
Exchangeable random arrays

Tim Austin

Abstract

These notes were written to accompany a sequence of workshop lectures
at the Indian Institute of Science, Bangalore in January 2013. My lectures
had two purposes. The first was to introduce some of the main ideas of ex-
changeability theory at a level suitable for graduate students (assuming famil-
iarity with measure-theoretic probability). The second was to show the key
rôle exchangeability has played in recent work on mean-field spin glass mod-
els, particularly Panchenko’s proof of a version of the Ultrametricity Conjec-
ture. To my taste this may be the single most exciting reason to learn about
exchangeability.

Of course, these dual purposes constrained the choice of material: I
had to focus on those varieties of exchangeability that arise in spin glass
theory. Also, the spin glass results were far too complicated to cover in
depth, so in those lecture I omitted almost all detail, and the notes are the
same. A much more complete treatment of similar material will appear in
Panchenko’s monograph [Panar]. These notes are certainly not intended to
compete with that, but offer a more basic overview that may benefit the new-
comer to the field.
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Part I

Exchangeability Theory

1 Exchangeable sequences and arrays

Some notation

• N := {1, 2, . . .};

• for n ∈ N, [n] := {1, 2, . . . , n};

• Sym(n) is the group of all permutations of [n] and Sym(N) is the group of
all permutations of N;

• for any set A and k ≥ 1, A(k) is the set of subsets of A of size k, and
A(≤k) :=

⋃k
j=0A

(j).

• ifE is a standard Borel space1, then PrE is the space of all Borel probability
measures on E;

• if E and E′ are measurable spaces, µ is a probability measure on E, and
f : E −→ E′ is measurable, then f∗µ denotes the pushforward measure:

f∗µ(A) := µ(f−1(A)) ∀A ⊆measurable E;

• a background probability space will be denoted by (Ω,F ,P), with expecta-
tion denoted E (although in keeping with convention among probabilists, Ω
will usually be kept hidden in the background);

• if X and Y are r.v.s valued in the same space, then X d= Y if they have the
same distribution.

Objects of the theory

Exchangeability theory is concerned with families of random variables whose joint
distribution is unchanged when they are permuted by some group of permutations.

1Meaning it is isomorphic, as a measure space, to a Borel subset of a complete, separable metric
space with the Borel σ-algebra. This assumption is needed when working with conditional probabil-
ities. It covers all ‘nice’ spaces that one meets in practice.
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For particular groups of permutations, it seeks to describe all possible joint distri-
butions that have this property. Of course, if the index set is a discrete group Γ,
the random variables are indexed by Γ, and they are permuted by the regular rep-
resentation, then this task encompasses the whole of ergodic theory. In that case
a complete description is generally impossible. But in some other cases, in which
the relevant group of permutations is ‘very large’ relative to the indexing set, one
can deduce rather more complete results on the distributions of such families than
in general ergodic theory.

Basic objects of the theory:

• Exchangeable sequences: LetE be {0, 1}, R, or any other standard Borel
space. A sequence of E-valued random variables (Xn)n∈N is exchangeable
if

(Xn)n
d= (Xσ(n))n ∀σ ∈ Sym(N).

Note that this is really an assertion about the measure µ on EN which is the
joint law of the r.v.s (Xn): it is invariant under the action of Sym(N) on EN

by the permutation of coordinates. When E = {0, 1} these were studied by
de Finetti in the 1930’s; for more general E by Hewitt and Savage in the
1950’s.

• Exchangeable arrays: More generally, for any k ≥ 1 we can consider
an array of E-valued r.v.s (Xe)e∈N(k) indexed by size-k subsets of N, and

say it is exchangeable if (Xe)e
d= (Xσ(e))e for any σ ∈ Sym(N), where if

e = {n1, . . . , nk} then σ(e) := {σ(n1), . . . , σ(nk)}. So now exchangeabil-
ity is an assertion about the law µ on EN(k)

. Exchangeable sequences are
the case k = 1. General arrays were studied by Hoover [Hoo79, Hoo82],
Aldous [Ald81, Ald82, Ald85], Fremlin and Talagrand [FT85] and Kallen-
berg [Kal89, Kal92]. Important ideas were also suggested (though not pub-
lished) by Kingman, who had previously studied random partitions with a
similar symmetry and proved his related ‘paintbox’ theorem: see [Kin78b,
Kin78a].

Recommended reading on basic exchangeability theory: the really essential
reference is still [Ald85]. The recent textbook [Kal05] offers a more modern and
definitive account (see Chapter 7 in particular). Three surveys with different em-
phases are [Aus08, DJ07, Ald]: the first two give special attention to the connection
with limit objects for finite graphs.
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Why are these important?

Exchangeable random structures are important because they are the natural output
of sampling at random from discrete structures.

Example 1 Most simply, for any E and any probability measure ν on E, the
product measure ν⊗N(k)

is always the law of an E-valued exchangeable array.

Example 2 Suppose now that E is arbitrary and that {ν1, . . . , νm} is a finite set
of probability measures on E. Choose an E-valued array (Xe)e∈N(k) as follows:
first pick ` ∈ {1, 2, . . . ,m} uniformly at random, and then conditionally on this
choose (Xe)e∈N(k) i.i.d. from ν`. (This clearly agrees with the previous example
when m = 1.)

Example 3 Let E = {0, 1} and let G = (V, E) be a finite graph, possibly with
loops. Let (Vn)n∈N be a random sequence of vertices sampled independently from
the uniform distribution on V , and now define (Xe)e∈N(2) by letting

Xij :=
{

1 if ViVj ∈ E
0 else

(so there is no additional randomness once the Vn have been chosen). Note that in
general the notation ij stands for the unordered pair {i, j}.

One can easily find ways to generalize these examples (for instance, how could
Example 3 be made to give a random array with a different space E?). We will
soon introduce a broad framework for discussing these. Remarkably, it turns out
that once a suitably general notion of ‘sampling’ has been defined, it is the only
way one can produce an exchangeable sequence or array.

2 Statement of the Representation Theorem

In order to generalize Examples 1–3 above, one must first observe that to construct
a k-set exchangeable random array, randomness can be introduced at any ‘level’
between 0 and k. In order to make this formal, consider the uniform random
array: this is a family of random variables (Ua)a⊆N, |a|≤k which are i.i.d. U[0, 1].
Its law is simply the product of copies of Lebesgue measure on the space

[0, 1]× [0, 1]N × [0, 1]N
(2) × · · · × [0, 1]N

(k)
.
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Now consider also any measurable function

f : [0, 1]× [0, 1]k × [0, 1](
k
2) × · · · × [0, 1](

k
k−1) × [0, 1] −→ E

which is symmetric under the action of the permutation group Sym(k):

f(x, (xi)i, (xij)ij , . . . , x[k]) = f(x, (xσ(i))i, (xσ(i)σ(j))ij , . . . , x[k]) ∀σ ∈ Sym(k).

Such a function will be referred to as middle-symmetric.

Then we may obtain an exchangeable random array as follows: let the Ua for
a ⊂ N, |a| ≤ k be uniform i.i.d. as above, and set

Xe := f
(
U∅, (Ui)i∈e, (Ua)a∈e(2) , . . . , (Ua)a∈e(k−1) , Ue

)
for e ∈ N(k).

This is well-defined owing to the middle-symmetry of f .

Definition 2.1 This is the exchangeable random array directed by f . We denote
its law by Samp(f).

Let’s revisit the previous examples:

Example 1 By abstract measure theory, any Borel probability measure ν on E
is the pushforward of U[0, 1] under some measurable f0 : [0, 1] −→ E: that is,
law(f0) = ν. So now let

f(x, (xi)i, (xij)ij , . . . , x[k]) = f0(x[k]).

This example is using only ‘level-k randomness’.

Example 2 Building on the above, let f` : [0, 1] −→ E be such that law(f`) = ν`
for 1 ≤ ` ≤ m, and also let P = (I1, . . . , Im) be a partition of [0, 1] into m equal
subintervals. Now let

f(x, (xi)i, (xij)ij , . . . , x[k]) = f`(x[k]) whenever x ∈ I`.

This example is using the randomness from levels 0 and k.

Example 3 Finally, let P = (Iv)v∈V be a partition of [0, 1] into |V|-many equal
subintervals, and now define

f(x, x1, x2, x12) :=
{

1 if (x1, x2) ∈ Iu × Iv for some uv ∈ E
0 else.

So this example (with k = 2) is using the randomness from level 1.
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Theorem 2.2 (Representation Theorem for exchangeable arrays) Any exchange-
able array (Xe)e∈N(k) has law equal to Samp(f) for some f as above.

This is due to de Finetti (k = 1, E = {0, 1}), Hewitt and Savage (k = 1),
Hoover and separately Aldous (k = 2, different proofs), and Kallenberg (all k).
(Aldous partly attributes his proof to Kingman.)

We will prove the cases k = 1 and k = 2. The latter already contains the main
difficulties, except that the general case requires an induction on k which needs
some careful management. That will be left as an exercise, or see [Aus08].

3 A tool: the Noise-Outsourcing Lemma

The following soft fact from measure theory provides a valuable tool for simpli-
fying and clarifying the structures we will examine. It is treated in many standard
probability texts; for instance, a more general version is given as Theorem 6.10 in
Kallenberg [Kal02].

Lemma 3.1 (Noise-Outsourcing lemma) If X,Y are r.v.s taking values in stan-
dard Borel spaces S and T , then (possibly after enlarging the background proba-
bility space) there are a r.v. U ∼ U[0, 1] and a Borel function f : S × [0, 1] −→ T
such that U is independent from X and

(X,Y ) = (X, f(X,U)) a.s..

2

In case S is a one-point space, say S = {∗}, and X is deterministic, this is
just the assertion that any standard-Borel-valued r.v. has law equal to an image of
U[0, 1]

4 Proof of de Finetti’s Theorem

We will prove de Finetti’s Theorem in this section, and the Aldous-Hoover Theo-
rem in the next.
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Thus, suppose that E is a standard Borel space and that (Xi)i is an exchange-
able sequence ofE-valued r.v.s. We must find a Borel function g : [0, 1]×[0, 1] −→
E such that

(Xi)i
d= (g(U,Ui))i,

where U and Ui, i ∈ N, are i.i.d. U[0, 1].

Obtaining conditional independence The key to the proof is finding a coupling
of (Xi)i to a new r.v. Z (possibly after enlarging (Ω,F ,P)) such that:

(i) one still has exchangeability, now in the enhanced form

(Z,X1, X2, . . .)
d= (Z,Xσ(1), Xσ(2), . . .) ∀σ ∈ Sym(N)

(so Z is not moved by the permutation action);

(ii) the r.v.s Xi are conditionally independent over Z: this means that

P(X1 ∈ dx1, X2 ∈ dx2, . . . , Xk ∈ dxk | Z) =
k∏
j=1

P(Xi ∈ dxi | Z)

for any finite k and any x1, . . . , xk ∈ E. In terms of conditional expectations,
this asserts that

E(f1(X1) · · · fk(Xk) |Z) =
k∏
i=1

E(fi(Xi) |Z)

for any bounded measurable functions f1, . . . , fk : E −→ R.

This coupling is obtained from a simple ‘duplication’ trick. Observe that ex-
changeability of (Xi)i implies also

(Xi)i
d= (Xγ(i))γ(i)

whenever γ : N −→ N is an injection (not necessarily a permutation). This
is because the distributions of these two arrays are determined by their finite-
dimensional marginals, and for any finite collection i1, i2, . . . , im ∈ N we can
find a genuine permutation σ : N −→ N such that σ(ir) = γ(ir) for all r (but σ
and γ differ elsewhere if necessary).

Now, of course, our previous choice of N as index set was rather arbitrary; we
could have used, say, Z instead. But if we switch to indexing by Z, we now redis-
cover the original family (Xi)i∈N inside the new family (Xi)i∈Z, in the sense that
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this sub-family has the same distribution as the N-indexed family that we started
with. This is simply because we can let γ : Z −→ Z be an injection with image
equal to N and apply the reasoning above.

This completely trivial observation is important, because it provides a large
collection of extra r.v.s (Xi)i∈Z\N from which to synthesize the new r.v. Z. Let
Nc := Z \ N. Letting Z = (Xi)i∈Nc , a r.v. valued in ENc

, we will show that this
has the desired properties.

To see property (i), observe that if σ : N −→ N is any permutation, then we
may define a permutation σ̃ : Z −→ Z to agree with σ on N and to be the identity
on Nc, and now one has

(Z,Xσ(1), Xσ(2), . . .) = ((Xi)i≤0, Xσ(1), Xσ(2), . . .)
= ((Xσ̃(i))i≤0, Xσ̃(1), Xσ̃(2), . . .)
d= ((Xi)i≤0, X1, X2, . . .)
= (Z,X1, X2, . . .),

where the equality of distributions in the middle follows from the exchangeability
of the original sequence.

Property (ii) needs a deeper idea. By induction on k it suffices to prove that

E(f1(X1) · · · fk(Xk) |Z) = E(f1(X1) · · · fk−1(Xk−1) |Z)E(fk(Xk) |Z)

for any bounded measurable functions f1, . . . , fk : E −→ R, and this, in turn, is
really asserting that

E(fk(Xk) | Z,X1, . . . , Xk−1) = E(fk(Xk) |Z)

(i.e., if we condition fk(Xk) on Z, X1,. . . , Xk−1, then no more information is
retained about it than if we condition on Z alone).

To prove this, let F1 be the σ-algebra generated by Z and F2 the σ-algebra
generated by (Z,X1, . . . , Xk−1). Then F1 ⊆ F2, and so the law of iterated condi-
tional expectation gives

E(fk(Xk) | F1) = E
(
E(fk(Xk) | F2)

∣∣F1

)
.

In particular, this implies that

‖E(fk(Xk) | F1)‖2 ≤ ‖E(fk(Xk) | F2)‖2
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with equality if and only if the functions themselves are equal. This is because, in
Hilbert-space terms, conditional expectations are orthogonal projections.

Therefore we need only prove this equality of norms. However, recalling our
definition of Z, we have

F1 = σ-alg
(
(Xj)j≤0

)
and F2 = σ-alg

(
(Xj)j≤k−1

)
.

Now let τ : N −→ N be the injection

τ(`) =
{
` if ` ≥ k
`− (k − 1) if ` ≤ k − 1,

and observe that
F1 = σ-alg

(
(Xτ(j))j≤k−1

)
.

Exchangeability applied to this τ implies that

((Xτ(i))i≤k−1, Xτ(k) = Xk)
d= ((Xi)i≤k−1, Xk),

and hence
‖E(fk(Xk) | F1)‖2 = ‖E(fk(Xk) | F2)‖2,

completing the proof of (ii).

Finishing the proof Now we need only the Noise-Outsourcing Lemma and some
routine bookkeeping. That lemma gives a Borel function g′ : [0, 1]× [0, 1] −→ E
such that

(Z,Xi)
d= (Z, g′(Z,Ui))

for each i, where the Ui are i.i.d. U[0, 1], independent from Z. The same function
g′ works for each i, since exchangeability implies that all pairs (Z,Xi) have the
same distribution. Given this, the conditional independence over Z proved in (ii)
implies for the whole sequence that

(Z, (Xi)i∈N) d= (Z, (g′(Z,Ui))i∈N).

Finally, another appeal to Lemma 3.1, this time in the simple case |S| = 1,

gives a Borel function h : [0, 1] −→ ENc
such that Z d= h(U) when U ∼ U[0, 1].

Substituting this into the above gives

(Z, (Xi)i∈N) d= (h(U), (g′(h(U), Ui))i∈N),
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where U is independent from (Ui)i, and hence completes the proof with g(x, y) :=
g′(h(x), y). 2

Remark Instead of constructing the new r.v. Z as above, many proofs of de
Finetti’s Theorem prove that the r.v.s Xi’s are conditionally independent over their
own tail σ-alegbra. Although possibly cleaner, this argument does not generalize
so directly to the case of higher-dimensional arrays, so I have avoided it. �

Finite sequences

The analog of de Finetti’s Theorem does not hold for finite sequences. One can
see that the proof given above makes important use of the infinitude of N, most
obviously through the existence of injections γ : N −→ N for which N \ γ(N) is
infinite.

A rather weaker characterization is possible for finite exchangeable sequences,
however. Given a finite sequence x = (xi)ni=1 ∈ En, let

E(x) :=
1
n

n∑
i=1

δxi

be its empirical distribution. Clearly E is a Sym(n)-invariant function En −→
PrE. On the other hand, if ν ∈ PrE lies in the image of E (meaning that it is a
sum of n equal-weight atoms, not necessarily distinct), then let ν(n) be the uniform
distribution on the finite set of sequences E−1{ν} (that is, all sequences whose
frequencies are given by ν).

Proposition 4.1 If µ is a Sym(n)-invariant probability on En, then

µ(dx | E(x) = ν) = ν(n)(dx),

so µ is a mixture of the measures ν(n):

µ =
∫

PrE
ν(n) E∗µ(dν).

2

This is an elementary calculation, and we omit the proof. However, it is worth
knowing that this gives another approach to de Finetti’s Theorem. Given the finite
exchangeable law

µ =
∫

PrE
ν(n) E∗µ(dν),
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a fairly easy estimate can be used to compare it with the mixture of product mea-
sures ∫

PrE
ν⊗n E∗µ(dν).

The difference between ν⊗n and ν(n) is essentially that between sampling from
a set of n samples with and without replacement. (In the latter case, ν(n) is the law
of the classical urn sequence obtained by sampling without replacement from the
set of atoms of ν, possibly with some multiplicities.) For the first k outcomes of
this sample, this difference is small when the sample size n is � k. A simple
quantitative estimate gives the following.

Corollary 4.2 If µ is a Sym(n)-invariant probability onEn and µk is the marginal
of µ on any k coordinates, then∥∥∥µk − ∫

PrE
ν⊗k E∗µ(dν)

∥∥∥
TV
≤ k(k − 1)

n
.

2

Letting n −→ ∞ and then k −→ ∞ yields another proof of de Finetti’s The-
orem. See Section 1.2 of Kallenberg [Kal05] for more on these ideas, or Diaconis
and Freedman [DF80] for better estimates that can be obtained given some extra
restrictions on E.

5 Proof of the Aldous-Hoover Theorem

Now suppose (Xij)ij∈N(2) is an exchangeable random E-valued array. Recall that
for us ij ∈ N(2) implies i 6= j. We wish to show that there is a function f :
[0, 1]× [0, 1]2 × [0, 1] −→ E which is middle-symmetric and such that

(Xij)ij
d= (f(U,Ui, Uj , Uij))ij∈N(2)

where U , Ui, Uj and Uij for i, j ∈ N are all i.i.d. U[0, 1].

We will give the ‘classical’ proof, essentially following Aldous [Ald82, Ald85],
which builds on de Finetti’s Theorem.

Obtaining conditional independence Similarly to the proof of de Finetti’s The-
orem, the first step is to construct some new r.v.s coupled to (Xij)ij which give
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some conditional independence. This time we will find a whole sequence of r.v.s
(Yi)i, coupled to (Xij)ij and valued in some auxiliary standard Borel space, such
that the following hold:

(i) The whole enlarged array (Yi, Xij)i,j is still exchangeable, i.e.

(Yi, Xij)i 6=j∈N×N
d= (Yπ(i), Xπ(i)π(j))i 6=j∈N×N

for any permutation π : N −→ N. Note that this array, unlike (Xij)ij , is
now indexed by directed edges (i, j).

(ii) The r.v.s Xij are conditionally independent over the r.v.s Yi, in the following
specific sense:

E
(
f1(Xi1j1)f2(Xi2j2) · · · fm(Ximjm)

∣∣ (Yi)i∈N
)

=
m∏
r=1

E
(
fr(Xirjr)

∣∣Yir , Yjr) (1)

for any family of distinct pairs irjr ∈ N(2), 1 ≤ r ≤ m and any bounded
measurable functions f1, . . . , fm : E −→ R. To be precise, this amounts to
conditional independence over (Yi)i, and also the assertion that when Xi1j1

is conditioned on the whole sequence (Yi)i, it actually depends only on the
two values Yi1 and Yj1 .

Now, just as in the case of de Finetti’s Theorem, exchangeability of the family
(Xij)ij∈N(2) implies that also

(Xij)ij∈N(2)
d= (Xγ(i)γ(j))ij∈N(2)

for any injection γ : N −→ N. Just as before, it follows that we may assume
(Xij)ij∈N(2) is actually a sub-array of a larger exchangeable array indexed by Z(2).

The extra random variables Xij , for which at least one of i, j lies in Nc, will be
used to construct the Yi. This time, we define the random variables Yi for i ∈ N by

Yi =
(
(Xi′j′)i′j′∈(Nc)(2) , (Xi′i)i′∈Nc

)
, (2)

so these take values in the product space

Ē := E(Nc)(2) × ENc
.

Thus, for each i ∈ N, Yi simply records all of the values Xi′j′ where i′j′ is either
an edge in Nc, or an edge that joins i to Nc.
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The invariance property (i) of the family
(
Yi, Xij

)
i 6=j∈N×N is now an immedi-

ate consequence of the exchangeability of the whole Z(2)-indexed array, just as in
the case of de Finetti’s Theorem.

It remains to prove (1). By induction on m and the law of iterated conditional
expectation, it suffices to show that

E
(
f(Ximjm)

∣∣Xi1j1 , . . . , Xim−1jm−1 , (Yi)i∈N
)

= E
(
f(Ximjm)

∣∣Yim , Yjm)

for any bounded measurable function f : E −→ R.

Let F2 be the σ-algebra generated by all the random variables Xi1j1 , . . . ,
Xim−1jm−1 and (Yi)i∈N, and F1 the σ-algebra generated by just Yim and Yjm .
Hence F1 ⊆ F2, and by another appeal to iterated conditional expectation we
know that

E(f(Ximjm) | F1) = E(E(f(Ximjm) | F2) | F1).

We wish to show that E(f(Ximjm) | F1) = E(f(Ximjm) | F2), and once again the
norm-contracting property of conditional expectation shows that

‖E(f(Ximjm) | F1)‖2 ≤ ‖E(f(Ximjm) | F2)‖2 (3)

with equality of the functions if and only if their norms are equal.

We now perform the analog of the re-arrangement trick that proved de Finetti’s
Theorem, but in this case it will require slightly more care. Let T ⊂ Nc be a further
subset such that T and Nc \ T are both infinite. Given this infinitude, we may now
choose an injection γ : Z −→ Z with the following properties:

• γ(im) = im and γ(jm) = jm,

• γ(Nc) = T , and

• γ(N \ {im, jm}) = Nc \ T

(so all indices except im and jm end up somewhere in Nc).

After applying this map to the indices, the r.v.s Xirjr are sent to Xγ(ir)γ(jr),
and the r.v.s Yi are replaced by

Y ′γ(i) :=
(
(Xi′j′)i′j′∈T (2) , (Xi′γ(i))i′∈T

)
(recall (2)), and the joint exchangeability of all our r.v.s promises that

E
(
f(Ximjm)

∣∣Xi1j1 , . . . , Xim−1jm−1 , (Yi)i∈N)
d= E
(
f(Ximjm)

∣∣Xγ(i1)γ(j1), . . . , Xγ(im−1)γ(jm−1), (Y
′
γ(i))i∈N).
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Taking L2 norms, this implies

‖E(f(Ximjm) | F2)‖2 = ‖E(f(Ximjm) | F3)‖2,

whereF3 is the σ-algebra generated byXγ(i1)γ(j1), . . . ,Xγ(im−1)γ(jm−1) and (Y ′γ(i))i∈N.
(Note that in the case of de Finetti’s Theorem this third σ-algebra was not needed;
the difference is that in the present case we may be unable to find an injection γ
that converts F2 exactly into F1.)

Upon unraveling the definition of γ, one sees that F3 is generated by some r.v.s
of the form Xi′j′ where i′j′ is either an edge in Nc or is of the form i′im or i′jm for
some i′ ∈ Nc. This is because γ(Z) = Nc∪{im, jm}, and the edge imjm is distinct
from irjr for r ≤ m−1. This particular subcollection of the random variablesXi′j′

is determined by the various coordinates appearing in the definition (2) of Yim and
Yjm . Therefore one has the inclusion F3 ⊆ F1, and hence

‖E(f(Ximjm) | F3)‖2 ≤ ‖E(f(Ximjm) | F1)‖2,

by using again the norm-contracting property of conditional expectation. Since this
left-hand side is equal to ‖E(f(Ximjm) | F2)‖2, we deduce the desired equality of
norms by sandwiching with the previous inequality.

Completion of the proof: using de Finetti By the Noise-Outsourcing Lemma,
considering any given pair ij ∈ N(2) we can choose a Borel function g : [0, 1]2 ×
[0, 1] −→ [0, 1] such that

(Yi, Yj , Xi,j)
d= (Yi, Yj , g(Yi, Yj , U)),

where U ∼ U[0, 1] is independent from everything else, and since the left-hand
distribution is symmetric in i and j we may choose g to be symmetric in its first
two arguments. Now by exchangeability, this same g must work for every ij.

However, in view of (1) this now implies that for the joint distribution of the
whole process (Yi, Xij)i 6=j we have

(Yi, Xij)i 6=j
d= (Yi, g(Yi, Yj , Uij))i 6=j ,

where Uij ∼ U[0, 1] are i.i.d. and independent from everything else.

Finally, de Finetti’s Theorem applied to (Yi)i gives h : [0, 1] × [0, 1] −→ Ē

such that (Yi)i
d= (h(U,Ui))i, and so combining with the above we have

(Yi, Xi,j)i 6=j
d= (h(U,Ui), g(h(U,Ui), h(U,Uj), Uij))i 6=j ,
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where U , Ui, Ui,j are from the full array of i.i.d. U[0, 1]. This implies the desired
conclusion with the middle-symmetric function

f(x, x1, x2, x12) := g(h(x, x1), h(x, x2), x12).

2

Remarks 1. This proof looks rather like magic, because it’s hard to locate
where we did anything nontrivial. Perhaps the first place one should point to is
equality (3). The essence of this theorem is that conditioning Ximjm on all the
other random variables that gave rise to F2 is the same as conditioning on only
Yim and Yjm . For the proof, the key realization is that this assertion can be made
‘quantitative’, in that it requires only the equality of the L2-norms appearing in (3).

2. Just as for de Finetti’s Theorem, the analog of the Aldous-Hoover Theorem
fails for finite arrays. Once again there is an approximate version of the story
instead, but here it is substantially more delicate than for sequences, requiring the
study of general structural results for large dense graphs (in particular, a version
of the famous Szemerédi Regularity Lemma from graph theory). This is a part
of the theory of ‘limit objects’ for sequences of dense graphs, which has recently
been the subject of considerable study by combinatorists (see, for instance, Lovász
and Szegedy [LS06]). We set that aside here; its connection to exchangeability is
surveyed in [Aus08] and [DJ07]. �

6 Random partitions and mass partitions

The paintbox theorem

As suggested previously, the importance of exchangeable random structures is their
appearance as a result of infinite sampling. The general philosophy is nicely ex-
pressed by Aldous in Section 3 of [Ald]:

‘One way of examining a complex mathematical structure is to sample
i.i.d. random points and look at some form of induced substructure
relating the random points.’

Our first and most classical example is Kingman’s study of exchangeable ran-
dom partitions. More recently this has become a central ingredient in the formula-
tion and study of certain coagulation and fragmentation processes, but we will not
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approach that subject here; see, for instance, Bertoin [Ber06], and Schweinsberg’s
course at this workshop.

First, a mass partition is a measure on N of mass at most 1 and with atoms
of non-increasing size; equivalently, it is a non-negative, non-increasing sequence
(sk)k∈N such that

∑
k sk ≤ 1. Let Pm denote the space of mass partitions. It is

easily shown to be compact for the topology inherited from the product topology
on [0, 1]N.

Next, let Ptn denote the space of all partitions of N. Given Π ∈ Ptn and
A ⊆ N, we write Π|A for the restriction of Π to A. The space Ptn is also easily
seen to be a compact metrizable space by letting two partitions Π, Π′ be close if
Π|[n] = Π′|[n] for some large n. Partitions Π are in bijective correspondence with
equivalence relations on Π, where the associated relation ∼Π is defined by

m ∼Π n ⇐⇒ m,n are in the same cell of Π.

There is a natural action of Sym(N) on Ptn coming from the action on N itself:
σ(Π) := {σ−1(A) : A ∈ Π}. A probability measure on Ptn is exchangeable if it
is invariant for this action.

Example Random mass partitions give a simple construction of exchangeable
random partitions. Suppose that ν ∈ PrPm, and now draw a random element of
Ptn as follows. First, pick (sk)k ∼ ν at random. Having done so, pick a sequence
(mn)n at random so that the mn are i.i.d. elements of N ∪ {∞} with law

P(mn = k) = sk, P(mn =∞) = 1−
∑
k

sk.

Finally, let Π consist of the classes

{n ∈ N : mn = k}

for all k ∈ N, together with all the singletons {n} for which mn =∞.

It is a simple calculation to check that this process is an exchangeable random
partition, i.e. its law is a Sym(N)-invariant element of Pr(Ptn). We refer to this
process as Samp(ν); it is also called the paintbox partition obtained from ν. This
name derives from the following intuitive picture. We think of N as a paintbox from
which we choose a colour for each n ∈ N independently at random according to
the probabilities (s1, s2, . . .), or choose not to colour n with probability 1−

∑
k sk.

Then m,n ∈ N lie in the same cell of Π if and only if they have both been painted
and are the same colour. �
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Just as for sequences and arrays, the point here is that the ‘natural’ examples
turn out to be the only ones.

Theorem 6.1 (Kingman’s Paintbox Theorem) Every exchangeable random par-
tition Π has the same distribution as Samp(ν) for some ν ∈ PrPm.

Proof This is a consequence of de Finetti’s Theorem. To make contact with that
theorem, we construct a [0, 1]-valued process (Vn)n∈N as follows:

• first, choose a sample of the random partition Π;

• then, for each cell C ∈ Π choose an independent U[0, 1] r.v. VC ;

• finally, let Vn := VC where C is the cell containing n.

Observe that:

(i) The r.v.s (Vn)n a.s. determine the partition Π, because a.s. we have that
all VC for different cells C are distinct (since there are only countably many
cells), and hence

Vn = Vm iff n,m lie in the same cell of Π. (4)

(ii) The sequence (Vn)n is exchangeable. Indeed, after fixing the sample Π,
the process (Vn)n arises simply from independent choices of constant values
within each cell of Π, and hence

law((Vσ(n))n∈N |σ(Π)) = law((Vn)n∈N |Π).

Since Π is exchangeable, i.e. σ(Π) d= Π, averaging over the distribution of
Π now gives that (Vn)n is exchangeable.

By de Finetti’s Theorem, there is some Borel f : [0, 1]× [0, 1] −→ [0, 1] such
that

(Vn)n
d= (f(U,Un))n.

Finally, let θ(x) ∈ Pr[0, 1] be the law of f(x, U) when U ∼ U[0, 1], and let
s(x) = (sn(x))n be the sequence of masses of the atoms of θ(x) arranged in
non-increasing order. This defines a measurable function s : [0, 1] −→ Pm. Con-
ditionally on x ∈ [0, 1], the rule (4) gives that if m,n ∈ N are distinct then they
lie in the same cell of our random partition if and only if f(x, Um) and f(x, Un)
land on the same atom of θ(x). This is clearly equivalent to the description in the
example, so Π has law Samp(ν) with ν the law of s(U). 2
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The Chinese Restaurant and the Poisson-Dirichlet distributions

Having introduced exchangeable random partitions, we take the chance to intro-
duce also an important family of examples.

Fix a parameter 0 < α < 1, and consider the measure mα(dx) = x−α−1dx on
(0,∞). Simple calculus gives

mα([ε,∞)) <∞ ∀ε > 0 and
∫ 1

0
xmα(dx) <∞,

using α > 0 and α < 1 respectively.

Now let Λ be a Poisson point process on (0,∞) with intensity measure mα.
This is a random countable subset of (0,∞), and the first inequality above trans-
lates into the fact that |Λ∩ [ε,∞)| <∞ a.s. for all ε > 0. This means that we may
enumerate the points of Λ in non-increasing order, say as (uk)k. In addition,

E
(∑

k

uk1{uk≤1}

)
=
∫ 1

0
xmα(dx) <∞,

so these two facts together imply that
∑

k uk is finite a.s. We may therefore con-
sider the sequence

sk :=
uk∑
k uk

.

This is now a random element of Pm.

Thus we have constructed a family of probability measures on Pm indexed by
α ∈ (0, 1). They are called the Poisson-Dirichlet distributions and are denoted by
PD(α, 0). (They are part of a larger two-parameter family PD(α, θ), whose others
members will not concern us.) They were introduced by Pitman and Yor in [PY97],
and have since shown up in a remarkable range of applications. We will meet them
again later; at this point we simply record some basic facts about the associated
paintbox random partitions.

To do so, first consider any random partition Π (not necessarily exchangeable).
The law of Π is determined by the laws of all its finite restrictions Π|[n], and hence
by the function

p(B1, B2, . . . , Bk) := P(Π|[n] has cells B1, B2, . . . , Bk), (5)

defined for any partition {B1, . . . , Bk} of a finite set [n].
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If this quantity depends only on |B1|, . . . , |Bk| then Π is said to be weakly
exchangeable; clearly this is implied by exchangeability. In this case p is writ-
ten as a function of these cardinalities and is called the exchangeable partition
probability function (‘EPPF’).

In the case of Samp(PD(α, 0)), some clever calculus (omitted here) now yields
the Pitman sampling formula for the EPPF:

p(n1, n2, . . . , nk) =
∏k
i=1

(
α(1− α)(2− α) · · · (ni − α)

)
(n− 1)!/(k − 1)!

. (6)

Using this, one can prove that the following remarkable construction also gives
rise to the law Samp(PD(α, 0)). Consider a restaurant with an infinite number of
tables in a row, all of them infinitely large. Initially all tables are empty. At sub-
sequent times, customers arrive and pick tables according to the following random
process. The first customer simply sits at table 1. Now suppose that at time n ≥ 1,
the first k tables already have at least one customer. Then the (n + 1)th customer
chooses to sit at the first unoccupied table with probability kα/n, or chooses to sit
at the ith occupied table with probability

(number of people already at table i)− α
n

.

For future reference, let us note an alternative way of writing this rule: it asserts
that the probability of customer n+1 choosing to sit at the same table as any given
customer m ∈ {1, 2, . . . , n} is given by

(number of other people already sitting with m) + 1− α
n

. (7)

Over time, this process reveals a partition of N whose classes are the sets of
customers sitting at each table. This is often referred to as the Chinese Restaurant
Process, and was introduced in work of Dubins and Pitman; see [Pit95].

Proposition 6.2 The random partition Π resulting from the Chinese Restaurant
process is exchangeable with law Samp(PD(α, 0)). 2

This can be proved directly by computing the probabilities (5) for this partition
by induction on |B1| + · · · + |Bk| = n, and verifying that they agree with (6).
Without this calculation, it is not even obvious that the Chinese Restaurant Process
gives a weakly exchangeable partition.
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The Poisson-Dirichlet processes also arise naturally from a remarkable num-
ber of other discrete random structures: a nice overview is given in Section 11 of
Aldous [Ald85].

7 Gram-de Finetti matrices and probabilities on Hilbert
space

Our next class of exchangeable structures is the following.

Definition 7.1 (Gram-de Finetti matrices) A Gram-de Finetti matrix is a sym-
metric exchangeable array (Ri,j)(i,j)∈N2 of R-valued random variables such that
the matrix (Ri,j)i,j is almost surely non-negative definite.

This time, the natural ‘sampling’ examples are the following.

Examples Suppose that µ is a random probability measure on a Hilbert space
H, which will always be assumed real and separable, and construct a random array
from it as follows. First, sample µ at random. Having chosen µ, now draw from it
an i.i.d. sequence of vectors (ξi)i∈N, and finally set

Ri,j := ξi · ξj ,

the matrix of pairwise inner products in H. This defines a Gram-de Finetti matrix,
whose law we denote by Samp(µ).

To make this a little more general, suppose instead that µ is a random proba-
bility measure on H× [0,∞), and modify the above construction as follows: after
choosing µ at random, let (ξi, ai) be an i.i.d. ∼ µ sequence and set

Ri,j := ξi · ξj + aiδij ,

where δij is the Kronecker delta. This law will still be referred to as Samp(µ). �

If we fix M > 0, then the space of non-negative definite arrays with all entries
bounded by M is compact for the product topology, so we may naturally talk of
vague (= weak∗) convergence for probability measures on this space, and moreover
a limit of exchangeable measures is easily seen to be still exchangeable. This will
be important for applications later.
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The Dovbysh-Sudakov representation

The crucial fact which makes Gram-de Finetti matrices useful is that, just as for
other exchangeable arrays, they all arise from sampling. This is the main result of
this section.

Theorem 7.2 (Dovbysh-Sudakov representation; [DS82, Hes86, Pan10]) For any
Gram-de Finetti matrix R there is a random probability measure µ on `2 × [0,∞)
such that law(R) = Samp(µ).

A suitable choice of µ is called a directing random measure for R; in the
next section we will address the issue of its uniqueness.

We will prove Theorem 7.2 only in the special case that R takes values in
[−1, 1] and Ri,i ≡ 1. Both of these assumptions can be removed with just a little
more work, but we leave that to the references for the sake of brevity; the special
case is enough for our later applications to spin glasses. In this special case we will
show that there is a random probability measure µ on the unit ball B ⊂ `2 (rather
than on `2 × [0,∞)) such that

(Ri,j)i 6=j∈N×N
d= (ξi · ξj)i 6=j∈N×N,

where (ξi)i is a conditionally i.i.d. sequence drawn from µ. The diagonal terms
are then taken care of simply by setting

ai := 1− ‖ξi‖2.

Proof of special case, following [Pan10]2 Since (Ri,j)i 6=j is a symmetric ex-
changeable array, by the Aldous-Hoover Theorem we have

law((Ri,j)i 6=j) = Samp(f)

for some middle-symmetric f : [0, 1]× [0, 1]2 × [0, 1] −→ [−1, 1].

Instead of the arbitrary measurable function f , we want the richer geometric
structure of sampling points from a random probability measure on `2. The rest of
the proof goes into synthesizing the latter from the former.

Step 1: Letting fu := f(u, ·, ·, ·), it is easy to see that Samp(f) is a.s. non-
negative definite if and only if Samp(fu) is a.s. non-negative definite for a.e. u.

2I think this is similar to the proof of [Hes86], but I haven’t been able to access that.
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It therefore suffices to show that Samp(fu) must arise from sampling from some
measure µu on B ⊂ `2 for a.e. u, where the measure µu is now non-random. From
this, general measure theory gives a measurable selection u 7→ µu, which defines
the desired random measure.

So suppose henceforth that f is a function of only (u1, u2, u12), and that Samp(f)
is a.s. non-negative definite. We may also suppose that

(Ri,j)i 6=j = (f(Ui, Uj , Uij))i 6=j

(not just in law), simply by taking this as our new definition of (Ri,j)i 6=j . We still
have Ri,i ≡ 1.

Step 2: Next we show that f(u1, u2, u12) cannot depend non-trivially on u12

without violating the a.s. non-negative definiteness of R. To make use of the non-
negative definiteness, observe that for any n ≥ 1 and any bounded measurable
functions h1, . . . , hn : [0, 1] −→ R one has

1
n

n∑
i,j=1

Ri,jhi(ui)hj(uj) ≥ 0 a.s.. (8)

We will apply this with the following careful choice of functions. Let n = 4m,
let A1, A2 ⊆ [0, 1] be any measurable subsets, and let

hi(x) :=


1A1(x) 1 ≤ i ≤ m,
−1A1(x) m+ 1 ≤ i ≤ 2m,
1A2(x) 2m+ 1 ≤ i ≤ 3m,
−1A2(x) 3m+ 1 ≤ i ≤ 4m.

Now consider ∫
[0,1]n

1
n

n∑
i,j=1

f(ui, uj , uij)hi(ui)hj(uj)
n∏
i=1

dui,

which is an average over the ui (but not the uij) of an expression like (8). Taking
the sum outside the integral, we may write this as

D + I11 + I12 + . . .+ I34 + I44,

where D contains the diagonal terms (i = j) and each Ik` consists of those terms
with i 6= j, (k − 1)m+ 1 ≤ i ≤ km and (`− 1)m+ 1 ≤ j ≤ `m.
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Since |f | ≤ 1, D consists of an average of n terms that are uniformly bounded
by 1. On the other hand, each Ik` is (1/n) times a sum of terms of the form

±
∫
A

∫
A′
f(u, v, uij) dudv

with each of A, A′ equal to either A1 or A2. If k 6= ` there are m2 of these terms
in Ik`, and if k = ` then there are m2 − m (because the diagonal terms are in
D instead). Also, as we vary k and ` the ±-signs almost exactly cancel, in that
each integral

∫
A

∫
A′ appears in all of the Ik,` together the same number of times as

−
∫
A

∫
A′ , apart from a small correction owing to the diagonal terms.

However, each of these individual integrals appearing in one of the sums Ik`
depends on a different variable uij . If their dependence on this variable is not trivial
up to a negligible set, then a simple estimate using the Central Limit Theorem
shows that these off-diagonal sums must have approximately a centred Gaussian
distribution as functions of the uniform r.v.s (Uij)i,j≤n, with variance of order 1.
In particular, there is some small positive probability in these uniform r.v.s that the
sum I11 + I12 + . . . + I44 will be negative and have absolute value much larger
than |D| ≤ 1. This would make the whole sum D+ I11 + I12 + . . .+ I44 negative,
and this would contradict non-negative definiteness.

So instead one must have that for every A1, A2 ⊆ [0, 1] the quantity∫
A1

∫
A2

f(u, v, w) dudv

is independent of w outside a Lebesgue-negligible set of w. Since f itself may be
approximated by a linear combination of indicator functions of the form 1A1×A2 ,
this implies that f(u, v, w) does not depend on w outside of some negligible set,
as required.

Henceforth we write f as a function of only (u1, u2).

Step 3: Now consider the linear operator A on L2[0, 1] defined by

Ag(x) :=
∫ 1

0
g(y)f(x, y) dy.

Since f is uniformly bounded by 1, this is a bounded operator, and moreover an
easy exercise shows that it is compact. It is self-adjoint owing to the symmetry of
f .

Therefore the Spectral Theorem for compact self-adjoint operators provides a
sequence of real eigenvalues λi with |λi| −→ 0 and eigenfunctions ϕi ∈ L2[0, 1]
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such that

f(x, y) =
∞∑
i=1

λiϕi(x)ϕi(y),

where the series converges in L2([0, 1]2). (If you’re not familiar with this spectral
theorem, then think of it as putting the ‘symmetric [0, 1]× [0, 1] matrix f(·, ·)’ into
‘diagonal form’; and see any standard book covering Hilbert space operators, such
as Conway [Con90].)

Step 4: Another property of the operator A is that it is non-negative definite
for a.e. u; once again, this is necessary in order thatR be a.s. non-negative definite.
To see this, simply observe that for any measurable function h : [0, 1] −→ R, non-
negative definiteness and the Law of Large Numbers applied to the independent
r.v.s Ui ∼ U[0, 1] give

0 ≤ 1
n2

n∑
i,j=1

f(Ui, Uj)h(Ui)h(Uj)
a.s.−→

∫
[0,1]2

f(u, v)h(u)h(v) dudv = 〈h,Ah〉

as n −→ ∞, where this denotes the inner product in L2[0, 1]. Therefore we also
have λi ≥ 0 for all i a.s.

Step 5: Now define a measurable function F : [0, 1] −→ CN by

F (x) := (
√
λ1ϕ1(x),

√
λ2ϕ2(x), . . .).

We will next argue that it takes values in B ⊂ `2 a.s. To be specific, let x ∈ [0, 1]
be a Lebesgue density point for every ϕi simultaneously: that is,

1
2δ

∫
(x−δ,x+δ)

ϕi(y) dy −→ ϕi(x) ∀i as δ −→ 0.

These points are co-negligible in [0, 1] by the Lebesgue Differentiation Theorem,
which applies since ϕi ∈ L2[0, 1] ⊂ L1[0, 1].

Now we can compute that∑
i≥1

λi

∣∣∣ 1
2δ

∫
(x−δ,x+δ)

ϕi(y) dy
∣∣∣2 =

∑
i≥1

λi
1

(2δ)2

∫
(x−δ,x+δ)2

ϕi(u)ϕi(v) dudv

=
1

(2δ)2

∫
(x−δ,x+δ)2

f(u, v) dudv,

and this is ≤ 1 because f is pointwise bounded by 1. Letting δ −→ 0 shows that∑
i≥1

λi|ϕi(x)|2 ≤ 1 for a.e. x,
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as required.

In terms of F we now have the relation

f(x, y) = F (x) · F (y),

where the right-hand side is the inner product in `2. Let µ be the distribution of
F (X) on B when X ∼ U[0, 1] (that is, the push-forward of Lebesgue measure
under F ).

Step 6: Lastly, recall that Samp(f) is the law of R, and write this relation
explicitly as

P(Ri,j ∈ dri,j ∀i, j ≤ N) =
∫

[0,1]N
1{f(ui,uj)∈dri,j ∀i,j≤N}

∏
i≤N

dui

=
∫

[0,1]N
1{F (ui)·F (uj)∈dri,j ∀i,j≤N}

∏
i≤N

dui

for any N ≥ 1 and any non-negative definite matrix (rij)i,j≤N . Finally, we recog-
nize that∫

[0,1]N
1{F (ui)·F (uj)∈dri,j ∀i,j≤N}

∏
i≤N

dui = µ⊗N{(ξi)Ni=1 : ξi·ξj ∈ drij ∀i, j ≤ N}.

This is precisely the assertion that law(R) = Samp(µ), so the proof is complete. 2

An important consequence of Theorem 7.2 is a sensible notion of convergence
for random Hilbert space probability measures. If (µn)n is a sequence of random
probability measures on (possibly different) Hilbert spaces, then they sampling-
converge if the resulting laws Samp(µn) converge vaguely as probability mea-
sures on the space of non-negative definite matrices, and in this case their limit
object is any choice of directing random measure for the limiting random matrix.
If all these random probability measures have uniformly bounded support then the
resulting Gram-de Finetti matrices will be uniformly bounded, and so there will
always at least be subsequential limits.

This is worth comparing with the theory of limit objects for dense finite graphs [LS06,
DJ07, Aus08], for which it is the direct analog of left-convergence of homomor-
phism densities. It is also very much in the spirit of the more general discussion
of probability distributions on distance matrices that characterize a general metric
probability space – see Sections 31

2 .4 through 31
2 .7 in Gromov [Gro99], and the

references given there to works of Vershik.
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8 Some uniqueness results

In the setting of the Structure Theorem 2.2, it is natural to ask which pairs of
middle-symmetric functions f , f ′ give Samp(f) = Samp(f ′). The necessary
and sufficient condition is a little subtle, and is explained in detail in Chapter 7
of Kallenberg [Kal05]. However, in the settings of the Kingman and Dovbysh-
Sudakov Theorems it is easier to be precise, so here we will focus on these.

In the case of random partitions, the representation is unique.

Proposition 8.1 If ν, ν ′ ∈ Pm and Samp(ν) = Samp(ν ′), then ν = ν ′.

Proof Recall the construction of Π ∼ Samp(ν): first one chooses (sk)k ∼ ν;
then one chooses mn ∈ N ∪ {∞} i.i.d. from the distribution (s1, s2, . . . , 1 −∑

k sk); and finally one defines ` ∼Π n if and only if m` = mn ∈ N.

In this construction, after fixing the mass partition (sk)k, it follows from the
Law of Large Numbers that for each k ∈ N one has

|{n ≤ N : mn = k}|
N

=
|Ck ∩ [N ]|

N
−→ sk

a.s. in the choice of the sequence (mn)n, where Ck = {n : mn = k} is the
corresponding cell of Π. Therefore, it holds a.s. that the asymptotic frequency

f(C) := lim
N−→∞

|C ∩ [N ]|
N

exists for every cell C ∈ Π, and the set of positive asymptotic frequencies is equal
to the set of values sk which are positive, counted with multiplicities. Hence (sk)k
is a.s. equal to (tk(Π))k, defined to be the set of values

f(C), C ∈ Π,

arranged in non-increasing order. It follows that ν is equal to the law of the se-
quence (tk(Π))k as a function of the random partition Π, and so the law of Π
determines the law of (sk)k. 2

The situation is not quite so simple for Gram-de Finetti matrices. For example,
if µ, µ′ are probability measures on Hilbert spaces H, H′ such that there is a linear
isometry Φ : H −→ H′ with µ′ = Φ∗µ, then one easily calculates that Samp(µ) =
Samp(µ′). However, it turns out that this kind of degeneracy, suitably generalized,
is the only possibility.
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To formulate this, we will use the following notation: if µ is a probability
measure on H×[0,∞), we will write spt1µ for the projection of sptµ ⊆ H×[0,∞)
onto H (or, equivalently, the support of the projection of µ onto H), and will write

span(spt1µ)

for the closed subspace of H generated by spt1µ.

Before giving the main proposition, it is worth proving the following lemma
separately.

Lemma 8.2 There are measurable functions

fn : [−1, 1](
n
2) −→ [0, 1], n ≥ 2,

with the following property. Suppose that H is a real Hilbert space and ξ1, ξ2, . . . is
a sequence of vectors in H such that ‖ξi‖ ≤ 1 for all i and

ξ1 ∈ span(ξ2, ξ3, . . .).

Then the values
fn
(
(ξi · ξj)1≤i<j≤n

)
converge to ‖ξ1‖.

Proof By enlarging H if necessary, we may assume that e1, e2, . . . is an orthonor-
mal sequence which is also orthogonal to every ξi. Now let

ζi := ξi + (
√

1− ‖ξi‖2)ei for each i ≥ 1,

so that ‖ζi‖ = 1 and
ζi · ζj = ξi · ξj if i 6= j.

Since ξ1 lies in span(ξ2, ξ3, . . .), it is equal to its projection onto that subspace.
That, in turn, is equal to the projection of ζ1 onto span(ζ2, ζ3, . . .), since the vectors
ei are orthogonal to each other and to everything else.

However, for the ζis (unlike for the ξis) we know that all their lengths are equal
to 1. Therefore, by implementing the Gram-Schmidt procedure and computing the
resulting change of basis, for any n ≥ 2 the length of the projection of ζ1 onto
span(ζ2, . . . , ζn) is given by a measurable function fn of the inner products

ζi · ζj = ξi · ξj , 1 ≤ i < j ≤ n.

Letting n −→∞ gives the result. 2
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Proposition 8.3 Suppose that µ and µ′ are random probability measures on the
respective spaces H × [0,∞) and H′ × [0,∞) such that Samp(µ) = Samp(µ′).
Then there is a coupling of random variables (µ,µ′,Φ) in which

• Φ is almost surely a linear isometry

span(spt1µ) −→ span(spt1µ
′);

• one has
(Φ× id[0,∞))∗µ = µ′ a.s..

As for the Dovbysh-Sudakov Theorem, for the proof we restrict to the special
case |Ri,j | ≤ 1, Ri,i ≡ 1. Note that this does not imply ai = 0. The general case
is treated in [Panar], but for the last step in the proof below I have taken a different
route from Panchenko, using an idea of Vershik from the more general setting of
exchangeable random metrics on N (see Section 31

2 .7 of Gromov [Gro99]).

Proof in special case Recall the definition of the process with law Samp(µ):
first one samples µ at random, and then one samples (ξi, ai)i∈N i.i.d. ∼ µ and
forms the matrix

Ri,j := ξi · ξj + δi,jai.

If we retain all of the random choices made in this procedure, it actually defines a
coupled collection of random variables

(µ, (ξi, ai)i∈N, (Ri,j)(i,j)∈N2),

in which the Ri,js are determined by the (ξi, ai)s.

Step 1: First we show that under the joint distribution of these random data,
the norms ‖ξi‖, i ∈ N, are a.s. determined by the matrix (Ri,j)i,j . In case ai ≡ 0
this is obvious, since then ‖ξi‖2 = Ri,i, but in general we must instead make use
of the off-diagonal terms of the matrix. The key observation is that almost surely
one has

ξi ∈ spt1µ ∀i,

and given this it also holds almost surely that:

for every i and every ε > 0 there are infinitely many j such that

‖ξi − ξj‖ < ε.
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Therefore
ξi ∈ span(ξj : j 6= i) ∀i a.s..

Now Lemma 8.2 shows that on this probability-1 event, each of the norms ‖ξi‖ is
equal to a limit of measurable functions of the off-diagonal inner products ξi · ξj =
Ri,j for j 6= i, and hence the norm itself is a measurable function of these off-
diagonal R-entries.

Having shown this, it follows that ai = Ri,i − ‖ξi‖2 is also a measurable
function of the R-entries.

Step 2: If one knows Ri,j for all i 6= j and also ‖ξi‖ for all i, then these
quantities determine the distances

‖ξi − ξj‖ =
√
‖ξi‖2 + ‖ξj‖2 − 2Ri,j .

Therefore, in the sextuple of random data(
µ, (ξi, ai)i, (Ri,j)i,j , (‖ξi‖)i, (‖ξi − ξj‖)i<j , (ai)i

)
,

the matrix R a.s. determines all the distances in the fourth and fifth entries and all
the values in the sixth entry.

Step 3: Now suppose that µ′ is another random measure giving Samp(µ′) =
Samp(µ), and form also its collection of random data(

µ′, (ξ′i, a
′
i)i, (R

′
i,j)i,j , (‖ξ′i‖)i, (‖ξ′i − ξ′j‖)i<j , (a′i)i

)
in the same way. Our assumption is that (Ri,j)i,j

d= (R′i,j)i,j , and so (using that we
work on standard Borel spaces) there is a coupling of these random collections of
data under which

(Ri,j)i,j = (R′i,j)i,j a.s..

Having formed this coupling, Step 2 implies that also

(‖ξi‖, ai) = (‖ξ′i‖, a′i) ∀i and ‖ξi − ξj‖ = ‖ξ′i − ξ′j‖ ∀i, j a.s..

Therefore the random map

Φ0 : {0} ∪ {ξi : i ≥ 1} −→ {0} ∪ {ξ′i : i ≥ 1}

defined by Φ0(0) = 0 and Φ0(ξi) = ξ′i is almost surely an isometry.
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On the other hand, by the Law of Large Numbers, another almost sure event is
that the empirical distributions of the sequence (ξi, ai)i are tight and satisfy

{ξi : i ≥ 1} = spt1µ and
1
n

n∑
i=1

δ(ξi,ai) −→ µ

in the vague topology, and similarly for the pairs (ξ′i, a
′
i) and the random measure

µ′.

Finally, when these a.s. events both hold and the map Φ0 is an isometry, that
map may be extended uniquely to a linear isometry

Φ : span(spt1µ) −→ span(spt1µ
′)

(since an origin-preserving isometry between subsets of Hilbert spaces uniquely
extends to a linear isometry of the subspaces they generate). Now applying Φ to
the convergence of the empirical distributions gives

(Φ× id[0,∞))∗µ = lim
n−→∞

1
n

n∑
i=1

δ(Φ(ξi),ai) = lim
n−→∞

1
n

n∑
i=1

δ(ξ′i,ai)
= µ′.

This completes the proof. 2

9 Comparison of random partitions and Gram-de Finetti
matrices

Although Kingman’s Paintbox Theorem is much simpler than Dovbysh-Sudakov,
it is worth noting that the former is a special case of the latter. This is simply
because if Π is an exchangeable random partition, then it defines a {0, 1}-valued
Gram-de Finetti matrix by setting

Ri,j :=
{

1 if i ∼Π j
0 else

(an easy exercise shows that this is non-negative definite).

Applying the Dovbysh-Sudakov Theorem to this R gives a random measure µ
on H× [0,∞) such that

(Ri,j)i,j
d= (ξi · ξj + δijai)i,j
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for an i.i.d.(µ) sample (ξi, ai)i. Since R is {0, 1}-valued, this implies that ξ · ξ′
lies in {0, 1} almost surely when ξ, ξ′ are drawn independently from µ. By some
simple analysis, this is possible only if the random set spt1µ almost surely consists
of either a finite or infinite orthonormal sequence, or an orthonormal sequence
together with the origin, or just the origin.

In the third case one has Ri,j = 0 whenever i 6= j, so this corresponds to the
trivial partition of N into singletons. In either of the first two cases, let (ek)k be the
orthonormal sequence ordered so that the weights sk := µ{ek} are non-increasing,
and made infinite by including extra vectors if necessary. The support spt1µ also
contains 0 precisely when

∑
k sk < 1, in which case µ{0} = 1 −

∑
k sk. Re-

writing the representation ofR as Samp(µ) in terms of Π, we find that the random
sequence of weights (sk)k is precisely the random mass partition that directs Π
according to the paintbox construction.

Concerning the uniqueness results of the preceding section, one sees a closer
parallel by choosing a slightly different formulation of paintbox processes. If one
does not insist that mass partitions be non-increasing, then two mass partitions
(sk)k, (s′k)k give the same paintbox process if and only if one is a re-ordering of
the other. This is the analog of the redundancy that we found for Gram-de Finetti
matrices driven by Hilbert space measures, except that the relevant symmetry group
is Sym(N) rather than the orthogonal group of H. With this less restrictive notion of
random mass partitions, two measures ν, ν ′ ∈ Pr Pm give Samp(ν) = Samp(ν ′)
if and only if there is a coupling λ ∈ Pr (Pm × Pm) of ν and ν ′ such that λ
is supported on the pairs ((sk)k, (s′k)k) for which (s′k)k is a re-ordering of the
sequence (sk)k.

10 Other symmetries for stochastic processes

Several other symmetry principles for the laws of stochastic processes have been
studied by methods more-or-less similar to those above, often using the basic Struc-
ture Theorem 2.2 to do the heavy lifting and then adding some refinements, as we
did for partitions and Garm-de Finetti matrices.

Some well-known examples, with references, include:

• contractible sequences and arrays ([Ald85, Section 6] and [Kal05, Chapters
1 and 7]);

• separately (or ‘row-column’) exchangeable arrays ([Ald85, Section 14] and
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[Kal05, Chapters 1 and 7]);

• notions of exchangeability for continuous-time processes ([Ald85, Section
10] and [Kal05, Section 1.3]);

• tree-indexed processes which have the symmetries of the tree [Ald85, Sec-
tion 13];

• rotatable arrays ([Ald85, Subsection 15.7] and [Kal05, Chapter 8]);

• exchangeable random sets [Ald85, Section 17] and [Kal05, Chapter 6]);

• invariant point processes [Ald85, Subsection 21.2], and more generally sym-
metric random measures on rectangles in Euclidean spaces [Kal05, Chapter
9].

Part II

Spin glasses

11 Introduction to spin glasses

Some terminology from physics:

‘Glass’: a material which is hard and inflexible (like a solid) but is not completely
ordered or lattice-like in its microscropic structure (thus, unlike a crystal or simple
metals).

‘Spin’: pertaining to the magnetic spins of ions in a material.

‘Spin glass’: a material, effectively solid, which contains some irregular distribu-
tion of magnetizable ions.

Basic laboratory examples: Cadmium telluride (a non-magnetizable crystalline
compound of cadmium and tellurium) doped with some easily-magnetized atoms,
e.g. of iron or nickel.

Spin glasses are complicated because the magnetic interactions between ions
depend heavily on the exact distance between them, the irregular distances in a
spin glass give rise to irregular interactions and hence a locally highly-complicated
response to an external magnetic field.
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The basic model

In order to model a spin glass, consider the state space {−1, 1}N , where an element
σ = (σn)n≤N is interpreted as an assignment of spins to each of N magnetic
ions. In this model each spin can only be either ‘up’ or ‘down’; more sophisticated
models might use (S2)N or suchlike.

Basic procedure of modelling in statistical physics: determine (from physical
considerations) a ‘Hamiltonian’

H : {−1, 1}N −→ R,

with the interpretation that H(σ) is the internal magnetic energy of the system
when it is in state σ. Now suppose the material interacts with its environment at
some temperature T , so that its state keeps changing due to microscopic interac-
tions. Then the basic prescription from thermodynamics is that the proportion of
time spent in different states is given by the Gibbs measure at temperature T :

γβ{σ} :=
1

Z(β)
exp(−βH(σ)),

where β := 1/T and
Z(β) :=

∑
σ

exp(−βH(σ))

is the normalizing constant, which is called the partition function.

Following standard practice in physics, we will sometimes use 〈−〉β to denote
an average over any number of independent states drawn from γβ . For instance, if
f : ({−1, 1}N )2 −→ R then

〈f〉β :=
∫

({−1,1}N )2
f(σ1, σ2) γ⊗2

β (dσ1, dσ2). (9)

Subscripts such as ‘β’ may also be dropped when this can cause no confusion.
When several independently-chosen states are invoked, as here, they are sometimes
referred to as ‘replicas’.

In most sensible models, Z(β) is exponentially large as a function of N , and
the quantity of greatest interest is the first-order behaviour of the exponent. For
this reason one now defines the free energy to be the quantity

1
N

logZ(β).
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In order to understand the material in thermal equilibrium, one wishes to de-
scribe the measure γβ or the quantity F (β) as well as possible.

The key feature of a spin glass is that different pairs of spins interact in very
different ways. This is reflected by a Hamiltonian of the form

H(σ) =
∑
i,j

gijσiσj

in which the interaction constants gij vary irregularly with the pair {i, j} and can
take either sign, so some pairs prefer to be aligned and some anti-aligned. Notice
that among three indices i, j and k, it can happen that two pairs prefer alignment
but the third prefers anti-alignment, or that all three prefer anti-alignment, in which
case the assignment of spins that minimizes H may be far from obvious. This
phenomenon (and extension to larger numbers of indices) is called frustration.

In realistic models, the indices i, j are locations in space, and one assumes that
gi,j = 0 if |i− j| is large. The irregularity appears for nearby i, j. Among nonzero
interactions, a simple way to produce a spin glass model is to choose the interac-
tion constants themselves at random (so now there are two levels of randomness
involved). The basic model here is the Edwards-Anderson model [MPV87]. Al-
most nothing is known rigorously about this model.

To simplify, one can consider a mean field model, in which one ignores the spa-
tial locations of the spins. Most classical is the Sherrington-Kirkpatrick (‘SK’)
model (see the papers of Sherrington and Kirkpatrick in [MPV87]): let gij be inde-
pendent standard Gaussians on some background probability space (Ω,F ,P), and
let H be the random function

H(σ) :=
1√
N

∑
ij

gijσiσj . (10)

The normalization is chosen so that each of the random variables H(σ) has vari-
ance N , which turns out to be the regime of greatest interest. This model is still
very complicated, but recent work has thrown considerable light onto its structure.

An even simpler toy model, which nevertheless begins to show some inter-
esting behaviour, is the Random Energy Model (‘REM’) model, introduced by
Derrida [Der81]. In this case one lets the values H(σ) be centred Gaussians of
variance N and all simply independent for different σ.

Having chosen one of these models, let γβ,N be the random Gibbs measure
on {−1, 1}N resulting from this Hamiltonian, and let FN (β) be the expected free
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energy:

FN (β) := E
1
N

log
∑
σ

exp(−βH(σ)). (11)

Basic (vague) question: What are the values of FN (β) or the typical structure
of γβ,N as functions of these random interactions?

Recommended reading: [ASS07, Tal03, Pan10, Pan12, Panar]. A new version
of Talagrand’s comprehensive book [Tal03] is in preparation, with Volume 1 al-
ready available [Tal11]. The classic physicists’ text on spin glasses is [MPV87].

Connection to random optimization

When physicists choose to study a mean-field model of a situation which in the real
world involves some spatial variation, they do so simply because the mean-field
model is simpler. Their hope is that it will still reveal some non-trivial structure
which can then suggest fruitful questions to ask about a more realistic model. For
instance, the Curie-Weiss model exhibits a phase transition much like the Ising
model in two or three dimensions.

In fact, it remains contentious whether the SK model is worthwhile as a toy ver-
sion of spatially-extended models. However, it was quickly realized that mean-field
spin glass models have a much more solid connection with random optimization.

Consider again the random function H : {−1, 1}N −→ R defined in (10).
When β is large, the Gibbs measure γβ,N , for which γβ,N{σ} is proportional to
exp(−βH(σ)), should be concentrated on those configurations σ ∈ {−1, 1}N
where (−H(σ)) is large 3. Also, trivial estimates give

exp(βmax
σ

(−H(σ))) ≤
∑
σ

exp(−βH(σ)) ≤ 2N exp(βmax
σ

(−H(σ))),

and hence

E
β

N
max
σ

(−H(σ)) ≤ FN (β) ≤ log 2 + E
β

N
max
σ

(−H(σ)).

Dividing by β and letting β −→∞, we conclude that

E
1
N

max
σ

(−H(σ)) = lim
β−→∞

FN (β)
β

,

3Unfortunately the sign conventions of statistical physics mean that we will be working with
(−H), rather that H , throughout this discussion of optimization.

36



with a rate of convergence that does not depend on N . Therefore we may take
expectations, let N −→∞ and change the order of the limits, and hence obtain

lim
N−→∞

E
1
N

max
σ

(−H(σ)) = lim
β−→∞

F (β)
β

with high probability,

where F (β) is the limiting free energy introduced above. Moreover, in many cases
the random quantity 1

N maxσ(−H(σ)) is known to concentrate around this limit-
ing value as N −→∞ as a result of Gaussian concentration phenomena.

Thus, if we have a formula for F (β), then this gives a formula for the leading-
order behaviour of the random optimization problem maxσ(−H(σ)). This amounts
to determining the maximum over σ of a typical instance of the random function

1√
N

N∑
i,j=1

gijσiσj

(dropping a minus-sign now, since −gij
d= gij). This is an instance of the classical

Dean’s problem: given a population of individuals {1, 2, . . . , N} in which the like
or dislike between individuals i and j is given by the (positive or negative) value
gij , the Dean would like to separate them into two classes (which will correspond
to {i : σi = 1} and {i : σi = −1}) so that the overall level of comfort is
maximized: that is, s/he needs the optimum way to put pairs that like each other
into the same class, and pairs that dislike each other into different classes.

Amazingly, a good enough understanding of the SK model allows one to give
an expression for F (β) (albeit very complicated), so that in principle one could
actually estimate limβ−→∞ F (β)/β this way and so obtain the correct constant c
in the estimate

max
σ

H(σ) = cN + o(N).

The expression for F (β) is called the Parisi formula, and is given later in these
notes. Although not simple, it can be estimated numerically, and using this the
physicists made the prediction that c (exists and) is approximately 0.7633 . . .. The
Parisi formula is now known rigorously [Tal06, Panar], so this is now a theorem up
to the quality of those numerical methods.

What’s more, the exact distribution of the random coefficients gij is not essen-
tial for this calculation. Provided these r.v.s have mean zero, have variance one
and have bounded third moments, the resulting behaviour of the free energy as
N −→∞ will be the same: see Carmona and Hu [CH06].
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This means that other random variants of the Dean’s problem can be solved this
way. Perhaps the most classical is an instance of MAX-CUT (whose exact solution
for deterministic graphs is NP-complete in general). In this case the pairwise inter-
actions gij are not Gaussian, but take two values according to the adjacency matrix
of an Erdős-Rényi random graph G(N, p), with those two values chosen to give
mean zero and variance one. A concentration argument shows that the expected
best cut must cut N2p/4 + o(N2) of the edges, but analysis of this spin-glass
model gives a value for the next term. The prediction of the physicists is that for
this random MAX-CUT problem one has

OPT = N2p/4 +

√
p(1− p)

2
cN3/2 + o(N3/2) w.h.p.

where again c = 0.7633 . . .. With the rigorous proof fo the Parisi formula, this,
too, is now a theorem, up to the quality of some numerical methods. See [MPV87,
Chapter IX] for a more complete account of applications to random optimization.

12 Describing asymptotic structure

We return to our basic questions about the SK model. As shown in the previous
section, the application to random optimization will be served by having a good
enough asymptotic formula for FN (β). However, we will see that this problem is
intimately related to understanding the geometry of the Gibbs measures γβ,N .

First we must decide in what terms to try to describe γβ,N . The basic idea
here is that two configurations σ, σ′ ∈ {−1, 1}N are similar if they agree in most
coordinates. More formally, this means that they are close in Hamming metric, or,
equivalently, in any of the metrics inherited by regarding {−1, 1}N as a subset of
`Np (i.e., RN with the `p-norm) for any fixed choice of p ∈ [1,∞).

In fact, in this setting it is most natural to think of {−1, 1}N as a subset of
`N2 , because that space captures the structure of the random variables H(σ), and
specifically their covariances. To see this, compute

Cov(H(σ), H(σ′)) = EH(σ)H(σ′) =
1
N

∑
ij,i′j′

E(gijgi′j′)σiσjσ′i′σ
′
j′ .

Since E(gijgi′j′) is zero unless ij = i′j′, because the interactions are independent,
this simplifies to

Cov(H(σ), H(σ′)) =
1
N

∑
ij

σiσ
′
iσjσ

′
j =

1
N

(∑
i

σiσ
′
i

)2
= N(σ · σ′)2,
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where σ · σ′ := 1
N

∑
i σiσ

′
i.

So the covariances of the random function H are given by the structure of
{−1, 1}N as a subset of Hilbert space; in particular, the problems of estimating the
structure of γβ,N and the value of FN (β) are unchanged if we change {−1, 1}N
by a rigid rotation in `N2 . Motivated by this, we will think of γβ,N as a random
probability measure on a Hilbert space, and try to give a ‘coarse’ description of it
as such.

By a ‘coarse’ description of γβ,N , we really want an idea of the limiting be-
haviour of γβ,N as N −→ ∞ in terms of some meaningful notion of convergence
for random probability measures on Hilbert spaces. Since we really care only about
the structure of γβ,N up to orthogonal rotations of `N2 , convergence of the associ-
ated Gram-de Finetti matrices obtained by sampling offers an ideal such notion:

Do the random measures γβ,N sampling-converge, and if so what is
their limit?

13 More tools: facts about Gaussians

Before proceeding with spin glasses, we need to describe two basic tools from
the study of Guassian processes. The first is a concentration inequality; see, for
instance, Ledoux [Led01].

Proposition 13.1 Suppose that F : RM −→ R is a function such that

|F (x)− F (y)| ≤ K‖x− y‖ ∀x, y ∈ RM ,

and let g = (g1, . . . , gM ) be a sequence of independent standard Gaussian r.v.s.
Then for each t > 0 we have

P(|F (g)− EF (g)| ≥ t) ≤ 2 exp
(
− t2

2K2

)
.

Our main application of this is to the free energy 1
N logZN (β), whose expecta-

tion is FN (β) (equation (11)). In the case of the SK model with Hamiltonian (10),
a little calculus gives

∂FN (β)
∂gi,j

=
−β
N3/2

〈σiσj〉β,N
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(regarding gi,j as just a variable here, rather than a sample from a Gaussian),
where we recall that the notation ‘〈−〉β,N ’ refers to an average over any number of
independently-drawn samples from γβ,N ; see the discussion around equation (9).
From this one easily deduces that FN (β) is (β/

√
N)-Lipschitz as a function of

(gi,j)i,j . Using this in Proposition 13.1, we conclude that

P
(∣∣∣FN (β)− 1

N
logZN (β)

∣∣∣ ≥ t) ≤ 2 exp
(
− Nt2

2β

)
. (12)

Similarly, in the case of the REM we may write H(σ) =
√
Ngσ, where each

gσ will be drawn independently from a standard Gaussian. Therefore in this case
one obtains

∂FN (β)
∂gi,j

=
−β
N1/2

〈δσ〉β,N ,

which again gives a Lipschitz constant of at most β/
√
N , and so the same concen-

tration inequality (12).

The second tool we introduce here is Gaussian integration by parts. This simple
piece of calculus has become ubiquitous in the study of spin glass models, as well
as many others in statistical physics.

Proposition 13.2 (Gaussian integration by parts) If g is a centred Gaussian r.v.
and F : R −→ R is smooth and of moderate growth at∞ (polynomial growth is
fine), then

EgF (g) = E(g2)EF ′(g).

2

This follows by a basic integration by parts using the density of the Gaussian,
since

xe−x
2/2 =

d
dx

(−e−x
2/2).

In the study of spin glasses, Gaussian integration by parts is often used as part
of ‘Gaussian interpolation’. Suppose g and g′ are M -dimensional Gaussian r.v.s
with different variance-covariance matrices, F : RM −→ R is a continuously
differentiable function which does not grow too fast near ∞, and one wishes to
compare the expectations EF (g) and EF (g′). To use the interpolation method, one
chooses an interpolating family of M -dimensional Gaussian r.v.s gt with t ∈ [0, 1]
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such that g0
d= g and g1

d= g′, and then uses Gaussian integration by parts to
evaluate (or at least estimate)

∂

∂t
EF (gt).

Of course, there are many possibly ways to choose the interpolating family, and
often the success of the method depends on a very clever choice; this is why Ta-
lagrand calls it the ‘smart path method’. One of its earliest successes was the
following basic result of Guerra and Toninelli; see [GT02] for the smart choice of
path.

Lemma 13.3 In the Sherrington-Kirkpatrick model at a fixed value of β,

E logZN+M ≤ E logZN + E logZM .

2

Using Fekete’s Lemma, this has the crucial consequence that limN−→∞ FN (β)
exists for all β.

14 The Aizenman-Sims-Starr scheme and the Parisi for-
mula

Suppose that γβ,N is known to sampling-converge to some limiting random mea-
sure γβ . Building on a calculational method of Guerra [Gue03], Aizenman, Sims
and Starr [ASS07] showed how this γβ then provides a formula for the limiting
free energy F (β). This insight made it possible to put Parisi’s original predictions
about the SK model (see below) into a more general mathematical framework, and
is the basis for an approach to the Parisi formula via understanding the geometry
of γβ .

The first idea here is to write

FN =
1
N

E logZN =
1
N

N−1∑
i=0

Ai

with Ai = E logZi+1−E logZi. If one can show that these quantities Ai tend to a
constant, then of course FN will also tend to that constant. In a sense, this realizes
FN as the ‘logarithmic increment’ in the growing sequence of partition functions
ZN .
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So now let us try to compare E logZN with E logZN+1. First, identify {−1, 1}N+1

with {−1, 1}N × {−1, 1}, and for (σ, ε) ∈ {−1, 1}N × {−1, 1} write

HN+1(s, ε) = H ′N (σ) + εzN (σ) +
1√
N + 1

g(N+1)(N+1),

where

H ′N (σ) =
1√
N + 1

N∑
i,j=1

gijσiσj

and

zN (σ) =
1√
N + 1

N∑
i=1

(gi(N+1) + g(N+1)i)σi. (13)

It is easy to show that the last term in this decomposition of HN+1 makes
asymptotically negligible contribution to FN , so we now ignore it. Next, H ′N (σ) is
almost the same as HN (σ): only the coefficient is slightly wrong. Since a sum of
two independent Gaussians is still Gaussians, as random variables we can correct
this with a small extra term:

HN (σ) = H ′N (σ) + yN (σ),

where

yN (σ) =
1√

N(N + 1)

N∑
i,j=1

g′ijσiσj , (14)

where the g′ij are new independent standard Gaussians.

Notice that if we condition on gij for i, j ≤ N , then (13) and (14) define two
two further independent Gaussian processes on {−1, 1}N with covariances given
by

Cov(zN (σ), zN (σ′)) = 2
N

N + 1
(σ · σ′)

and Cov(yN (σ), yN (σ′)) =
N

N + 1
(σ · σ′)2. (15)

With a little analysis one can show that the multiplicative factor of N
N+1 is also

unimportant here.
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Having set up this notation, our desired comparison becomes

E logZN+1 − E logZN

= E log
∑
σ

∑
ε

exp(−β(H ′N (σ)+εzN (σ)))−E log
∑
σ

exp(−β(H ′N (σ)+yN (σ))).

Letting Z ′N :=
∑

σ exp(−βH ′N (σ)), we may add and subtract E logZ ′N in the
above to obtain

E logZN+1 − E logZN

= E log
1

Z ′N (σ)

∑
σ

∑
ε

exp(−(βH ′N (σ) + βεzn(σ)))

−E log
1

Z ′N (σ)

∑
σ

exp(−(βH ′N (σ) + βyN (σ)))

= E log
∫
{−1,1}N

∑
ε=±1

exp(−βεzN (σ)) γ′β,N (dσ)

−E log
∫
{−1,1}N

exp(−βyN (σ)) γ′β,N (dσ)

= E log
∫
{−1,1}N

2 cosh(−βzN (σ)) γ′β,N (dσ)

−E log
∫
{−1,1}N

exp(−βyN (σ)) γ′β,N (dσ),

where γ′β,N is the random Gibbs measure on {−1, 1}N corresponding to the Hamil-
tonian H ′N (which is not conceptually different from the Gibbs measure for HN ),
and where the expectation is in both γ′β,N and the independent random variables
zN (σ), yN (σ).

Importantly, one can (at least formally) make sense of this last expression for
any random Hilbert space measure γ. Suppose γ is such a measure, say on the unit
ballB of a Hilbert space. We need independent Gaussian random linear functionals

z : spt γ −→ R and y : spt γ −→ R

with covariances as in (15) (ignoring the factor of N
N+1 ):

Cov(z(ξ), z(ξ′)) = 2(ξ · ξ′), Cov(y(ξ), y(ξ′)) = (ξ · ξ′)2.

Provided γ and its support are not too irregular, one can construct such random
functionals using the theory of Gaussian Hilbert spaces, essentially uniquely. In
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terms of these one may now write down the analog of the above expression:

E′ log
∫
B

2 cosh(−βz(ξ)) γ(dξ)− E′ log
∫
B

exp(−βy(ξ)) γ(dξ),

where E′ denotes expectation in all of the random data γ, z and y (ignoring issues of
integrability here). Since the laws of z and y are determined by their covariances,
this quantity is really a functional of the law of the random measure γ. We will
write it as Φ(law γ).

The usefulness of this is as follows: if we can describe a sampling-limit random
measure γβ for γ′β,N , then at least heuristically it should follow that AN tends to
the limiting value Φ(law γβ). This isn’t quite immediate, since one must prove that
the sampling-convergence γ′β,N −→ γβ is strong enough to imply the convergence
of these Φ-values. However, that continuity can be proved using more machinery
from Gaussian processes: it is implied by the following, which is Theorem 1.3
in [Panar].

Theorem 14.1 For each ε > 0, there are n ≥ 1 and a continuous function Fε :
[−1, 1]n

2 −→ R such that∣∣∣Φ(law γ)− Eγ

∫
Bn
Fε
(
(ξi · ξj)i,j≤n

)
γ⊗N (dξ1, . . . ,dξN )

∣∣∣ ≤ ε
for all random measures γ on B. 2

Thus, if we knew the sampling convergence of γ′β,N to γβ , it would follow that

lim
N−→∞

FN (β) = Φ(law γβ).

This is the precise sense in which a good enough understanding of the asymptotic
structure of γβ,N (or, to be precise, the very-similar γ′β,N ) would give the asymp-
totic value of FN (β).

Unfortunately, this convergence is not known. However, recent work of Panchenko
has yielded results almost as good: with some tweaking, the possible subsequential
sampling-limits of the sequence (γ′β,N )N≥1 have been restricted to a very precise
family called the Ruelle Probability Cascades. This restriction is enough to express
limN−→∞ FN (β) in terms of a rather more concrete variational problem. If we
temporarily hide some important technical issues, an overview of the argument is as
follows. For a proper treatment of these and related ideas, see [ASS07, AC, Pan12].
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LetM denote the space of all laws of random probability measures on B, and
letMlim ⊆ M be the set of subsequential limits of the sequence (γ′β,N )N≥1 (all
taken up to random orthogonal rotations, in view of Proposition 8.3). The definition
of AN certainly gives

lim
N−→∞

FN (β) ≥ lim inf
N−→∞

AN ,

so in view of the above reasoning this implies

lim
N−→∞

FN (β) ≥ inf
law γ∈Mlim

Φ(law γ). (16)

On the other hand, for any M ≥ 1, similar steps to the above allow one to
express the difference

E logZN+M − E logZN

as a (slightly more complicated) functional ΦM applied to the random Gibbs mea-
sure γ′′β,M,N with Hamiltonian

H ′′N,M (σ) =
1√

N +M

N∑
i,j=1

gijσiσj .

This new measure γ′′β,M,N should still be very close to γ′β,N if N �M .

For this functional, Aizenman, Sims and Starr showed in [ASS07] that one can
prove the inequality

ΦM (law γ′′β,N,M ) ≤ ΦM (law γ)

for any other random measure γ on B. Their proof uses a clever interpolation
method based on Gaussian integration by parts, abstracted from a crucial earlier
insight of Guerra [Gue03], which will not be explained here.

For a certain special subclass of lawsMss ⊆ M referred to as ‘stochastically
stable’ (which will not be defined here), one has ΦM = MΦ, and hence if law γ ∈
Mss then

1
M

(
E logZN+M − E logZN

)
≤ Φ(law γ).

Note this seems to go the other way from (16).

However, the Ruelle Probability Cascades are all stochastically stable, so Panchenko’s
results essentially give Mlim ⊆ Mss. Therefore we may combine the above in-
equalities to deduce

lim
N−→∞

FN (β) = inf
law γ∈Mlim

Φ(law γ),
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where this infimum really runs only over the Ruelle Probability Cascades. For
those special random measures, the functional Φ may be written out rather more
explicitly, giving the famous Parisi formula:

Theorem 14.2 (The Parisi formula, formulated as in [ASS07]) As N −→ ∞,
the random quantities FN (β) converge in probability to the deterministic quan-
tity

F (β) := inf
ϕ
P(ϕ, β),

where the infimum is taken over all right continuous non-decreasing functions
[0, 1] −→ [0, 1], where

P(ϕ, β) := ln(2) + f(0, 0;ϕ)− β2

2

∫ 1

0
qϕ(q) dq,

and where f(q, y;ϕ) for (q, y) ∈ [0, 1]2 is the solution to the PDE

∂f

∂q
+

1
2

(∂2f

∂y2
+ ϕ(q)

(∂f
∂y

)2)
= 0

subject to the boundary condition

f(1, y;ϕ) ≡ ln(cosh(βy)).

2

This extraordinary conclusion was contained among Parisi’s original predic-
tions for this model. Before Panchenko was able to complete the program outlined
above, the Parisi formula was first proved by Talagrand in [Tal06] using a different
set of very subtle estimates (still mostly obtained from the Gaussian interpolation
method). However, that earlier proof of Talagrand does not give so much infor-
mation on the structure of the Gibbs measures, and I will not discussed it further
here.

The Parisi formula still looks very complicated. What is important to under-
stand, however, is that neither the PDE nor the variational problem over ϕ that are
involved in it is too difficult to approximate numerically, and so this gives a rela-
tively ‘simple’ way to estimate limN−→∞ FN (β), and hence also 1

N maxσ(−HN (σ)).
By contrast, directly estimating this maximum for a computer simulation of the
random variables H is prohibitively difficult for even moderately large N . (On the
other hand, it is still largely open to understand rigorously how continuous is the
functional P(ϕ, β) in its argument ϕ.)

46



Several important technical points have been ignored in the above discussion.
Perhaps the most serious is that Panchenko does not prove that all limits of the se-
quence (γ′β,N )N≥1 are Ruelle Probability Cascades for the Sherrington-Kirkpatrick
Hamiltonian itself. Rather, he proves that this holds ‘typically’ in a small neigh-
bourhood of that Hamiltonian for an infinite-dimensional family of perturbations
of it. This will be explained in a little more detail below in connexion with the
Ghirlanda-Guerra identities, which are the principal ingredient in Panchenko’s
proof. The key point is that one can find such perturbations such that:

• on the one hand, they do satisfy all of these identities, so that Panchenko’s
argument gives the Ruelle-Probability-Cascade result;

• but on the other, they are asymptotically close enough to the unperturbed
Sherrington-Kirkpatrick Hamiltonian that their specific free energies have
the same leading-order behaviour in N , so that they still give the correct
evaluation of limN−→∞ FN (β) for the Sherrington-Kirkpatrick model itself.

The last two sections of these notes will offer a rough discussion of the Ghirlanda-
Guerra identities and their key geometric consequence: ultrametricity.

15 The Ghirlanda-Guerra identities and ultrametricity

The Parisi ansatz

In addition to his formula, Parisi also predicted the salient asymptotic features of
the structure of the measures γβ,N as N −→ ∞. This structure is now known to
obtain for certain perturbations of the SK model, as mentioned above.

To introduce these, let Hpert : {−1, 1}N −→ R be a random function, inde-
pendent from H , of the form

Hpert(σ) =
∑
p≥1

2−pxp
1

Np/2

∑
i1,...,ip

gi1,...,ipσi1 · · ·σip (17)

for some choice of (xp)p≥1 ∈ [0, 1]N, and where all the coefficients gi1,...,ip are
independent standard Gaussians. Using this, form the combined Hamiltonian

Hcomb(σ) = H(σ) + sNH
pert(σ)

for some sequence of coefficients sN .
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Of course, the rather off-putting formula in (17) need not be seen as a natural
model in its own right4, but as a convenient choice of a very general function which
provides many extra parameters that we can tweak as needed. Note, for instance,
that the spin-flip symmetry is broken if there are nonzero terms for any odd p.

Now, the point is that if the coefficients sN are small enough then one can
show that this perturbation has only a higher-order effect on the free energy: to be
precise,

sN√
N
−→ 0 =⇒ |F pert

N (β)− FN (β)| −→ 0 ∀β, x1, x2, . . . .

Therefore, if we can evaluate the asymptotic behaviour of F pert
N (β) as N −→ ∞

for such sN , this still answers the first main question about the SK model. On
the other hand, it turns out that for a generic choice of the coefficients xp, all
the unwanted symmetry is broken, and the resulting Gibbs measures have a very
special structure.

This is described by the ‘Ruelle Probability Cascades’, which we will not in-
troduce carefully here, but their important qualitative features are given in the fol-
lowing theorem:

Theorem 15.1 (The Parisi ansatz) For almost every (x1, x2, . . .) ∈ [0, 1]N, every
subsequential limit γ of the random measures γβ,N has the following properties:

• γ is supported on the sphere {ξ ∈ `2 : ‖ξ‖ = q∗(β)} for some non-random
q∗(β) ∈ [0, 1],

• (Talagrand’s positivity principle) if ξ1, ξ2 are drawn independently from γ,
then ξ1 · ξ2 ≥ 0 a.s.

• the support of γ is an ultrametric subset Y of the radius-q∗(β) sphere.

The deepest and most surprising part of this result is that the random measure γ
is supported on an ultrametric subset of B, and it turns out that once this is known,
the rest of the structure can be deduced fairly directly. This was known as the
‘Parisi ultrametricity conjecture’, and was the last piece of the above theorem to
fall into place in the recent work [Pan13].

4Although it has been studied as such; it is called the mixed p-spin model.
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Recall that a metric space (Y, dY ) is ultrametric if the triangle inequality may
be strengthened to

dY (y1, y3) ≤ max{dY (y1, y2), dY (y2, y3)} ∀y1, y2, y3 ∈ Y.

If Y is contained in a sphere of constant radius q∗ in a Hilbert space H, as in
the case above, then this ultrametric inequality implies a very explicit ‘heirarchical’
structure. If we assume also that the distances between points of Y assume only
finitely many different values, it may be described as follows. There are

• a rooted tree T of constant depth d, say,

• a sequence of values

0 = q0 < q1 < q2 < . . . < qd = q∗,

• and pairwise-orthogonal vectors ξuv ∈ H for every edge uv of T such that

‖ξuv‖ =
√
q2
i − q2

i−1 if uv connects levels i− 1 and i of T ,

such that Y is the image of the set of leaves ∂T under following map ϕ : ∂T −→
H:

ϕ(v) = ξv0v1 + ξv1v2 + · · ·+ ξvd−1v,

where v0v1 · · · vd−1v is the path from the root to v in T . Now Y is determined
up to isometry by T and the lengths qi. If Y has infinitely many possible inter-
point distances, then one needs a slightly more complicated version of this picture.
See [Pan12] for a more careful discussion of ultrametricity.

It is easy to see that the full Parisi ansatz cannot hold for the Hamiltonian (10)
by itself. Whatever the values of gi,j , that Hamiltonian is always invariant under the
‘spin-flip’ symmetry (σi)i 7→ (−σi)i, from which it follows easily that any non-
trivial limit random measure would violate Talagrand’s positivity principle. This
spin-flip symmetry is actually obscuring some other structure of importance, and
so one must at least perturb the model so far as to break this symmetry, and then
try to understand the resulting perturbed Gibbs measures. This situation would be
very similar to how the symmetric Gibbs measures for the low-temperature Ising
model on Z2 should be understood as a convex combination of two asymmetric
Gibbs measures

So some perturbation to the SK Hamiltonian is needed for the Parisi ansatz,
but it is still open whether one really needs the whole infinite-dimensional family
introduced above.
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From concentration results to the Ghirlanda-Guerra identities

The point of embarkation for obtaining the Ghirlanda-Guerra identities for the SK
model is a very basic principle concerning Gibbs measures. It can also be illus-
trated on the REM. Suppose now that H : {−1, 1}N −→ R is the random Hamil-
tonian in either of these models, and form the resulting family of Gibbs measures

γβ{σ} =
exp(−βH(σ))

Z(β)
.

Let Φ(β) = logZ(β), so FN (β) = E 1
NΦ(β).

Now, on the one hand, applying Hölder’s inequality to Z(β) with β1, β2 ≥ 0
and 0 ≤ t ≤ 1 gives

Z(tβ1 + (1− t)β2) =
∑
σ

e−tβ1H(σ)e−(1−t)β2H(σ)

≤
(∑

σ

e−β1H(σ)
)t(∑

σ

e−β2H(σ)
)1−t

,

hence convexity:

Φ(tβ1 + (1− t)β2) ≤ tΦ(β1) + (1− t)Φ(β2).

On the other, basic calculus gives

Φ′(β) =
Z ′(β)
Z(β)

=
∫
{−1,1}N

(−H(σ)) γβ(dσ) =⇒ |Φ′(β)| ≤ ‖H‖∞.

Another differentiation gives

Φ′′(β) =
Z ′′(β)
Z(β)

− Z ′(β)2

Z(β)2

=
∫
{−1,1}N

H(σ)2 γβ(dσ)−
(∫
{−1,1}N

H(σ) γβ(dσ)
)2

= Varγβ (H).

With only this in hand, one concludes that for any interval [a, b] ⊆ [0,∞),∫ b

a
Varγβ (H) dβ =

∫ b

a
Φ′′(β) dβ = Φ′(b)− Φ′(a) ≤ 2‖H‖∞.
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This inequality has remarkable consequences in case H already takes large
values: if ‖H‖∞ is large, it tells us that Varγβ (H) is not much larger than ‖H‖∞
for most values of β ∈ [a, b]. Therefore, one expects the fluctuations of H to
be typically O(

√
‖H‖∞) (where ‘typically’ refers to γβ). On the other hand, if

H is not too irregular then one often finds that |H| itself typically takes values
comparable to ‖H‖∞, so that its fluctuations are much smaller than its typical
values. This applies in the case of the SK model and REM, because there we expect
H(σ) to have values of order N for most σ, and one can show that its maximum is
typically not too much larger than this (see [Tal03, Proposition 1.1.3]).

Now recall that in either of the models of interest, H is a centred Gaussian
random field on {−1, 1}N , and that an appeal to the concentration inequality of
Proposition 13.1 gives (12). This tells us that the random function 1

NΦN (β) is
very close to the deterministic function FN (β) as N −→ ∞. Since these are also
convex functions, one can turn this into an approximation between their derivatives.
Working out the details of these estimates in these particular models, the upshot of
this is the estimate∫ b

a
E
〈∣∣∣H(σ)

N
− E

〈H(σ)
N

〉
β,N

∣∣∣〉
β,N

dβ = O
( 1
N1/4

)
.

This is explained more carefully as Theorem 2.12.1 in [Tal03].

Now let ν = νβ,N be the (deterministic) measure E〈−〉β,N . The above im-
plies that for any fixed interval [a, b], for most β ∈ [a, b] the quantity H/N :
{−1, 1}N −→ R must be very highly concentrated under the measure νβ,N . Using
this, with a little care one can extract a β in any chosen interval and a subsequence
of these measures such that for any functions fN : ({−1, 1}N )m −→ [−1, 1] one
must have

ν
(
fN (σ1, . . . , σm)

H(σ1)
N

)
− ν
(
fN (σ1, . . . , σm)

)
ν
(H(σ1)

N

)
−→ 0, (18)

uniformly in the choice of fN .

Applying Guassian integration by parts to this apparently simple phenomenon
has far-reaching consequences. On the one hand, for any function f we find that

ν
(
f(σ1, . . . , σm)

H(σ1)
N

)
= −β

( n∑
`=1

ν
(
f(σ1, . . . , σm)(σ1 · σ`)

)
−mν

(
f(σ1, . . . , σm)(σ1 · σm+1)

))
,
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where
σi · σj :=

1
N

Cov(H(σi), H(σj)).

This is obtained by applying Proposition 13.2 for each tuple (σ1, . . . , σm) sepa-
rately to the function

F ((H(σ))σ) = f(σ1, . . . , σm) · γ⊗mβ,N (σ1, . . . , σm)

= f(σ1, . . . , σm) · e−βH(σ1)−βH(σ2)−···−βH(σm)

Z(β)m
.

Since (H(σ))σ is a centred Gaussian process, we can perform the integration by
parts in the Gaussian r.v. H(σ1) with the orthogonal Gaussian process held fixed.

Similarly one can compute that

ν
(H(σ1)

N

)
= −β

(
ν(σ1 · σ1)− ν(σ1 · σ2)

)
(where in both the SK model and the REM the quantity σ1 ·σ1 is actually constant,
i.e. the same for every σ1).

Substituting these into (18) and taking a subsequential limit gives

ν
(
f(σ1, . . . , σm)(σ1 · σm+1)

)
=

1
m

(
ν(σ1 · σ2)ν(f) +

m∑
`=2

ν(f(σ1, . . . , σm)(σ1 · σ`))
)
,

where now ν := E〈−〉 refers to the subsequential sampling-limit random measure
γ. These are the Ghirlanda-Guerra identities.

In fact, these are only the first in a large family of identities. If γ is a random
Hilbert space measure and ν = E〈−〉 as before, then γ satisfies the extended
Ghirlanda-Guerra identities if

ν
(
f(σ1, . . . , σm)(σ1 · σm+1)p

)
=

1
m

(
ν((σ1 · σ2)p)ν(f) +

m∑
`=2

ν(f(σ1, . . . , σm)(σ1 · σ`)p)
)
.

for all bounded continuous functions f and all p ≥ 1. Equivalently, this asserts that
if one first chooses γ itself at random, and then chooses σ1, σ2, . . . independently
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at random from γ, then conditionally on σ1, . . . , σm the inner product σ1 · σm+1

has distribution
1
m

(
law(σ1 · σ2) +

m∑
`=2

δ(σ1·σ`)

)
.

When these extended identities are satisfied, one can show that they give all the
desired control over the structure of γ. One needs the large family of perturbations
to the SK Hamiltonian that were introduced previously in order to find parameter
values at which all of these identities hold simultaneously; we will not explain this
further here, but see [Panar, Chapter 3].

16 Obtaining consequences from Ghirlanda-Guerra

Ultrametricity and the Ruelle Probability Cascades

The heart of Panchenko’s breakthrough [Pan13] is a proof that the extended Ghirlanda-
Guerra identities imply the ultrametricity part of Theorem 15.1. That proof is dif-
ficult and a little long, so we will not broach it here, except to report a simple
geometric feature of independent interest. To prove ultrametricity, Panchenko ac-
tually shows that the Ghirlanda-Guerra identities imply the following property for
the support of the limiting Gibbs measure:

Proposition 16.1 (See proof of Theorem 2.13 in [Panar]) Suppose that Y ⊆ H

is a closed subset of a Hilbert space with the following property:

If ξ1, ξ2, . . . , ξm ∈ Y are points such that

‖ξm − ξm−1‖ = min{‖ξm − ξi‖ : i ≤ m− 1},

then there are ‘duplicates’ ξ′1, ξ′2, . . . , ξ′m ∈ Y and also ξ′′m ∈ Y such
that

‖ξ′j − ξ′i‖ = ‖ξj − ξi‖ ∀i, j ≤ m,

‖ξ′′m − ξ′i‖ = ‖ξm − ξi‖ ∀i ≤ m− 1

and
‖ξ′m − ξ′′m‖ = ‖ξm − ξm−1‖.

Then Y is ultrametric.
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The proof of this rests on a careful application of the Cauchy-Schwartz in-
equality to the average of a large sequence of such duplicates. If one starts with
a non-ultrametric triangle, one can produce a distance that must be negative, and
hence a contradiction. Note that the above condition is certainly not necessary for
ultrametric subsets of a Hilbert space: for example, it cannot be satisfied by any
finite ultrametric subset.

Once ultrametricity is known, it remains to describe Y exactly in terms of a
tree T and distances qi (or some version of these data for general ultrametrics),
as discussed at the beginning of the previous section; and then to describe the
distribution of the random measure γβ supported on Y . The structure of Ruelle
Probability Cascades finally appears in the latter step, and is also deduced from
the Ghirlanda-Guerra identities once ultrametricity is known. We will not explain
these carefully here (again, [Pan12, Panar] give good introductions), but to give
some of the flavour we will discuss the analogous problem in the much simpler,
toy situation of the REM.

Solving the REM

Assume we know that the limiting random probability measure γ of the REM sat-
isfies the extended Ghirlanda-Guerra identities. For the REM the quantities σ · σ′
between different states can take only two values, since for this model

σ · σ′ := 1
N

Cov(H(σ), H(σ′)) = δσ,σ′

(so σ ·σ′ is not now the inner product coming from regarding {−1, 1}N as a subset
of `N2 ). This property clearly persists for the limiting measure γ, so it follows that
the random measure γ is a.s. supported on a sequence of orthogonal elements of
its auxiliary Hilbert space H. However, this means that in this case the extended
Ghirlanda-Guerra identities reduce to the following principle:

If we choose γ at random and then choose elements ξ1, ξ2, . . . i.i.d.
from γ, , then having chosen ξ1, . . . , ξm, the probability that ξm+1 =
ξ1 (i.e., that ξ1 · ξm+1 = 1, not 0) is

1
m

((number of ` ∈ {2, . . . ,m} s.t. σ` = σ1) + p)

where p is the overall probability that two vectors ξ and ξ′ drawn in this process
will be equal.
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Considering only the process that determines whether ξm+1 agrees with one
of ξ1, . . . , ξm or is distinct from all of them, this reveals a random partition of N
as m increases, and now we recognize it: provided 0 < p < 1, it is the Chinese
Restaurant Process with parameter α = 1− p (recall formula (7)).

Therefore, in the case of the REM, provided it turns out that 0 < α < 1,
the random weights of the limiting random measure γ follow the random mass
partition PD(α, 0) with this α. A separate analysis can now be given to show that
α ∈ (0, 1) when β > 2

√
log 2, and then

α = 2
√

log 2/β

(see Chapter 1 of [Tal03]). On the other hand, when β ≤ 2
√

log 2 (corresponding
to high temperature in the physical interpretation), it works out that p = 1, α = 0,
and the limiting probability measure γ simply collapses to a Dirac mass at 0.
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