ . Ž .Ž .H

0

is a continuous martingale with quadratic variation
t
2 a Q s ds,Ž .Ž .H

0

Ž .and hence Q is a solution of the martingale problem for G. Setting 3 v !
$2 Ž . # Ž . 4 # Ž . 4 Ž Ž . Ž ..2v a v , U ! v: 3 v * k and 8 ! inf t: Q t " U , Q $- 8 , Z $- 8k k k k k

Ž Ž ..is a solution of the stopped martingale problem for $, U % PP E .k

5. Genealogy.

l Ž . Ž .5.1. The Coalescent. Let L and L be defined as in 3.18 and 3.20 . Fori j K
tŽ .each t " 0 and k ! 1, 2, . . . , let N s , 0 * s * t, be the level at time s of thek
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ancestor of the particle at level k at time t. In terms of the L , for 0 * s * t,i j

tt
tN s ! k $ I dL uŽ . Ž .Ý Hk #N Žu." j4 i jks1*i!j!k

t
t$ j $ i I dL uŽ . Ž .Ý H #N Žu.! j4 i jks1*i!j*k

t t k
t$ N u $ min K I dL uŽ . Ž . Ž .Ž .Ý H k #N Žu.) K 4 Kks# 4K( 1, . . . , k

t t$ K , 1, . . . , N u $ 1Ž .# 4Ž .Ý H k
s# 4K( 1, . . . , k

%I t t dLk u .Ž .#N Žu." minŽK . , N Žu." K 4 Kk k

˜tŽ .Fix 0 ! t * 8 , and, for s * t, define an equivalence relation, R s , by
˜t t t5.1 R s ! k , l : k , l ! 1, 2, . . . , N s ! N s .Ž . Ž . Ž . Ž . Ž .# 4k l

˜tŽ . Ž .Informally, k, l ) R s iff the two levels k and l have the same ancestor at
time s.

tŽ .THEOREM 5.1. Assume that U is continuous and that t ! 8 . Let ' u be
Ž . tŽ Ž .2 . Ž .the time change determined for u * H t # H 1%P s dU s by0

1t
dU s ! u.Ž .H 2tŽ .' u P sŽ .

t t ˜t tŽ . Ž . Ž Ž ..Up to time H t , the process R defined by R u ! R ' u is Kingman’s
Ž .1982 coalescent.

Ž . #Ž . 4PROOF. Observe that R 0 ! i, i , i ! 1, 2, . . . . Define
1 1tt Ž .' utV u ! V dU s $ V dU s .Ž . Ž . Ž .H Hi j i j i j2 2ž / ž /0 0P s P sŽ . Ž .

t Ž . Ž .Since V u is the increment of a unit Poisson process over a random timei j
interval of length u for which the location of the interval is independent of

Ž . tthe process V , it follows that the right continuous modification of V is ai j i j
Ž .unit Poisson process stopped at H t . Further, these processes are indepen-

Ž .dent for distinct pairs i, j .
The result then follows as in Theorems 3.1 and 3.2 of Donnelly and Kurtz

Ž .1996 . !

Ž .Pitman 1997 considers coalescent models with multiple collisions. His
Ž .models are given by 5.1 , if the underlying population model is that described

in Section 3.1.4. In particular, the finite measure = in the definition of
Pitman’s coalescent is related to ' by the identity

1 1 'g x = dx ! ag 0 # g v v' dv .Ž . Ž . Ž . Ž .Ž .H H
0 0
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& 1 Ž . ' Ž .Recall that H v' dv ! ". Compare 3.17 with the definition of 4 in0 b, K
Pitman’s paper.

# Ž . 4Suppose U is continuous and 8 ! ". Then, on the event lim H t ! " ,t !"

Rt converges in distribution, as t ! ", to Kingman’s coalescent. In particular,
under these conditions, for large enough t, all the levels at time t share a

Ž .common ancestor at time 0. If 8 ! " and H 8 ! ", then with

8 ! inf t : P t ! 9 ,# 4Ž .9

R89 converges in distribution to Kingman’s coalescent as 9 ! 0. In particular,
under these conditions, for some time t sufficiently close to 8 , all the levels at
time t share a common ancestor at time 0.

Dropping the continuity assumption on U, the existence of a common
ancestor at time 0 will still hold on the event

1t c5.2 lim dU s ! ",Ž . Ž .H 2t!" 0 P sŽ .
˜talthough R can no longer be transformed by a time change to Kingman’s

Ž .coalescent. If 5.2 fails, then the question of the existence of a time at which
all particles have a common ancestor at time 0 becomes more delicate. See

&Ž . 'Pitman 1997 , Section 3.6 for a discussion of this question for the models of
Section 3.1.4, that is, models in which P # 1 and U has stationary, indepen-
dent increments.

The property that all the levels can be traced back to a single common
ancestor in finite time is closely related to the ergodicity of the particle
process, since it facilitates the coupling of versions of the process for different

Ž .initial conditions. For details of the argument, see Donnelly and Kurtz 1996 ,
Section 4. For example, under the assumptions on P and U in the first

Žparagraph of Section 4, suppose that the process Q is strongly ergodic i.e.,
for each initial distribution, the one-dimensional distributions converge in

.total variation to the unique stationary distribution and, in addition, that
the type%location process is strongly ergodic. Then the proof of Theorem 4.1

Ž .of Donnelly and Kurtz 1996 is easily extended to show that, if all the levels
can be traced back to a single common ancestor in finite time, the particle
process, and the associated measure-valued process, are also strongly ergodic.

5.2. The Dawson!Perkins historical process. Let N t be as above. Fork
each t " 0 and k ! 1, 2, . . . , define

˜ t
tX s ! X s , 0 * s * t .Ž . Ž .k N Ž s.k

˜ t & 'Then X , as a process on the interval 0, t , is Markov with generator B, andk
˜ t# 4 & 'the sequence X is exchangeable as a sequence of D 0, t -valued randomk E

˜ t ˜ tŽ Ž . Ž .variables. Alternatively, we can define X s ! X t for s " t and considerk k
˜ t ˜& . . Ž .X as a D 0," -valud random variable. Let K t denote the de Finettik E

˜Ž . Ž . Ž .measure corresponding to the sequence, and define K t ! P t K t . In the
Ž & ..branching case, K, viewed as an MM D 0," -valued process, is the historicalE

Ž .process of Dawson and Perkins 1991 .
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6. Applications and examples.

6.1. Type distribution at the extinction time. In the case of super Brown-
Ž .ian motion, Tribe 1992 has shown that

lim Z t ! # a.s.Ž . 70t!8$

for some # d-valued random variable 7 . From the above construction, it is0
Ž .easy to see that 7 ! X 8 . More generally, we have the following theorem.0 1

THEOREM 6.1. The limit

lim Z t ! #Ž . X Ž8$.1t!8$

# 4holds almost surely on 8 ! " if and only if

8 81 1 ;U sŽ .
c6.1 dU s ! dU s # ! "Ž . Ž . Ž . ÝH H2 2 2

0 0P s P s P sŽ . Ž . Ž .s!8

# 4holds almost surely on 8 ! " .

Ž . Ž . 2 Ž . Ž . Ž .PROOF. Let N t ! L t # L t . By 6.1 , for each 9 " 0, N 8 $12 12 #1, 24 12
Ž . # 4 Ž . Ž .N 8 $ 9 ! " on 8 ! " . It follows that X 8 $ ! X 8 $ a.s. But since 812 2 1

# 4 Ž Ž . Ž . .is GG -measurable, it is GG -predictable and X 8 $ , X 8 $ , . . . is0 t 1 2
Ž .exchangeable by Proposition 3.1. Consequently, we must have X 8 $ !k

Ž . Ž .X 8 $ for all k and hence Z 8 $ ! # . !1 X Ž8$.1

6.2. Conditioning. In general, the effect of conditioning on U and P is
clear. The only impact on the process is through the time change in the

Ž . l Ž .definition of L at 3.18 and through the definition of L at 3.20 . Fori j K
example, if the original process is the Dawson!Watanabe process so that

1 ct t
dU s ! ds,Ž .H H2 P sŽ .0 0P sŽ .

Ž . Ž .then conditioning on P # 1 is equivalent to setting L t # V ct , whichi j i j
Ž .makes Z the Fleming!Viot genetic process, a result due to Etheridge and

Ž . Ž .March 1991 . See Perkins 1991 for related results.
Again, in the Dawson!Watanabe setting, conditioning P on nonextinction

& Ž . 'cf. Evans and Perkins 1990 and Section 6.3 is equivalent to replacing P
Ž . Ž . Ž . Ž .with generator Gf v ! avf 5 v $ bvf 6 v b " 0 by a process with generator

ˆ6.2 Gf v ! avf 5 v # 2 a $ bv f 6 v .Ž . Ž . Ž . Ž . Ž .
Ž .If P 0 " 0, then P never hits zero, but P grows slowly enough that

" c
ds ! ".H P sŽ .0

It follows that eventually all particles trace their ancestry back to the
bottom-level particle. In particular, the bottom-level particle in our construc-
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Ž .tion is the ‘‘immortal particle’’ of Evans 1993 , and if b " 0, the ergodicity
argument outlined in Section 5.1 applies whenever X is ergodic.1

6.3. Asymptotic independence. The following theorem extends a result of
Ž .Evans and Perkins 1990 for critical superprocesses conditioned on nonex-

tinction. As noted in Section 6.2, conditioning a Dawson!Watanabe process
on nonextinction is equivalent to letting P be the diffusion with generator
Ž . Ž . 3 Ž .6.2 . It follows that in the critical case i.e., b ! 0 , for 3 " 0, P t !

ˆ 3Ž .P 3 t %3 is a diffusion with generator G, and hence, as 3 ! ", P " P ,0
ˆ Ž . Ž .where P is the diffusion with generator G and P 0 ! 0. Note that P t " 00 0

Ž .for all t " 0, and, consequently, that 6.3 below is satisfied.

THEOREM 6.2. Suppose that 8 ! " a.s. and that the type process has
Ž . Ž .stationary distribution > and is ergodic in the sense that lim T t f x !t !"

Ž .Hf d> for every f ) C E . Assume either that the convergence is uniform
Ž . Žon compact subsets of E or that X 0 has distribution > that is, X is1 1

.stationary with marginal distribution > and the convergence holds almost
everywhere > .

If

1t#r
6.3 lim dU s ! 0Ž . Ž .H 2t!" t P sŽ .

Ž .in probability for each r " 0, then lim Z t ! > in probability.t !"

Ž . Ž . 2 Ž . Ž . #PROOF. Again, let N t ! L t # L t . Let 1 t ! sup s * t:12 12 #1, 24
Ž . Ž .4 Ž .N s & N s $ . Then by 6.3 ,12 12

lim P t $ 1 t " r ! 1# 4Ž .
t!"

for each r " 0. By the conditional independence of the type processes and the
# Ž .4 Ž .assumption on T t , for each f ) C E ,

2² :lim E f , Z t ! lim E f X t f X tŽ . Ž . Ž .Ž . Ž .1 2
t!" t!"

2! lim E T t $ 1 t f X 1 tŽ . Ž .Ž . Ž .Ž .Ž .1
t!"

² :2! f ,> .

& Ž .Note that since 1 t is independent of X , if X is stationary with marginal1 1
Ž Ž .. ' &² Ž .:'distribution > , then X 1 t has districution > . But since E f , Z t !1

² : Ž .f ,> , it follows by the Chebychev inequality that Z t ! > in probability.
!

6.4. Sochastic equations for diffusion type processes. Let L and Lk bei j K
Ž . Ž . ddefined as in 3.18 and 3.20 . Suppose the type process is a diffusion in #
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given as the unique solution of an Ito equation,ˆ
t t

X t ! X 0 # - X s dW s # b X s ds,Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H0 0 0 0
0 0

where - is d % d-matrix-valued function, W is a standard Brownian motion
in # d, and b is an # d-valued function. Then the particle process satisfies the
system of equations

t t
X t ! X 0 # - X s dW s # b X s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .H Hk k k k k

0 0

t# X s $ $ X s $ dL sŽ . Ž . Ž .Ž .Ý H i k ik
01*i!k

t# X s $ $ X s $ dL sŽ . Ž . Ž .Ž .Ý H k$1 k i j6.4Ž . 01*i!j!k

t k# X s $ $ X s $ dL sŽ . Ž . Ž .Ž .Ý H minŽK . k K
0# 4K( 1, . . . , k , k)K

t k# X s $ $ X s $ dL s ,Ž . Ž . Ž .Ž .Ý H k$ ' K '#1 k K
0# 4K( 1, . . . , k , k"K

where the W are independent, # d-valued, standard Brownian motions.k

6.5. Measure-valued diffusion with spatial interaction. In the Dawson!
Ž .Watanabe setting, Perkins 1992 introduced stochastic equations driven by

historical Brownian motion, that is, the historical process with Brownian
Ž . Ž .location process see Section 5.2 . In our context, we can modify 6.4 to obtain

a version of Perkins’s models corresponding to our more general population
models. We assume, for simplicity, that U is continuous and write

t
X t ! X 0 # - P s , Z s , X s dW sŽ . Ž . Ž . Ž . Ž . Ž .Ž .Hk k k k

0

t# b P s , Z s , X s dsŽ . Ž . Ž .Ž .H k
0

t# X s $ $ X s $ dL sŽ . Ž . Ž .Ž .Ý H i k ik
01*i!k

6.5Ž .

t# X s $ $ X s dL s .Ž . Ž . Ž .Ž .Ý H k$1 k i j
01*i!j!k

# Ž .4For each t " 0, we require the solution X t to be exchangeable with dek
Ž .Finetti measure Z t . The connection of this system to the equation of

Perkins is more obvious if we first define
k s

t˜ tW s ! I dW u , 0 * s * t ,Ž . Ž .Ý Hk #N Žu.!i4 ik0i!1
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˜ t# 4 Ž .and note that the de Finetti measure for W multiplied by P t givesk
˜ tŽ . Ž .historical Brownian motion. Then, for each t " 0, X t ! X t , wherek k

s
t t t t˜ ˜ ˜ ˜X s ! X 0 # - P u , Z u , X u dW uŽ . Ž . Ž . Ž . Ž . Ž .Ž .Hk k k k

0

s
t˜# b P u , Z u , X u du.Ž . Ž . Ž .Ž .H k

0

6.6Ž .

Ž . Ž . # Ž .4Note that in 6.6 , Z u is still the de Finetti measure for X u , not that ofk
˜ t# Ž .4 Ž . Ž .X u . In the branching setting, 6.6 is essentially equation SE of Perkinsk

Ž .1992 . Perkins aso considered more general equations in which the coeffi-
cients depend on the past of the processes.

Ž d .Following Perkins, let ( denote the Wasserstein metric on PP # andw
assume

- p , z , x $ - p , z , x # b p , z , x $ b p , z , xŽ . Ž . Ž . Ž .1 1 2 2 1 1 2 26.7Ž .
' '* K ( z , z # x $ x ,Ž .Ž .w 1 2 1 2

Ž d . dfor z , z ) PP # and x , x ) # . Consider the n-dimensional system, 1 *1 2 1 2
k * n,

tn n nX t ! X 0 # - P s , Z s , X s dW sŽ . Ž . Ž . Ž . Ž . Ž .Ž .Hk k k k
0

t n n# b P s , Z s , X s dsŽ . Ž . Ž .Ž .H k
0

t n n# X s $ $ X s $ dL sŽ . Ž . Ž .Ž .Ý H i k ik
01*i!k

t n n# X s $ $ X s dL s ,Ž . Ž . Ž .Ž .Ý H k$1 k i j
01*i!j!k

nŽ . Ž . n Ž .nwhere Z s ! 1%n Ý # . The Lipschitz assumption 6.7 implies exis-k!1 X Ž s.k
Ž .tence and uniqueness for 6.8 below.

Ž . Ž .Suppose that there exists a solution of 6.5 , and note that, as in 6.6 ,
n ˜n, tŽ . Ž .X t ! X t , wherek k

s
n , t t n n , t t˜ ˜ ˜ ˜X s ! X 0 # - P u , Z u , X u dW uŽ . Ž . Ž . Ž . Ž . Ž .Ž .Hk k k k

0

s
n n , t˜# b P u , Z u , X u du.Ž . Ž . Ž .Ž .H k

0

6.8Ž .

Ž .By 6.7 and the usual Lipschitz estimates for Ito equations, for each T " 0,ˆ
there exists a constant K such that, for all 0 * s * t * T,T

2t n , t˜ ˜E X s $ X sŽ . Ž .k k

s 22 n t n , t˜ ˜* K E ( Z u , Z u # X u $ X u du,Ž . Ž . Ž . Ž .Ž .HT w k k
0
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and hence, by Gronwall’s inequality, for 0 * t * T,
22n t n , t˜ ˜E X t $ X t ! E X t $ X tŽ . Ž . Ž . Ž .k k k k

t 2 n* exp TK E ( Z u , Z u du.Ž . Ž . Ž .Ž .HT w
0

6.9Ž .

ˆn nŽ . Ž .Now let Z t ! 1%n Ý # , and note thatk!1 X Ž t .k

n1 22 n n nˆ( Z t , Z t * X t $ X t .Ž . Ž . Ž . Ž .Ž .Ž . Ýw k kn k!1

Ž .By 6.9 ,

t2 n n 2 nˆ ˆE ( Z t , Z t * 2 exp TK E ( Z u , Z uŽ . Ž . Ž . Ž . Ž .Ž . Ž .H žw T w
0

2 n nˆ#E ( Z u , Z u du,Ž . Ž .Ž . /w

and again by Gronwall’s inequality, we have

t2 n n T K 2 nTˆ ˆ6.10 E ( Z t , Z t * exp t2 e E ( Z u , Z u du.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Hw w
0

# Ž .4By the requirement that X u be exchangeable with de Finetti measurek
Ž . Ž .Z u , the right-hand side of 6.10 goes to zero as n ! ". It follows that the

Ž .right-hand side of 6.9 goes to zero also, which, in particular, implies
Ž . Ž .uniqueness for 6.5 . Existence for 6.5 follows by using much the same

# nŽ .4argment to show that Z t is a Cauchy sequence for each t.
Assume that P and U satisfy the conditions of Section 4. To simplify

notation, assume that - and b depend explicitly on Q rather than P, and set
Ž . Ž . Ž .T Ž . 2Ž d .a v, z, x ! - v, z, x - v, z, x . For f ) DD B # C # , definec

d d
1Bf v , z , x ! a v , z , x ? ? f x # b v , z , x ? f x .Ž . Ž . Ž . Ž . Ž .Ý Ýi j i j i i2

i , j!1 i!1

Ž . Ž .The generator A for Q, Z, X is given by the obvious modification of 4.2 . In
formulating the corresponding martingale problem, we require that a solu-

Ž .tion have the exchangeability property, so that Z t is defined to be the de
Ž .Finetti measure for X t . Under the conditions above on - and b, uniqueness

Ž .for the system 6.5 implies uniqueness for the corresponding martingale
&problem. Every solution of the martingale problem is a weak solution

Ž . ' Ž .of 6.5 . If we define $ as in 4.4 , uniqueness for the martingale problem
for $ follows by the same argument as used in the proof of Theorem 4.4.

6.6. Models with immigration. A particle representation for models with
immigration can be constructed in much the same way as for models without.
We simply insert new ‘‘immigrants’’ at each level at a rate that is indepen-
dent of the level or the current type at the level. In the case : ! 0, the
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Ž .generator 4.2 becomes

A f v , x ' m ! C f v , x ' m # 3 v f v , , x ' m $ f v , x ' mŽ . Ž . Ž . Ž . Ž .Ž .Ý ž /m m i j
1*i!j*m

m
' m ' m'# 1 v f v , , x y $ f v , x q v , dy ,Ž . Ž . Ž .Ž .Ž .Ž .Ý H i

Ei!1

Ž ' . Ž .where , x , . . . , x y ! x , . . . , x , y, x , . . . , x and q is a transitioni 1 m 1 i$1 i m$1
function from E to E which gives the distribution of the type of the0
immigrant conditioned on the value of the Markov driving process Q. If 3
and 1 are bounded, then uniqueness of the martingale problem for A willm
typically follow under the same conditions as in the case 1 ! 0 and the
exchangeability results follow also. In particular, if we define $ as before,

Ž . ² Ž . m:that is, $ F v, & ! A h v, $ , & , then Theorem 4.3 extends to the modelm
with immigration under the assumption that 3 and 1 are bounded. If 1 is

Ž . Ž .bounded and continuous and the mapping v ! q v, $ from E into PP E is0
continuous, then Theorem 4.4 extends as well.

If the original finite population model is a branching Markov process with
constant immigration rate and iid immigrant types with distribution q , then0

Ž . (Ž . Ž . ) Ž . Ž . Ž . Ž . Ž .Gf v ! avf v # bv # c f v , p v ! v, 3 v ! 2 a%v, q v, dy ! q dy0 0 0 0
Ž . Ž .and 1 v ! c%v for some constant c. Defining K ! QZ, for f ) DD B ,

t ² :² : ² :6.11 f , K t $ bf # Bf , K s # c f , q dsŽ . Ž . Ž .Ž .H 0
0

# K 4is a continuous FF -martingale with quadratic variationt

t 2² :6.12 2 a f , K s ds.Ž . Ž .H
0

Ž .As in Example 4.6, if B satisfies the conditions of Theorem 4.3 or 4.4, 6.11
Ž .and 6.12 determine a well-posed martingale problem.

Models with migration between colonies will be treated elsewhere.

APPENDIX

LEMMA A.1. For each n, let N n, . . . , N n be counting processes satisfying1 m
& n n ' Ž .N , N ! 0 for i & j i.e., there are no simultaneous jumps . Suppose thati j t
# n4 nŽ . nŽ .H are nondecreasing processes with H t $ H t $ * 1 for all i andi i i
t " 0, that

N n $ H n , i ! 1, . . . , m ,i i

# n4 nŽ . nare GG -martingales and that H t is GG -measurable for each i and t " 0. Ift i 0

H n , . . . , H n " H ! H , . . . , HŽ .Ž .1 m 1 m

& .min the Skorohod topology on D 0," , then#

N n , . . . , N n " N , . . . , N ,Ž .Ž .1 m 1 m
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Ž .where N , . . . , N are counting processes with joint distribution determined1 m
by

m t
@ t ! E exp $ f s dN s HŽ . Ž . Ž .Ý Hf i iž /0i!1

m t! 1 # @ u $ exp $f u $ 1 dH uŽ . Ž . Ž .Ž .Ž .Ý H f i i
0i!1

m Ž .for all nonnegative, continuous, # -valued functions f ! f , . . . , f .1 m

PROOF. Using the fact that there are no simultaneous jumps among
the N n,i

m t nexp $ f s dN sŽ . Ž .Ý H i iž /0i!1

m m u$t n! 1 # exp $f u $ 1 exp $ f s dN sŽ . Ž . Ž .Ž .Ý ÝH HŽ .j i iž /0 0j!1 i!1

%dN n uŽ .j
A.1Ž . m m u$t n! 1 # exp $f u $ 1 exp $ f s dN sŽ . Ž . Ž .Ž .Ý ÝH HŽ .j i iž /0 0j!1 i!1

%d N n u $ H n uŽ . Ž .Ž .j j

m m u$t n n# exp $f u $ 1 exp $ f s dN s dH u .Ž . Ž . Ž . Ž .Ž .Ý ÝH HŽ .j i i jž /0 0j!1 i!1

Using the martingale assumption and the measurability assumption, condi-
Ž . ntioning both sides of A.1 on H , we have

m tn n n@ t ! E exp $ f s dN s HŽ . Ž . Ž .Ý Hf i iž /0i!1

m t n n! 1 # @ u $ exp $f u $ 1 dH u ,Ž . Ž . Ž .Ž .Ž .Ý H f i i
0i!1

and the convergence of H n to H implies the convergence of H n to H implies
n &the convergence of @ to @ . The convergence can be obtained by applyingf f

Ž . Ž . 'Theorem 5.4 of Kurtz and Protter 1991 or more directly from Avram 1988 .

LEMMA A.2. Let . , . . . , . be exchangeable and suppose there exists a1 n
' 'constant K such that . * K a.s. Definek

k1
M ! . .Ýk ik i!1
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Let 9 " 0. Then there exist C and / depending only on K and 9 , such that, for
l ! n,

' ' $/ Ž9 , K .lP M $ M " 9 * C 9 , K e .# 4 Ž .n l

Ž .In particular, the right-hand side does not depend on n.

# 4PROOF. Note that M is a reverse martingale and thatk

2 K
' 'M $ M * .k#1 k k # 1

It follows that

E exp 4 M $ MŽ .Ž .n l

n$1

! 1 # E exp 4 M $ M $ exp 4 M $ MŽ . Ž .Ž . Ž .Ý n k n k#1
k!l

$4 M $ M exp 4 M $ MŽ . Ž .Ž .k#1 k n k#1

n$1 2 K 2 K
* 1 # exp 4 $ 1 $ 4 E exp 4 M $ MŽ .Ž .Ý n k#1ž /ž /k # 1 k # 1k!l

and, by Gronwall’s inequality, that

n$1 2 K 2 K
E exp 4 M $ M * exp exp 4 $ 1 $ 4Ž .Ž . Ýn l ½ 5ž /ž /k # 1 k # 1k!l

22 K 42 KŽ .
* exp exp 4 .ž /½ 5l # 1 l

Hence,
22 K 42 KŽ .

P M $ M " 9 * exp exp 4 $ 49# 4Ž .n l ž /½ 5l # 1 l

#
# 2* exp e # $ 9 l ,½ 5ž /2 K

where we take 4 ! # l%2 K. The same inequality holds with M replaced byk
Ž # 2 Ž . .$M . Consequently, we can take / ! $inf e # $ #%2 K 9 and C ! 2. !k #

& . 9 Ž . 9 Ž .LEMMA A.3. For x ) D 0," and 9 " 0, define 8 x ! 0 and 8 x !E 0 k#1
# 9 Ž . Ž Ž . Ž 9 Ž ... 4 Ž . # 9 Ž . 4inf t " 8 x : r x t , x 8 x " 9 . Let J x, t, 9 ! min k: 8 x " t . Thenk k k

Ž . & .J x, t, 9 is bounded on compact subsets of D 0," .E

PROOF. The lemma follows easily from the characterization of the com-
& .pact subsets of D 0," in terms of a modulus of continuity. See, for example,E
Ž .Ethier and Kurtz 1986 , Theorem 3.6.3. !
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