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1974) or Lauritzen (1982). It is surprising that the same ideas are relevant in
statistical-mechanical studies of '""Gibb's states': See Lanférd and Ruelle (1969),
Ruelle (1978), Preston (1976) or Giorgii (1974). The key mathematical techniques
involve martingales and the machinery of regulaf,conditional distributions. Most
of the technique appears in early papers by Oxtoby (1952) on the Kryloff-
Bogoliouboff theory, or Hunt (1960) on the Martin boundary for Markov chains.
Recently, these ideas have been put into abstract and systematic form by Dynkin
(1978). ‘The object of the present paper is to review the theory in a statistical
context (Sections 1 and 2), and present some examples (Section 3). The material
on discrete exponential families in Section 3 and some of the details in Section
4 may be new. By and large, however, this paper is purely expository.

In the balance of this section, a general theorem on sufficiency énd par-
tial exchangeability will be presented; a slightly more general version will
be stated and proved in Section 4. The object of interest is a sequence of
random variables, taking values in Polish spaces. These range spaces may
differ from variable to variable. For the ith variable, let Qi be a Polish
space, that is, a Borel subset of a compact metric space. Equip Qi with
o

. - 00
its Borel o-field Ei. Let Q = Hi=1 Qi and F = Hi=1 3i.

ith coordinate function on . It is helpful to work with this concrete rea-

Let Xi be the

lization of the process. Often, Xi will be written for the ith coordinate

. n
function on Hi=1 Qi.

1 Qi to a

Polish space W write B, for the Borel og-field in W.. In principle,

The "sufficient statistic" Tn is a Borel mapping from H2=

Tn does not act on Q ; but Tn(xl”"’xn) does have domain § , because

the coordinate function Xi are defined on Q. For each n and t ¢ Wn ,

” < s n . n )
let Qn,t be a probability on Hi=1 F; in Hi=1 Qi. It is assumed that



1. Introduction

Let Xl,_XZ, ..., be a sequence of 0-1 valued random variables. They

are exchangeable if their joint distribution is invariant under finite permu-

tations of the indices. An equivalent formulation: let Sn = X1 LA Xn;
given Sn = t conditionally the sequence Xl, ceey Xn is uniformly distri-
buted over the (2) sequences having t 1's and n-t O0's. So the X-process
is exchangeable if the partial sums are sufficient, with the specified condi-
tional diétribution for Xl’ oo Xn given Sn‘

A famous theorem of de Finetti's (1931; also see 1937 or 1972) shows that
Xl’ X2, ..., are exchangeable iff this process is a mixture qf coin-tossing
processes, that is, for all n , and all strings Xqs cevs X of 0's and 1's,

P(x1= x1)°-°’xn= Xn) = J Pt(l"P)n—t U(dP)

for t = xy*t...t X Here, u is a probability on [0,1] , uniquely deter-
mined by P.

This theorem has been generalized in several directions. One is to allow
more complex state spaces: on this score, see Hewitt-Savage (1955), Diaconis-
Freedman (1980), Dubins-Freedman (1979). Another is to allow more complex
notions of symmetry. A process which is symmetric in a more complex sense
is said to be "partially exchangeable": see de Finetti (1938), (1972, Sec.
9.6.2), Freedman (1962a,b), Diaconis-Freedman (1980b). Precise definitions
are given below. As the discussion of the coin-tossing example hints, the
statistical idea of sufficiency then becomes relevant.

The connection between sufficiency and partial exchangeability has been

explored by the Scandinavian school: see, for example, Martin-Lof (1970) and



Related definitions have been given by Freedman (1962) and Bahadur (1954). For
a discussion of such ideas, see Lauritzen (1974a). In the.coin-tossing example,

condition (1) is trivial; (2) is easy,
Tn+1(x1,...,xn,y) = Tn(xl,...,xn) +y .

Property (3) is almost as easy. For one thing, s and t determine Xn+1 =

t-s = 0 or 1. So it is vacuous to condition on Xn+ Now put a string of

1°
n+l symbols down in random order, where t are 1 and n-t are 0. Given
that among the first n exactly s are 1 , the first n are still in random

order. That is all (3) says.

Going back to the general case, it is easy to check that M, is convex.

Q

Theorem 1.1 below will characterize the extreme points of MQ , and show that
Pe MQ is a unique average of extreme points. The theorem is a bit abstract,
so the characterization is indirect; in any concrete problem, some effort may

be needed to identify the extreme points: See Sections 2 and 3. The extreme

points are closely related to a certain o-field z , which will be called the

partially exchangeable o-field. Namely,

where

5 () X

is generated by Tn(Xl,...,Xn), Xn+1’ 42°

In the coin-tossing example, Z(n) is the o-field of measurable sets which
~are invariant under permutations of the first n coordinates. So I is the
o-field of measurable sets which are invariant under any finite permutation of

coordinates. This is often called the exchangeable o-field.




t > Qn ¢ is Borel. Define MQ » the partially exchangeable probabilities with
s _

respect to Qn and Tn , as the class of probabilities on F in § such that:
for each n , given Tn(Xl,...,Xn) = t , a regular conditional distribution for
Xl, cees Xn is Qn,t' Informally, Qn,t is the distribution of the data given
that the sufficient statistic takes the value t. This does not depend on the
parameters, i.e., it is the same for all P ¢ MQ' More exactly, M, 1is the

Q

class of P for which this statement is true.

An example of this set-up is provided by coin-tossing. Then Qi = {0,1}

3; is the discrete o-field, Tn(xl,...,xn) =X +f ..+ X w_ = {0,1,...,n},

n’ n

Bp is the discrete o-field in Wn. The relevant Qn,t assigns equal proba-
bility 1/(2) to each of the (2) sequences in H2=1 Qi with Tn = t. Then
MQ is precisely the class of exchangeable processes. De Finetti's theorem
identifies the extreme points of MQ , and states that any element of MQ is
a unique average of such extreme points. So de Finetti's theorem can be (with
some effort) seen as a special case of Choquet's theorem. On this score, see
Phelps (1966) or Kendall (1963). The object is to generalize these considera-

tions.

It will be necessary to assume that the Qn £ fit together, as follows:

(1.1) Q, ([T, =th=1
* 1
(1.2) If Tn(xl,...,xn) = Tn(xl,...,xn) , then
] 1
Tn+1(x1,...,xn,y) = Tn+l(x1,...,xn,y) for all y e Qn+1'
(1.3) For each s ¢ Wn and t ¢ Wn+1 , relative to Qn+1,t , the

kernel Qn s is a regular conditional distribution for
>

(Xl,...,Xn) given Tn(Xl,...,Xn) = s and Xn+1'



Xps oees X having empirical t. (Typically, Qn,t will have n! atoms, but
it may have fewer, if there are repeats.) Conditions (1.1-2-3) are easy to
check, and it can be verified that MQ consists of the exchangeable P , i.e.,
those invariant under permutations of finitely many coordinates. Let A be

a typical probability on (S,G). Let Pk on (9,3) make the coordinates in-
dependent, with common distribution A. If t, > A weak-star, then Qn,t+'PA
weak-star. If tn fails to converge, so does Qn,tn: indeed, the Qn,fn_n
distribution of Xl is just tn. Let A(w) = 1imn Tn[Xl(w),...,Xn(w)] on

the set L where the limit exists. Notice that Ec L. If Pe M then

Q >
P(L) =1, and for ¢ L the limit Q(w,*) is PA(w)' Since PK{A=X} =1,

it follows that PAtw) is the typical extreme point, i.e., E =L , and

P = P(dw) .

{
) Prew)

This is de Finetti's theorem, in some disguise.

Technical note: 1In connection with Section 4, it is pointed out that

Xg = IQ = xC =X > and ZE is spanned by A. Also,

a(n) _
T = T (XpseeX))s Xogs -ee
while
s(m) _ '
) = T &%), Toep (Koo sX 4105

1 R -
A moment's thought shows that Tn+1(X1,...,Xn+1) and Tn(xl,...,Xn) deter
mine Xn+1 , so in fact Z(n) = g(n): this is the 0-field of measurable sets
invariant under permutations of the first n-coordinates. In particular,

$ =% is the o-field of exchangeable events.



Theorem 1.1. Assume condition (1.1-3). There is a set E e ﬁ with P(E) = 1

for all P e MQ ; for each w e E , the sequence of probabilities

converges weak-star to a probability Q(w,*) ¢ M

T X @), X @] S Q

This Q(w,*) 1is 0-1 on X. As w ranges over E , the probabilities Q(w,*)

range over the extreme points of M,. For any P e M

Q

regular conditional P-distribution given I , and

Q° the kernel Q(w,A) is

P=J Qw,*) P(dw)
E

A

where P is the restriction of P to I. This representation is unique. In

particular, P e.MQ is extreme iff P is 0-1 on & ; equivalently, iff
P{w:Q(w,*) =P} =1 .

In the coin-tossing example, E 1is the set of w for which
%{Xl(w)+...+xn(w)] converges as n > «, Call the limit A(w). Then Q{w,*)
‘makes the coordinates independent, each taking the value 1 with probability
AMw) and 0 with probability 1-A(w). In short, Q(w,*) 1is coin-tossing,

with a A{w)-coin. The proof of the theorem is deferred to Section 4. ‘

2. Examples and Remarks

The first example is de Finetti's theorem:&nrgandom variables with
values in a Polish space (S,G): an exchangeable sequence is a mixture of

i.i.d. variables.

Example 2.1. Let Qi = S and &5 =, G for all i. Let Tn(xl,...,x ) =

n
1-2? 8§, , where ¢6_ 1is point mass at x: so T_ is the empirical dis-
n “i=l xi X . n

tribution. Let Qn ¢ be uniform over the collection of all finite sequences
H



P= J Pp ) P(dw) -

Example 2.3. When is Xl, Xz, ..., a mixture of sequences of independent nor-
mal variables, with common mean u and variance 02? (Both u and 02 vary

in the mixture.) The necessary and sufficient condition is that given

n 1 n
and

V=X2+...+X2,

n 1 n

the conditional distribution of Xl, cens Xn is uniform over the relevant
(n-2)-sphere in »Rn. The argument is as in the previous example. Alternative-
ly, such mixtures may be characterized as the set of processes invariant under

the group of orthogonal transformations of R" that preserve the line X, =

Xy = ... =X ; see Smith (1981) for further discussion.

When is Xl, Xz, ..., a mixture of sequences of independent normal var-
iables with common mean W and known variance 02? (Only u varies in the
mixture.) The necessary and sufficient condition is that given Un =
X1 + ... + Xn , the conditional distribution of Xl, Xz, cees Xn is normal
over the relevant n-1 dimensional hyperplane. We do not know a group theo-

retic characterization in this case.

Example 2.4. When is Xl, Xz, ..., a mixture of sequences of independent
uniform variables, with range [0,6]? (© varies in the mixture.) The
necessary and sufficient condition is that given Mn = max(xl,...,xn) , the

Xi's are independent and uniform over [O,Mn] , for t =1, ..., n. The



The next example characterizes mixtures of i.i.d. N(O,oz) variables.

The result dates back, at least, to Schoenberg (1938) who needed it to charac-
terize metric spaces that can be isometrically imbedded into Banach spaces. It
has been applied in Bayesian statistics by Freedman (1962b), and in the theory
of Radon measures, see, e.g., Chapter 9 of Choquet (1969). For recent var-
jants and a bibliography, see Eaton (1981) or Letac (1981). For a generaliza-
tion to &P spaces, see Berman (1980). The result is often stated as follows:
a sequence is a mixture of i.i.d. N(O,cz) variables iff for each n the dis-
tribution of the first n variables is invariant under rotations. To put the

result into the present framework, observe that the condition of rotational

2
2

say, the conditional distribution of (Xl""’xn) should be uniform on the

1
invariance is equivalent to the condition that given (X§+-X +...+X121)/2 =t ,

(n-1)-sphere of radius t in R™. Denote this uniform distribution by Qn e

Example 2.2. Let Qi be the line, with the Borel o-field &y - Let

.2 2.5 s
Tn(xl,...,xn) = (x1+...+xn) . Let 0<0 <« , and let the probability PG
on (R,5) make the coordinates independent, with common N(0,0z) distribution.
If ti/n > 02 , then Qn ¢ > PO weak-star. This fact can be traced back to

’"n
Maxwell, see page 134 of Everitt (1974). It has been rediscovered many times
since. It follows that if ti/n fails to converge, so does Qn £ For ex-
’n
ample, suppose ti/n -+ ®, But the Q . -law of X, coincides with the
> n
Qn daw of X, * t_/vn , and the mass drifts off to #=,
,vVn 1 n
2 4. 1 2 2
Let Aw)” = 11mn_)°° ﬁ{xlﬁn) +...4-Xn0») ] , on the set L where the

limit exists. Again, Ec L so P(L) =1 for P« MQ' For w e L , the
limit Qw,*) 1is PAG»)' Again, PO{A=O} =1, so E =1L ; the extreme

P € M, are precisely the PG's , and for any P ¢ MQ s

Q



Remark 2.1. 1In principle, the same kind of reasoning applies to characterize
mixtures of PA , where relative to PA , the Xi are independent generalized

exponentials
PA{X:.L:j} = c(i,x)e‘f(j)gm ui{j} .

Applications include the binomial and negative binomial. See Freedman (1962a)
for details.

Looking at the examples given so far suggests a simple scheme for writing
down further examples where the extreme points can be explicitly given: Take
any "standard" parametric family ‘{PA}XeA ; look at ''the usual sufficient sta-

tistics" - Tn and the conditional distribution -- Qn £ =" of X o5 X
b

1’ n

given that’ Tn = t. Then go backward; perhaps the extreme point of MQ for
the famiiy T, Q, coincides with {P,}, )+ At this writing, there is no
theorem that covers reasonably general fémilies PX with even real valued suf-
ficient statistics. Some of the difficulties will be understood from the case
where the sufficient statistics are restricted to be integer valued sums. See
Section 3. Of course in any particular case the intuition may be correct and

the argument straightforward.

Remark 2.2. Finite versions of the theorem. Theorem 1.1 characterizes the
extreme points of infinite partially exchangeable sequences. For exchangeable
sequences, there have been a number of results that imply that a finite ex-
changeable sequence is almost a mixture of coin-tossing. For details and re-
ferences to the work of de Finetti, Kendall, and others on this problem, see
Diaconis and Freedman (1980c). Eaton (1981) contains a finite version of Ex-
ample 2.2. Recently there has been interesting work showihg that finite ex-

changeable sequences can be characterized as mixtures of coin-tossing with a

10



idea is that Mn 4 6 , so the conditional law of Xl, eeas Xk given Mn tends

to the right limit.

Example 2.5. Fix a sequence of positive constants s with Z c, = . Let
A be a nonnegative parameter. Let Xl, XZ’ ..., be independent, Xi being
Poisson with parameter c;- Write PX for the law of Xl’ XZ’ «.. . How to

characterize mixtures of PA'S? For the answer, let

S =X_ 4+ ... +X .
n 1 n

These will be the sufficient statistics. Let Wn consist of the nonnegative
integers, and for t e Wn let Qn,t be multinomial, with t trials and n
cells, the ith one having probability ci/22=1 c;- Then the mixtures coincide
with the class MQ , and the PA are the extreme points. The argument is
that Qn,tn converges iff tn/c1+...+cn converges to a finite limit, say A ;

and then the limit is Pk' If tn/c1+...+cn -+ © . the Qn’tn—law of X1 is

binomial, with success probability cl/c1+...+cn , and ﬁumber of trials tn ,
so the mass drifts off to «. Now one proceeds as usual, with A(w) =

11mn_>°° Sn(w)/c1+...+cn on the set L where the limit exists.

Example 2.6. This is like example 2.5, but I ¢y < . The sufficient sta-
tistics are still Snm‘ with the same Qn’t's. The twist is that the PA'S
above are no longer extreme in MQ' Instead, the extreme points are the multi-
nomials, with t balls being dropped into a countably infinite number of boxes;
the balls are independent, and each ball drops into box i with probability
ci/Z c; s let Qt be the distribution of the box counts; then Qt is a
typical extreme point. The idea is that Qn,tn converges iff t, converges

to a finite 1limit, and this will be t.



examples in Section 2. There does not seem to be any theory that says when the
extreme points may be regarded as a family of measures smoothly parametrized by
a low dimensional manifold. Consider examples 2.1-2.3 from the invariant point
of view:

In Example 2.1 (de Finetti's theorem for Polish space valued variables)
the set MQ

group. Here if Qi is infinite, the extreme points are infinite dimensional;

is the set of all probabilities invariant under the permutation

while if the basic space Qi is finite, the extreme points are finite dimen-
sional. Thus "finite dimensional extreme points" are not simply a property of
the group involved. Examples 2.2 and 2.3 (mixtures of normals) can be charac-
terized by invariance under the orthogonal group and a subgroup of the ortho-
gonal group. We do not know a group theoretic characterization for location
mixtures of normals with known scale.

A further example is provided by a theorem of David Aldous (1981b). Aldous
considered the problem of an array Xij with joint distributions invariant
under permuting rows and columns. He determined the extreme points and a re-
presentation theorem. Hoever (198la) contains further specification of the
extreme points. Diaconis and Freedman (1981) contains an application to a
psychology problem. Here, even if the xij only take values zero and one,
the extreme points are infinite dimensional. This problem can be thought of
as a sequence of random variables invariant under a subgroup of the infinite
permutation group. It shows that merely putting conditions on the range space
does not suffice to give finite dimensional extreme points,

In all, these examples are not yet rich enough to suggest a general
theory that connects invariance and the version of partial exchangeability

using sufficiency.

12



possibly negative mixing measure being allowed. A result of P. A. Meyer is
given in Delacherie-Meyer (1975, p. 48-53). See also Jaynes (1§82).

There is a reasonably complete, simple, characterization of the extreme
points of a finite partially exchangeable sequence given in Diaconis and
Freedman (1980c). See also Chapter 1 of Lauritzen (1982). The extreme points
are only given in indirect form as all measures that are trivial on a certain
co-algebra. What is wanted is an approximation theorem saying that the extreme
points are almost a mixture of standard parametric families. One result along
these lines is in Zaman (1981). Zaman considers zero-one valued processes‘and
Tn(xl,xz,...,xn) = (tij) where ti , 1s the number of i to Jj transitions
in (xl,...,xn), i,j = 0,1. The Qn,t measures are taken as uniform over all
binary sequences of length n with Tn = t. Zaman shows that if Xl, Xz, cees
Xn is a stationary partially exchangeable sequence of length n_ which can be
extended to a partially exchangeable sequence of length n+k then, in variation

distance, Xl, Xz, ey Xn is almost a mixture of stationary Markov chains,

the error tending to zero like (log k)/k.

Remark 2.3. Invariance and partial exchangeability. Consider again de Finetti's

theorem for exchangeable random variables. The generalizations discussed here
depend on the formulation in terms of the conditional distribution given a sta-
tistic. Another way to generalize is to consider processes invariant under
groups other than the permutation group. There is a widely known representa-
tion theory for invariant measures. Roughly, every invariant probability is

a unique mixture of extreme invariant probabilities: the extreme points are
characterized as ergodic -- zero-one on the o-field of almost invariant sets.
Details may be found in Farrell (1962), Phelps (1966), or Maitra (1977). This

characterization of the extreme points is indirect, and not as concrete as the

11



this exponential family. Implicit in the proof is a version of the Koopman-
Pitman-Darmois theorem for integer valued random variables. This is discussed
at the end of this section. Our results have some overlap with results of
Lauritzen (1975), (1982; Chapter 3) who develops, in a different language, a
theory of "generalized exponential families" on a discrete set using the lang-
uage of semi-groups.

Let I be a set of integers of the form I = {ne Z:a < n < b} where
a or b are allowed to be infinite. Let u be a nonnegative measure on I.

A probability P on I is exponential through u if there is a real number

A, -© < A< oo and a constant c¢ such that
An
P(n) = ce”" u(n) for ne I .

Of course, if I 1is all the integers, and u grows rapidly at #= , there
may be no exponentials at all through u. Also by definition, an "exponential
u-sequence" is a sequence of independent random variables, with a common dis-
tribution which is exponential through yu.

For each n , let Dn be a subset of the integers, and for t ¢ Dn let
qn,t be a probability on n-tuples of integers. Suppose qn,t is exchange-
able, so all permutations of any given n-tuple will have the same 9 ¢"
probability.

It will always be assumed that the D's and q's are consistent, in the

following sense: if t € D ,; and q

: >
n+1 n+1,tn+1 (xl""’xn,xn_l_l) ‘ 0 > then
X * T Xy T Xne1 T the
xl + + xn = tn € Dn 5

furthermore,

14



We have not treated the case of mixtures of Markov chains as a special case
of Theorem 1.1. This is possible. Explicit characterization of the extreme
points involves the de bruijn, Ehrnfest, Smith, Tutte theorem on the number of
Eulerian paths in a graph. Similarly, we have not treated a host of more or less
obvious consequences of the representation. These include generalizations of the
Hewitt-Savage zero-one law and theorems involving limiting theory of partially
exchangeable variables. We have listed a number of papers in the bibliography

which are related to partial exchangeability but are not discussed in this paper.

3. Integer Valued Processes with Sums as Sufficient Statistics

The extreme points MQ can be given quite explicitly in the case of an
exchangeable integer valued process X where the sufficient statistics are
taken as sums: Tn(Xl,Xz,...,Xn) = X1 + X2 + ...+ Xn. The conditional proba-
bilities are allowed to be more or less arbitrary.

Here are some examples. If qn,k is the uniform distribution over all
nonnegative integer n-tuples with sum k , then Mq is all mixtures of geo-
metric variables. That is, the extreme points are the measure pk(l—p),
k=60,1,2, ..., 0<p<1. If qn,k is the multinomial distribution on non-
negative integer n-tuples -- the joint distribution of k balls being dropped
at random into n boxes -- then Mq is the set of all mixtures of Poisson
variables. That is, the extreme points are the measures e—x Ak/k!, k=20,

1, 2, ..., 0 <A < More examples can be found in Freedman (1962a).

The most general such process may be informally described as follows:

There is a partition of the integers into intervals Ij. The process runs by

first choosing an integer j from a fixed distribution, then choosing a para-

meter in an exponential family supported on Ij , and then being i.i.d. with

13



which are g-able. Such sequences are exponential u-sequences for certain u s

as the next theorem shows.

Theorem 3.1. Given D and q consistent, there is determined a finite or
countable collection ¢ of intervals {I,J,...} , pairwise disjoint except for
endpoints, and for each I ¢ C a finite or a nonnegative measure My concen-

tfated on I , with the following property. If Xl, X2, «e., are i.i.d. and

q-able, then for some I ¢ C , the common law of the Xn is exponential
through My
The following points may be noted:
(1) Mg need not assign positive mass to all the elements of 1I.
(1) If I is infinite in both directions, then ¢ = {I} ; there

need not be any exponential law through My s in which case

there are no q-able X's.
The theorem is an immediate consequence of the following proposition. As dis-

cussed at the end of this section, the proposition is a version of the Pitman-

Koopman-Darmois theorem for discrete variables.

Proposition 3.1. Suppose the random variables Xn are i.i.d. and q-able, and

.
likewise for Xn.
a) There are only three possitilities:
]
* either ess.sup. X, < ess.inf. X,
1
° < @ 3
or ess.sup. X, < ess.inf. X,
!
+ or the laws of Xn and Xn have the same support,

1
b) In the last case, the law of Xn is exponential through the law of

X .
n

The proof of Proposition 3.1 depends on the following lemmas.

16



qn+1,t
n

+1(xl,...,xn|x1+...+xn==tn) = q, ¢ (g5 %)
n

trivially, t and tn determine X =t , SO0 there is no need

n+l n+1 n+1 %

to condition on X ,1° compare (1.3). The Dn and qn,t will be considered
as given.
A sequence of integer-valued random variables Xl’ X2’ ...; will be

called "q-able" provided that for all n , writing S, = X+ ... +X

P(Sn=t) > 0 implies t € Dn and

P(X1=x1,... =X 15,7t) = n,t(xl""’xn)
Informally, the partial sums are sufficient statistics; at stage n , given
Sn = t , the conditional distribution for the data is qn,t'

It will be clear that an exponential-U sequence is g-able: q depends on
Y. Taking a mixture of such sequences, over various A's, preserves the g-able
structure, and even q itself. It is even possible to mix over u's, to a cer-
tain extent: the intervals of support for the various u's must be disjoint
except for endpoints. The next theorems establish the converse: a q-able
sequence must be a mixture of exponential-u sequences, where it is feasible to
mix over U itself to the extent indicated above.

Suppose now D and q are given and consistent. Consider a q-able
process. Theorem 1.1 can be used for the q-able process has law P e Mq'
Consider the extreme points Q(w,*) for w e E. On the one hand,

Qw,*) € MCl by the theorem. On the other, Q(w,+) makes the coordinate var-
jables independent and identically distributed. This is de Finetti's theorem,
for Q(w,A) is a regular conditional distribution givén 5. A g-able process

with law P 1is then a mixture f Q(w,*) ﬁ(dw) of sequences of i.i.d. variables

15



with

c = exp[}\i - AiO]
0

The converse is clear. Il

Lemma 3.3. Let 1 < j < k be integers, let Xi, Aj’ Ak be real numbers.

Suppose that for integer o, B, Y

(3.2) . a+B+Y=0
and
(3.3) ai + Bj + vk =0

together imply

(3.4) aki + Blj + Ykk =0 .

Then equation (3.1) holds.

Note: In the application, the A's will be as in Lemma 3.2, but this is

irrelevant here.

Proof. As in Lemma 3.1, select B and Y to be relatively prime integers

satisfying
(3.5) B(G-1i) + y(k-i) = 0 .

Set o = -(B+Y). Clearly, (3.2) and (3.3) hold, so (3.4) holds. Substitute
o= -(B+y) in (3.4):

18



Lemma 3.1. Let i < j < k be integers. Then there are positive integers

a, b, ¢ such that

ac + ck

it
o
.

Proof. Choose a and c¢ so that

c(k-j) = a(j-i) ,

For example, c¢ = (j-i) and a = (k-j). Then set b = a+c. []

1
Lemma 3.2. Let P and P be two probabilities on the integers, with

the same support S. Suppose that for distinct i, j, ke S

oA ANy
(3.1 k-1 -5 -1

b4

where

\
Ai = log Pi/pi

1
and likewise for j and k. Then P 1is exponential through P , and con-

versely.

Proof. The ratios (Xj-Ai)/(j—i) all have a common value, call it A. Then

fixing io e S,
+ Aj

SO

17



Likewise for b, b' and c, c'. Then (3.7) and (3.8) hold, by (3.2) and (3.3).

So (3.9) holds, and this is (3.4). So (3.1) holds. ]

Proof of Proposition 3.1. Let

!
p; = P(X_ =1), p; = P(X = 1)

||
Part a). Let 1 < j < k. Suppose P;» pj\, and p, are all positive.
1]

1 ]
It is claimed that p;» pj , and Py are positive too. See Table 1.

Table 1. Entries marked "?" are
to be proved positive

P p!
i + ?
j ? +
k + ?

To prove the claim, apply Lemma 3.1. Let t =bj and n = b ; now

P.(Sn=t) > P(X1= ...=Xa=1 and Xa+1= ...=Xn=k)

a _c¢c
P; > 0

v . b
P(Sn—t) > P(Xl— .»..—Xn—J) = pj >0 .
1
Especially, t e Dn’ Since X and X are g-able,
P/P(S =t) = q_ (G- ..3)
pj n qnt J,""J
'b P l— N
- pj / (sn‘t) 0

so pj > 0 as claimed. Likewise,

20



(3.6) B(Aj-li) + Y(Ak—ki) =0 .

But (3.5) entails
B = -y(k-1)/(j-1)
and in particular, vy # 0. Substitute into (3.6) and cancel Yy to get (3.1).

Lemma 3.4. Let 1 < j < k be integers; let Ai’ Xj, Ak be real numbers.

Let a, b, ¢, a', b', ¢' be nonnegative integers. Suppose

(3.7) | a+b+c=a"+b"+c!
 and
(3.8) ac + bj + ck = a'i + b'j + c'k

together imply
(3.9 aAi + blj + ckk = a'li + b'lj + c'Kk .

Then equation (3.1) must hold.

Proof. The idea is to use Lemma 3.3, with o = a-a' , etc. More specifically,
let a, B, Y be a triple of signed integers satisfying (3.2) and (3.3). Con-

struct a and a' as follows:

1
o

o and a' =

if o> 0 then a

if o< 0 then a=0 and a' = -0 .

19
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Example 3.1. For each n , let an, cesy xnn be i.i.d., with a distribution

dependent on n. Let Sn = an + ...+ xnn

D = {t: P[S =t] > 0} .
For te D_,
n

Ay = distribution of Xn X given Sn =t .

10 ot X
For suitable an , the D's and q's will be consistent, but there will be no
q-able process. Namely, let an = +a_ or -bh. with probability % , where

a, and bn are positive and satisfy

n
a, > (n-l)bn + 2

b > 2",
n

Then the smallest positive value for Sn is a, - (n-l)bn > 2", Also, Sn
takes only one negative value, Viz., -n bn < -2 1t is easy to show in

consequence that there are no q-able processes.

Example 3.2. Let s eees have values N-1 and one value -(N—l)2 ,
ZXampleé JS.< 1 N

placed in random order. Let SNn = XNl + ...+ XNn for n=1, ..., N. Let

Dy ='{t:‘P(SNn=t) > 0}

N1’ *°* Xnn

and for t ¢ DNn s let Ant be the conditional distribution of X
given SNn = t. Fix n. The DNn are pairwise disjoint, for N = n, n+l1, ...
Indeed, Dnn = {0} and for larger N , DNn contains the two values

w I3
{n + (N-1), -(N-1)(N-n)}. Let Dn = UN=n Dy 5 if te Dn , then t e Dy, for

a unique N ; let Gt = npe- Furthermore, the D's and q's are consistent.
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'a _'c ' v _ .a._c _
Py~ Py /P(S,=t) = p; P /P(S=t) > 0,
] 1
so p; > 0 and Py > 0 , as claimed. Part (a) of the proposition now follows,
as a moment's thought will show.

Part b). The idea is to apply Lemma 3.2; equation (3.1) holds by Lemma
3.4, More specifically, let i < j < k be in the common support of the law

, ,
of Xn and Xn. Let a, b, ¢, a', b', ¢' be nonnegative integers such that

(3.7) and (3.8) hold:
a+b+c=a"+b'"+c'"=n say
ai + bj + ck = a'i +b'j +c'k =1t say.

Then

_ a_b _c
P(Sn-t) 2 p; pj ,pk >0

I_ |a l'b |c
P(Sn—t) g:pi pj Py >0

1
so te Dn’ Because X and X - are both g-able,

a b ¢ 'b

p _ _ g e 1_
pi Pj Pk/ (Sn—t) = Pi Pj Pk /P(Sn"t)

Define Ai as in Lemma 3.2 and take logs:
]
aki + bAj + ckk = log P(Sn=t) - log P(Sn=t)

Likewise for a', b', c' , proving (3.9). Then (3.1) holds, and Lemma 3.2
proves claim M. D

Given Dn and e consistent, when does there exist a g-able i.i.d.
sequence? This question is nontrivial, as the following examples show; we

do not have a neat answer.
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not been proved (by us, anyway) in the vector case. Both Martin-Lof (1974) and
Lauritzen (1982) have some results for the vector case.
Examples 3.3 and 3.4 show what can happen if sufficient statistics that are

not integer valued are admitted.

Example 3.3. The zeta density. For 1< s < o , let

PS(X=n) = n=1,2,... ,

z(s)n®

where C(s) = £ 1/n% is Riemahn's zeta function. This distribution is useful
in probabilistic number theorf because, for m and n relatiﬁely prime
Ps(mIX and n|X) = Ps(mIX) . PS(nIX). See Diaconis (1980) for applications.

The sufficient statistic for s based on a sample of size n is the product
of the observations. The conditional distribution Qn,k is uniform over all
positive integer n-tuples with product equal to k. For this choice of Tn
and Qn the extreme points of MQ are infinite dimensional, containing the
one dimensional family Ps' The general extreme point may be described as
follows: For prime p , let a(p) be an arbitrary function with 0 < a(p) <1
and ZP $(p) < o, Define 8(1} =1 and $(n) = len ¢(p). Then Zn $(n) =
Hp (1-3(;0)'1 < o, .Thus $(n) can be normalized to form a probability ¢(n)
on {1,2,3,...}. It is straightforward to show that the product of such ¢'s
are in fact all the extreme points of Mq‘ Indeed, if Xl, XZ’ «.e, are
i.i.d. according to ¢ , then Xi are q-able and extreme (for they are extreme
pointS in the larger class of all exchangeable probabilities). To show all the
extreme points arising in this way, observe first that de Finetti's theorem

implies that any extreme point is i.i.d. according to some probability ¢.

If X and Y are i.i.d. from ¢ and q-able, then ¢(n) is "multiplicative".

24



Indeed, fix ¢t ¢ DN,n+1 with N > n+l. Suppose qN,n+1,t assigns positive mass

to x es X, X Then there must be positive probability that

1’ n+l’

le = Xpp e XNn = X xN,n+1 = Xpel v

There are only three possible cases:

Case 1: Xp = .. =X =X 0= N-1

Case 2: X = ... =X = N-1 and X 1" —(N-l)2

Case 3: X; = ... =X 0= N-1 , except for one i with X; = -(N-—l)2 ;
and X4l = N-1.

In all three cases, s = Xp * ... ¥ X € DNn ; and the qN’n+1’t—distribution
of Xl’ e Xn given X1 + ... +X =s is qN,n,s'

Again, however, there is no g-able process. For if there were, for some
sequence tn with tn € Dn , the qn,tn-law of X1 would have to converge.

i +ool
However, all the mass in qn,tn escapes to ! Indeed, suppose t, € DNn
with N > n. Then the 9 ¢ -possible values for X1 are N-1 and perhaps
b
n

-(N-l)2 , so the q, . mass of the open interval (-n(n-l)z, n-1) is O.
!
2 .
(-m-1)°, n-1) is O .

Remark. These results seem to extend to the case where the sufficient statis-
tics are Z?=1 h(Xi) , with h an integer-valued function. The relevant 'ex-

ponential' distributions are of the form

Ah(x)

c(V) e u{x} .

They may also extend to the case of vectors of integers, but the relationship

among the cases (Proposition 3.1a) is not clear; also, Proposition 3.16 has
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4. Mathematical Appendix

Consider a sequence of Polish spaces xn with their Borel o-fields an.
Let P, be a Borel in mapping of In onto X _; » for n > 2. In Theorenm

1.1,

n
X. =11 Q@ and @g_ =
. 1 n

&
no4= i

1 1

n=s

pn(xl”'f’xn-l’xn) = (xl,...,xn_

1
Let w be a Polish space with Borel o-field 8, ;> let Tn be a Borel mapping

from In into Wn' For each n and t , suppose Qn £ is a probability on
>

CIn,an , with t ~» Qn,t Borel. Suppose
(4.1) Q [Ty =t =1

(4.2) For each n and t ¢ Wn+1 , relative to Qn+1,t , a regular

conditional distribution for Phse1 given Tn ® Phy1 =S is

Qn,s’

This condition is slightly weaker than (1.3), and the definition of the par-
tially exchangeable 0-field will have to be revised slightly, in consequence.

Consider now the projective limit X of In , namely, all infinite se-
quences (xl,xz,...) with X, € In and pn(xn) =X 1 This is a Borel
subset of the product space H:=1 p equip X with the Borel o-field G.
Let En be the nth coordinate function on ) , so pn(En) = gn-l’ In

Theorem 1.1, X = and G = F , but
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To see this, consider pairs of integers (i,j) and (i',j') with ij = i'j' =
1 e-n say. Because X and Y are q-able, ¢(i) ¢(3) = ¢(i') ¢(G") = ¢(1) o(n).
So $(1) # 0. Define (i) = ¢(1)™' #(i) and observe $(i,5) = (i) 6(j) so
HORRNRCIGR

As mentioned above, Theorem 3.1 and Proposition 3.1 are discrete versions
of the Koopman-Pitman-Darmois theorem. The usual version says that if a suit-
ably smooth family PA(dx) admits the sum as a sufficient statistic, then the
family is an exponential family. A refined, modern version of this theorem with
references to past work is in Hipp (1974). Propoéition 3.1 implies that if a
family 6f probabilities PK on the integers have common support, and if for
each n the sum is a sufficient statistic, then the family is exponential.
The following simple example shows that the conditions cannot be weakened too
much.
Example 3.4. Let @ be an arbitrary family of probabilities on the integers.

X.
Let Tn(xl,xz,...,x ) = e 1, Then Tn is sufficient for . Indeed,

n i=1
the transcendence of e implies that knowing Tn is the same as knowing the
order statistics of the sample. These are sufficient for p by a classical
result; see pg. 56 of Lehmann (1959).
The usual versions of the Koopman-Pitman-Darmois theorem imply that if the

sum is sufficient when n = 2 , then the family is exponential. The following

example shows that no fixed, finite value of n will do in the discrete case.

Example 3.5. Let N be a large integer. Let Py be the family of all pro-
babilities supported on the powers of N: {l,N,Nz,NZ,...}. For n < N, the
sum of the first n observations are sufficient for ‘DN since the order

statistics are recoverable from the sum.
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The proof of the theorem is presented as a series of lemmas. First, some
general facts about conditioning will be developed; routine proofs are omitted.
Let X and Y be meésurable mappings from ©,%,P) to (Qx,gx) and (QY,gY)
respectively; so PY_1 is the distribution of Y ., and is a probability on |

(Qy,gY). As usual, Qy(A) is a regular conditional distribution (r.c.d.) for

X given Y =y iff:

for each y e Qy, Q/(+) is a probability on (y,8y) ;

« for each A ¢ EX’ y + Qy(A) is 3Y—measurab1e;

QY(A) is a version of P(XeAIY).

In the first lemma, let f be a measurable mapping from (Qx,gx)' to
@) -
Lemma 4.1. 1If Qy is an r.c.d. for X given Y =y , then Qy f-1 is

an r.c.d. for f(X) given Y =y.

Lemma 4.2. Suppose Qy is an r.c.d. for X given Y =y. Let F be

a nonnegative Fy X 3Y-measurab1e function on QX X QY. Then
E{F(X,Y)} = J J Fx,y) Q,(dx) Py Ldy) .
QY Q
X

The next lemma may be intuitiyely obvious, but the proof is somewhat
technical. The mapping Y and its range QY do not appear in the statement;
y 1is used as the typical value of a function g. However, g(X) is "like"

Y , as will be seen.

28



Introduce M. , the class of partially exchangeable probabilities, as follows:

Q

P e MQ iff for all n , relative to P , the kernel Qn,t is a regular condi-
tional distribution for En given Tn(En) = t.
The partially exchangeable o-field is now defined as follows:
3= 1™
=1

where

(n) .
z is generated by T (€), T (€ .;),

In short, I is the tail o-field of the Tn(En)'s. Set-theoretically, X is
usually smaller than the £ of Theorem 1.1, in the presence of condition (1.3),
however, the two O-fields are measure-theoretically the same. This will be

proved as Lemma 4 below.

Theorem 4.1. Assume conditions (4.1-2). There is a set IE € ¥ with

P(xE) =1 for all P e MQ ;

converges weak-star to a probability Q(x,¢) ¢ MQ' This Q(x,*)

for each x ¢ Xg > the sequence of probabilities
G, 15 ()]
is 0-1 on I. As x ranges over E , the probabilities Q(x,*) range over
the extreme points of MQ' For any P ¢ MQ , the kernel Q(x,A) 1is -a regular

conditional distribution for P given I , and

P = J Q(x,»)dP
Ig

where P is the restriction of P to . This representation is unique.

In particular, P e M, is extreme iff P is 0-1 on % ; equivalently, iff

Q

P{x:Q(x,*) =P} =1.
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The '"'change of variables' formula can be used to express the inner integral as
an integral with respect to Qy(dx) over X e QX' So the left side of (4.3)

equals
-1
A) 1 1.[h X ) .
JQ J“x Un o) @) 1500 1oTh(D] @, (dx) P (0™ (dg)
To evaluate this last expression, use lemma 4.2 with g(X) for 'Y and

FOGY) = Qg () 1500 1cIh(0]

The left side of (4.3) is then equal to the right side. []

Return now to the setting of Theorem 4.1. It will be useful to define

for m > n a Borel mapping Phyn of Im onto In > as follows:

Pnon © Pne1l © Ppep ® cor ° Pp -

By convention, and Puom is the identity. The next lemma is
1

pm+1,m = Pp

somewhat technical, but it is one of the key steps in the proof.

Lemma 4.4. Let m>n, and t ¢ Wn' Relative to Qm ¢ » an r.c.d. for

iven
Pm,n g

Tm-l(Pm,m—l) = tm—l’ e Tn+1(Pm,n+1) = tn+1’ Tn(pm,n) = tn

is .

Qe
Proof. The plan is to fix n and do an induction on m. The case m = n+l
is just assumption (4.2). Suppose the result for some m > n+l. . To proceed

inductively, it is necessary to compute, relative to Qm+1 ¢ » 8D r.c.d. for
>

pm+1,n given
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Lemma 4.3. Let f, g, and h be measurable mappings from (Qx,gx) into
(Qf,gf), (Qg,gg)_, and (Qh,gh) respectively. Let Qy be an r.c.d. for X

given g(X) = y. Thus, ye Q and Qy is a probability on (Qx,gx). For

g
each y ¢ Qg , let Qyz be an r.c.d. for f given h = z , relative to Qy.

Suppose (y,z) Qyz(A) is measurable for each A ¢ Fg- Then Qyz is an
r.c.d. for f(X) given g(X) =y and h(X) = z.
In other words: conditioning first that g(X) = y and second that h(X) =z

is the same conditioning simultaneously that g(X) =y and h(X) = z.

Proof. Let ‘A« 3f’ B e 3g ,and C ¢ gh. What must be shown is that

P{f(X) ¢ A and g(X) ¢ B and h(X) ¢ C}

(4.3)
- JB 1512001 1Th00T Q gy cx) (VP -

The left side of (4.3) is
P{iX.e (AN nlc) and g(X) ¢ B}
) -1 -1 -1
- [ o, e n h7he) 1,00 Pe0TH(8y)

Now bring in QyZ ; for ye Qg and z ¢ Qh this is a probability on Qf ,

and

-1 -1 -1
Q£ 'annlo) = f Q,,(A) 15(2) Q, B (dz) .

G

So the left side of (4.3) equals

jﬂ J Q, (&) 130 1c(2) Q, b7 (d2) PO @)
g
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n’ pm,n’ e Tm-l ° pm,m-l )

of courSe, £f(X) = Pnn® £m = En. The requisite r.c.d. for f(X) can be
computed by conditioning first on g(X) , then on :h(X). By the definition of

MQ , the first conditioning gives Qm,tm' The second gives Qn,tn by Lemma

4.4. | L

An immediate consequence is the following:

Lemma 4.6. Let P e MQ’ Relative to P , r.c.d. for En given Z(n) is
%, 2
The next lemma establishes the convergence of Q,  along almost all
’"n

subsequences.

Lemma 4.7. Let X, be the set of x € X such that for each k , as
n > o, Qn,Tn[En(x)]P;}k converges weak-star to a limiting probability on
ka,gk) ; denote this count by Q(k,x,*). Then Xy € Z and PCxL) = 1 for
all Pe MQ' Furthermore, X > Q(k,x,A) is X-measurable for each A ¢ Gk ,
and a version of P{, ¢ A|I} for any P e MQ'

As a matter of notation, Q(k,x,*) 1is to be distinguished from Qk,t'
The latter is the distribution of Ek given Tk(Ek). The former is the dis-

tribution of £ given the tail o-field of ’{Tn(gn)}. Note that Q(k,x,*)

does not depend on P ; this is important.

Proof. It is at this point that the Polishness of Xy is used. Embed Xy
as a Borel subset of the compact metric space ik' Let C(ik) denote the
space of continuous functions on ik'; if £ is a function on ik , its
restriction to Xy will still be written as f. Let Coéik) be a countable

dense subset of Cfik) , in the sup norm.
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(4.4) =t

Tm(pm+1,m)

The idea is to use Lemma 4.3, and condition on Tm(p

Put p ., for X , so QX =7
Tm for g.

Tm—l(pm,m—l)

m’ Tm—l(pm+1,m—1) = tm-l’

s

? Tn(pm+1,n) =ty

m+l,m

m Also put pm,n for f , and

For h , put the vector

o» T (e )

nm,n

The algebra works out, because

(4.5) Po+l,m - Pn+1’ Po,m-1 ° Pper ©

Relative to Qm+1 £ 0 an r.c.d. for X given gX) =t

pm+1,m-1’

i pm,n ® Ppe1 ° pm+1,n :

n 1S just

by assumption (4.2). The next step is to compute, relative to Qm ¢ »an
3
m

r.c.d. for f given h.

Qn £ which is certainly a measurable function of (t_,t
>
n

call that X stands for Ppe1”

tive to Qm+1 ¢ » a0 r.c.d. for Pos1
’ 2

n

..,tm). Re-

n’ n+l’°

By Lemma 4.3, and the identity (4.5), rela-

given the equalities (4.4), is Qn ¢ -

This lemma must now be translated into a statement about the partially

exchangeable probability P on (X,G)

Let Pe M
Q

Lemma 4.5.

En given

is just Qn £
’™n
Proof. Again, Lemma 4.3 can be used.

Tm for g , and for h the vector

and m > n.

Put Em for X, Ppnon
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Relative to P , an r.c.d. for

for f ,

) first.

Qm,t 3
m

By the inductive assumption, however, this is just

n
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(4.8) J JA () Qk,x,dy;) P(dx) = £(§,) dpP .
6,8 k k k

I 08

Putting f = lI and S = ) proves that
k

H ={x:xe¢ G and Q(k,x,X) = 1} e &

has P-measure 1 for all P e M.,. Now

Q
Xy, = Oy Hy

For x € IL , view Q(k,x,*) as a probability on (Ik,gk). As a function of

X , this is I-measurable, and an r.c.d. for Ek given Z by (4.8). []
Lemma 4.8. Let IC be the set of x ¢ xL such that for all %k ,
-1
Q(k,x’.) Pk = Q(k'l’x,.) .

Then IC € I and PCxC) =1 for all P e MQ'

Proof. That xC €% 1is clear. For f ¢ Co(fk_l) , as defined in the proof

of the previous lemma
X = I f()’k_l) Q(k'l,x,dyk_l)
Tx-1
is a version of Ep{f(gk_l)IZ}. Also, f(pk)» is a bounded measurable function

on Ik s SO

x> |l o)) akxdn
Lx

is also a version of Eb{f[pk(gk)]lz} = Ep{f(ik_l)]Z} because pk(gk)==gk_1.

Let ka be the set of x's for which the two displayed functions agree. Then
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Let x denote a typical point in X , and Y 2 typical point in Ik'

For any bounded measurable function f on Xp

-1 _
(4.6) X > JI f(}’k) Qn’Tn[En(x)] pn,k(dyk)
k

is a version of

Ep{E (&) | T, (B, Ty (Bplp)s -o0)

by Lemma 4.6; indeed, Ek = pn,k(gn)' The function (4.6) must converge P
almost surely to EP{f(Ek)IZ} , by the backwards martingale convergence theorem.
This will now be restated as follows. Let ka be the set of x's where the
function in (4.6) converges to a limit as n > « ; call the limit X(k,x,f).

Then G,.¢ ¥ and P(ka) = 1., Also, A(k,*,f) is Z-measurable, and a ver-

kf

sion of E?{f(ik)}Z}. Note that G and A(k,x,f) do not depend on P.

kf
Let Gk be the intersection of ka over f ¢ CO(Ik). Again Gk € L 3

and P(Gk) = 1 for all Pe MQ'
s g -1 . < .
bgblllty QTn[En(X)]Pn,k on (Ik53k)' Consider now M, asa probability in

ik' Then the sequence {un} is pre-compact in the weak-star topology, and

Fix x ¢ Gk , abbreviate Mo for the pro-

f £ du > A(k,x,f) for every f ¢ Co(ik). The conclusion is that
n PaY
u, converges weak-star to Q(k,x,*) , a probability in Yy furthermore,

(4.7) X J £y, ) Qlk,x,dyy)

e

is X-measurable, and a version of Eb{f(&k)lZ} for all f e CO(ik).
Does Q(k,x,xk) = 1? By a standard argument, for any bounded Borel

function for ik , the function in (4.7) is Z-measurable, and for any S e I,

33



To show that PCIQ) =1, it is enough to show that both sides of (4.9
have the same P-integral over arbitrary sets G ¢ I. Now the P-integral of the

right side over G is
P{G and Tn(En) € B and En € A} ,

by virtue of Lemma 4.9, with {Tn(En) €B and g« A} for A. Likewise, the

P-integral of the left side over G is

EP{IG . lB[Tn(En)] . Qn,Tn(En)(A)} .
But G ¢ Z(n) , as is {Tn(En) € B} , so the last display equals
P{G and Tn(En) e B and En e A} ,

by Lemma 4.6. ]

We have now reached the point where Dynkin's theorem (1978) can be applied.

For ease of reference, the argument will be sketched.

Lemma 4.11. Let ZQ be the o-field of subsets of IQ generated by

x * Q(x,A) as A ranges over G. Then I, is countably generated.

Q

Proof. A countable generating class of sets is {x:x e X, and Q(x,A) > r}

Q

where A runs over a countable field generating G and r runs over the

rationals. [j

*
Lemma 4.12. For Ae I , let A be the set of x e X. with Qx,A)=1.

Q
Then A* € ZQ , and P(A A A*) =1 for all P e MQ'

Proof. The function x -+ Q(x,A) is a version of P(A]Z) by Lemma 4.9, and

P(A|Z) = 1, with P-probability 1. 1

36



ka e ¥ and P(ka) = 1. Now

Lo = My, g Be o

where f runs over CO(Ik). []

For each X ¢ IC ,» the probabilities Q(k,x,*) are consistent as k
So there is a unique countably calculative probability Q(x,*) on (X,G) such

that for any k and A e Gy »
Qx, (g, € AD = QU,x,H) .
Again, the Polishness of the Ly is used.

Lemma 4.9. Fix A e¢ G. The function x -+ Q(x,A) on IC is X-measurable,

and a version of P(AlZ) for any P ¢ MQ.

Lemma 4.10. Let IQ be the set of x ¢ IC such that Q(x,*) ¢ MQ' Then

IQ ¢ % and PCxQ) =1 for all P e MQ'
Proof. Recall that Tn is a measurable map from In into Wn , Where xn is

equipped with the Borel o-field ‘G, , and W with the Borel o-field B,

Write y for a typical point in Y. Now x in xC is also in IQ iff

(A) Q(x,dy)
JTn[En(y)]eB Qn’Tn[gn(y”

(4.9)

= Qx,{T (E) ¢ B and £ € A}

for all B¢ Bn and A e.an. Here, A and B can be restricted to countable

generating algebras for their respective o-fields; and both sides of (4.9) are

L-measurable functions of x: so IQ € L.
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Lemma 4.15. Let ZE = IE n EQ ,» viz., the o-field of subsets of Xg of
the form IE N A with A ¢ ZQ‘ For P ¢ MQ » there is one and only one pro-

bability measure ﬁ on (xE,ZE) such that

(4.11) P = j Q(x,*) P(dx) ;
Lg

~ 1
namely, P is the restriction of P to ZE' In particular if P and P in

MQ agree on ZE , then P =P .

Proof. If P is the restriction of P to I then (4.11) holds by Lemma

E ’
4.9. Conversely, suppose (4.11) holds for some probability § on CxE,ZE).

Then for A ¢ ZE s

P(A) = jx Qx,A) P(dx)
E

1, (x) P(dx)
J,

PA) ,

P(A) 1, (x) P (dx)

L

I Q(x,A) P(dx) by (4.10)
Lg

P(A) by (4.11). B

Remark. Suppose xn is compact and non-empty, P, and Tn continuous, and

Qn ¢ is a weak-star continuous function of t. Then M, is a non-empty
> .

Q
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The inseparable o-field Z 1is therefore the same (up to null sets) as the
separable sub-o-field ZQ. In some applications, it is important that A* does

not depend on P.

Lemma 4.13. For X ¢ IQ , let ZQ(x) be the ZQ-atdm containing x ,

namely,
{y:ye Iy @and Qy,®) = Qlx, )}

Let IE be the set of x ¢ IQ such that Q(x,ZQ(x)) = 1. Then IE € ZQ and

PCIE) =1 for all P« MQ'

Proof. Let A run through a countable field generating X Then Xg is

Q"
ﬂA{x 11X € xQ and Q(x,A) = lA(x)} .

The proof is completed by appending to Lemma 4.9, as in the proof of the pre-

vious lemma. I]

It may be useful to observe that for x € X

Q 3

(4.10) X € IE iff Q(x,A) = lA(x) for all A« ZQ .

In general, the Q(x,*)-measure of the Z-atom through x is 0 , for the
measure may be continuous and the atom is countable. By contrast, the ZQ—atom
will usually be much larger, having the power of the continuum.

Lemma 4.14. If x ¢ xB , then Q(x,*) 1is 0-1 on I.

Proof. If xe X, , them Q(x,*}) is 0-1 on ZX.. But Q(x,*) ¢ M, ; see
o0 E Q Q

Lemma 4.10. So Q(x,*) is 0-1 on X by Lemma 4.12. []
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Of course, Pl(A) =1 and PZ(A) =0 by (4.10); so P1 # P2 and P is not
extreme. This contradiction proves that P isv 0-1 on ZE.

Conversely, if P is 0-1 on ZE , then P 1is extreme; if not, (4.12)
holds for some o with 0 <o <1 and some pair P1 # P2 in MQ' Clearly,
P2 << P on ZE. So, P1 and P2 and P all concentrate on the same ZE-atom,
i.e., P1 = P2 =P on ZE , and hence on G by Lemma 4}15. This contradiction
shows that P is extreme.

If x ¢ IE , then Q(x,*) 1is extreme, by (4.12) and the definition of

xE in Lemma 4.13. Conversely, if P is extreme, then P is 0-1 on ZE

and P{x:Q(x,*) = P} =1 by (4.12). : 1

This completes the proof of Theorem 4.1. Now Theorem 1.1 can be derived
as a special case. Let X = H2=1 Qi and Gy = H2=1 3; » 50 X = H:=1 Qi and

G = Hfll.g. and En = (Xl,...,Xn). With these identifications, the two defi-

i=1 “i
nitions of MQ coincide. Theorem 1.1 involves the o0-field Z = n:=1 Z(n) ,

where

s(m) _
pX = c{Tn(xl,...,xn), X 41 R

Theorem 4.1 involves the o-field I = ﬂ: 1 Z(n)

, where

(n) _
pX = G{Tn(Xl,...,Xn), Tn+1(x1,...,xn+1), R

It will be shown that I is smaller than X , but equivalent up to null sets

for any P ¢ MQ' This will prove Theorem 1.1, with p e for E.

Lemma 4.17. Assume condition (1.1-3). Then Z(n) ng(n) for all n ,

and I ;:%.
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compact convex set, and Choquet's theorem applies, see Lemma 4.16 below for the
identification of the extreme points. Under these conditions, xL = IQ = xC'
Apparently, Y may be smaller than Xe > but we do not have an example. With-
out compactness and continuity conditions, MQ can be empty: see examples

3.1-2.

Lemma 4.16. The probability P ¢ MQ is extreme iff it is 0-1 on I ;

alternatively, P 1is extreme iff
(4.12) P{x:x ¢ X; and Q(x,*) = P} =1 .

In particular, as Xx zruns over xE , the probability Q(x,*) runs over the

extreme P in MQ‘

Proof. First, P is 0-1 on ¥ iff it is 0-1 on ZE , by Lemmas 4.11-12.

Next, P is 0-1 on ZE iff it concentrates on an atom, namely, a set of

the form
1
{x:x ¢ Xp and Q(x,*) =P 1

then P =P by (4.11): that is, P is 0-1 on %, iff (4.12) holds.

E
If P is extreme, then P must be 0-1 on ZE ; if not, let A ¢ ZE

with 0 < P(A) < 1. Then

(4.13) P=oa Pl + (1-a) P2 s

where

oa=P@A), P =a f Qx,*) Pax), P, = (1-0)7" j Qx,*) P(dx) .
A IE—A
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Tncxl"' ’xn), Tn+l(x1’ ,xn+1)’ b Tm_l(xl, ’xm_l)
X yqs weverremnnneenes s X 1 X

Lemma 4.3 can be used again: condition first on Tm_lcxl,...,xm_l) = tm—l and
Xm » using assumption (1.3). The problem is reduced to computing, relative to

Qm_l’tm—l , an r.c.d. for (Xl,...,Xn) given

TRy X))y T Xy X )y ey T o (Xgsee X )

Xn+1’ ................ s Xm-2’ Xm_1 .
Proceeding in this way, one verifies the claim. []

Proposition 4.1. Assume conditions (1.1-3). For A ¢ f , let A be the

set of x ¢ Xg such that Q(x,A) = 1. Then Ae T , and P(A A R) = 0 for

all P e MQ'

Proof. As noted in Lemma 4.17, Z(nJ c:ﬁcn). And since Qn
- ’Tn (Xl, . )Xn)

is
Z(n)-measurable, it is an r.c.d. for (Xl,...,Xn) given Z(n) , as well as an

r.c.d. for (X ...,Xn) given g(n): see Lemma 4.18, or Lemma 4.6.

1’
Turn now to Lemma 4.7: one verifies that for Xx ¢ IL > Q(k,x,*) is an
r.c.d. for (Xl,...,Xk) either given I or given 5. Likewise, in Lemma

A

4.9, Q(x,*) is an r.c.d. either given X or given X. For A« £ , then

Q(x,A) = lA(x) a.e. []
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@) - g(n)

Proof. for all n , because e.g., Tn+1(X1,...,Xn+1) can‘be com-
puted from Tn(Xl,...,Xn) and Xn+1 by condition (1.2). To make this rigorous,

use Blackwell's (1954) theorem on saturation. This will show that for any

m>n,

Z(n,m) C ’Z‘(n,m) , Where

(n,m) _
(4.14) % = O{Tn(Xl,...,Xn), LR CYPRRRYS SUND FEPPI S ¢ SRS S I
sm,m) _ :
2 = c{Tn(xl,...,xn), Xopgs woo» xm} .
Indeed, both 0-fields are Borel, and the atoms of g(n,m) are smaller. []

Lemma 4.18. Assume condition (1.1-3). Fix P e M.. Then
Lemma 4.18 (1.1-3) q G, Ky X)

is an r.c.d. for (X ,Xn) given g(n).

1°° "

Proof. It will be shown first that Qn T (X is an r.c.d. for

X))
(XI""’Xn) given Z(n m) , as defined in (4 14), then m can be sent to .
The argument will only be sketched, it is similar to the one in Lemmas 4.4-5,

In view of (4.14), the o-field g(n,m) coincides with the apparently larger

o-field spanned by

Ty XX Do T Xy, X )y ey Tp(Xp e X0)
S . X

An r.c.d. for '(Xl,...,Xn) given this menu of variables can be computed by

using Lemma 4.3, conditioning first that Tm(xl,...,xm) = tm ; the definition

of M, 1is used to accomplish this first conditioning. The problem is reduced

Q
to computing, relative to , an r.c.d. for (X ,,...,X iven
o computing Q. (Xpe-0X) g
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