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Lecture 1

August 25

1.1 Measure Theory (MT): Conceptual Overview

MT is useful because the definitions from measure theory can be adapted for probability theory. The fresh-
man definition of a random variable (RV) is an object with a range of possible values, the actual value of
which is determined by chance. In MT, a RV is a measurable function.

We have already seen:

• Precalculus:
∑
n f(n)

• Calculus 1:
∫ b
a
f(x) dx

• Calculus 2:
∫∫
f(x, y) dx dy

• Probability: EX

MT provides the abstract integral, f 7→ I(f) (a definite integral), which unifies the above concepts. MT also
answers questions such as: if fn → f∞ (in some sense), does I(fn)→ I(f∞)?

“Pick a point x uniformly at random in the unit square.” In basic probability theory, the answer is

P (x ∈ A) =
area(A)

1

However, we need MT in order to formalize “area(A)”.

1.2 Abstract Measure Theory

Denote the universal set by S.

A, B, and C denote subsets of S.

A,B, C, . . . ,F , . . .S denote collections of subsets. For example, we can have F = {∅, A,B, S}.

An element of S is denoted by s ∈ S.

Definition 1.1. S is a field (or algebra) if S is closed under Boolean operations. That is,

1. If A,B ∈ S, then A ∩B,A ∪B,A\B, . . . must be in S.

4



LECTURE 1. AUGUST 25 5

2. S is non-empty.

F = {∅, S} is a field. F = {∅, A,Ac, S} is a field.

Exercise. To determine whether a collection is a field, it is enough to check:

• A ∈ S =⇒ Ac ∈ S

• A,B ∈ S =⇒ A ∪B ∈ S

Let S be fixed.

Lemma 1.2. If S1 and S2 are fields, then S1 ∩ S2 is a field.

More generally, if {Sθ : θ ∈ Θ} is any collection of fields in S, then
⋂
θ∈Θ Sθ is a field.

The above statement is not true for S1 ∪ S2.

Definition 1.3. Let A be any collection of subsets of S. Then

F(A)
def
=

⋂
F a field
F⊇A

F

is a field by (1.2).

F(A) is called the field generated by A.

Exercise. “F(A) is the collection of subsets that can be obtained from sets in A via a finite number of
Boolean operations.”

Example 1.4. Let S = R1 and A be the collection of intervals (−∞, x], x ∈ R.

Then F(A) is the collection of finite disjoint intervals in R1.

Example 1.5. Let S = [0, 1]2 and A be the collection of rectangles (x1, x2]× (y1, y2].

Then F(A) includes finite unions of connected areas which are made up of finite numbers of horizontal
and vertical lines.

Definition 1.6. S is a σ-field (σ-algebra) if

1. S is a field.

2. S is closed under countable unions and under countable intersections. (If Ai ∈ S, 1 ≤ i <∞, then⋃
iAi and

⋂
iAi are in S.)

Exercise. For 2, it is enough to prove closure under increasing unions: If Ai ∈ S, A1 ⊂ A2 ⊂ A3 ⊂ · · ·, then⋃
iAi ∈ S.

Lemma 1.7. If S1 and S2 are σ-fields, then S1 ∩ S2 is a σ-field.

More generally, {Sθ : θ ∈ Θ} is any collection of σ-fields in S, then
⋂
θ∈Θ Sθ is a σ-field.
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Definition 1.8. Let A be any collection of subsets of S.

Then
σ(A)

def
=

⋂
G a σ-field
G⊇A

G

is a σ-field, called the σ-field generated by A.

However, there is no useful explicit description of a σ-field.

Definition 1.9. A measurable space is a pair (S,S) where S is a set and S is a σ-field on S.

If S is a topological space and G is the collection of open sets, then σ(G) is called the Borel σ-field on
S.

Exercise. On R1 or Rd, the Borel σ-field is the same σ-field generated by the d-dimensional cubes

(x1, y1]× (x2, y2]× · · · × (xd, yd].



Lecture 2

August 30

2.1 Measurable Functions

Last time, we talked about a measurable space (S,S).

If S is a topological space, we use B = σ({open sets}) as S, in particular for S = R.

Take sets S1, S2 and a function f : S1 → S2. For A ⊆ S1, we can define f(A) = {f(s1) : s1 ∈ A} ⊆ S2. For
B ⊆ S2, we can define f−1(B) = {s1 : f(s1) ∈ B} ⊆ S1.

• f−1 commutes with Boolean operations and monotone limits:

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2) (2.1)

f−1

(⋃
n

Bn

)
=
⋃
n

f−1(Bn) (2.2)

Note: Given f : S1 → S2, given S2, then {f−1(B) : B ∈ S2} is a σ-field on S1.

Take two measurable spaces (S1,S2) and (S2,S2).

Definition 2.1. A function f : S1 → S2 is measurable if

f−1(B) ∈ S1, ∀B ∈ S2 (2.3)

Lemma 2.2. To check if f is measurable, it is sufficient to check (2.3) for all B ∈ B, where B is some
collection such that σ(B) = S2.

Proof. Consider {B ⊆ S2 : f−1(B) ∈ S1}. This is a σ-field because of 2.1 and 2.2 and is a subset of B.
If a σ-field S is a subset of a collection B, then S ⊇ σ(B). Hence, this is a subset of σ(B).

Lemma 2.3. If S1, S2 are toplogical spaces and f : S1 → S2 is continuous, then f is measurable.

Proof. A function f is continuous if and only if f−1(G2) ∈ {open sets in S1}, where G2 is open in S2.
Then 2.2 implies that f is measurable with respect to σ({open sets in S1}) = S1.

7
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Lemma 2.4. If S2 = R, it is sufficient to check f−1((−∞, x]) ∈ S1 ∀x ∈ R.

Lemma 2.5. Suppose h : S1 → S2 and g : S2 → S3, with f(s1) = g(h(s1)). If g and h are measurable,
then f = g ◦ h is measurable.

Lemma 2.6. Suppose fi : (S,S1) → R is a measurable function, 1 ≤ i ≤ d. Suppose g : Rd → R is
measurable. Then g(f1(s1), f2(s1), . . . , fd(s1)) is a measurable function S → R.

Proof. Apply 2.5 to (S1,Rd,R) and h(s1) = (f1(s1), . . . , fd(s1)). All we need to prove is that h : S → Rd
is measurable. Use the fact that

Bd = Borel σ-field on Rd = σ-field generated by {(−∞, x1]× (−∞, x2]× · · · × (−∞, xd]} = B

h−1(B) =

d⋂
i=1

{s1 : fi(s1) ⊆ xi} ∈ S1

We are done by 2.2.

Corollary 2.7. If fi : S → R are measurable, then f1 + f2, f1f2, and max(f1, f2) are measurable.

Proof. The functions g(x1, x2) = x1 + x2, g(x1, x2) = x1x2, and g(x1, x2) = max(x2, x2) for xi ∈ R are
continuous, which implies that the functions are measurable.

Reminder : Let R̄ = [−∞,∞]. For arbitrary xn ∈ R̄, 1 ≤ n <∞, lim supn xn exists in R̄.

lim
N→∞

sup
n≥N

xn = lim supxn

lim
N→∞

inf
n≥N

xn = lim inf xn

limn xn exists iff lim supxn = lim inf xn.

Lemma 2.8. Given measurable fi : S → R̄, 1 ≤ i < ∞, define f∗(s) = lim supn→∞ fn(s) and f∗(s) =
lim infn→∞ fn(s). Then f∗ and f∗ are measurable functions S → R̄.

Proof. Consider{
s : lim sup

n
fn(s) ≤ x

}
= {s : fn(s) ≤ x+ 1/i ultimately (for all sufficiently large n), for each i}

=

∞⋂
i=1

{s : fn(s) ≤ x+ 1/i ultimately}

=

∞⋂
i=1

∞⋃
N=1

{s : fn(s) ≤ x+ 1/i ∀n ≥ N}

=

∞⋂
i=1

∞⋃
N=1

∞⋂
n=N

{s : fn(s) ≤ x+ 1/i}︸ ︷︷ ︸
∈S
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2.2 On R-Valued Measurable Functions (S,S)→ R
For A ∈ S, the indicator function

1A(s) =

{
1, s ∈ A
0, s /∈ A

is a measurable function.

Given real numbers ci, 1 ≤ i ≤ n and given a partition (Ai, 1 ≤ i ≤ n) of S into measurable sets, define
f(s) =

∑
i ci1Ai = ci for s ∈ Ai (a “simple function”).

Lemma 2.9. Let h : S → [0, L] be measurable. For i ≥ 1, define

0 ≤ hi(s) = max
j≥0

{
j

2i
:
j

2i
≤ h(s)

}
= 2−ib2ih(s)c ≤ h(s)

Then hi(s) ↑ h(s) as i→∞, and each hi is a simple function.

Proof. “Obvious”.

2.3 Measures

Take a measurable space (S,S).

Definition 2.10. A measure µ is a function µ : S → [0,∞] such that

1. µ(∅) = 0

2. For countable disjoint Ai ∈ S, µ(
⋃
iAi) =

∑
i µ(Ai) ≤ ∞.

Condition 2 is countable additivity.

• If µ(S) = 1, we call µ a probability measure.

• If µ(S) <∞, call µ a finite measure.

• If ∃Sn ↑ S such that µ(Sn) <∞∀n, then µ is a σ-finite measure.

2.3.1 Elementary Properties

• If A ⊆ B, then µ(A) ≤ µ(B).

• µ(A ∪B) ≤ µ(A) + µ(B)

• For a probability measure, µ(Ac) = 1− µ(A).

2.3.2 Monotonocity

If An ↑ A, then µ(An) ↑ µ(A) ≤ ∞. If An ↓ A and µ(An) <∞, then µ(An) ↓ µ(A).

“Continuity”: If An ↓ ∅, if some µ(An) <∞, then µ(An) ↓ 0.



Lecture 3

September 1

3.1 Probability Measure µ on (S,S)

• µ(∅) = 0

• For disjoint (Ai, 1 ≤ i <∞), Ai ∈ S,

µ

(⋃
i

Ai

)
=
∑
i

µ(Ai), 0 ≤ µ(A) ≤ 1

Take the case of S = {0, 1, 2, . . . } and S = all subsets of S.

• Given p0, p1, p2, . . . ≥ 0, with ∑
i

pi = 1 (3.1)

Define, for A ⊂ S, µ(A) =
∑
i∈A pi. This µ is a probability measure (PM).

• Given a PM µ on this S, define pi = µ({i}) and (3.1) holds.

Consider a set S and let A and C denote classes of subsets of S.

Call A a π-class if A1, A2 ∈ A =⇒ A1 ∩A2 ∈ A.

Call C a λ-class if

1. S ∈ C

2. If A,B ∈ C, if A ⊂ B, then B \A ∈ C.

3. If An ∈ C, if An ↑ A, then A ∈ C.

Lemma 3.1 (Dynkin’s π-λ Class Lemma). If C is a λ-class, if A is a π-class, and if C ⊇ A, then
C ⊇ σ(A).

Proof. See text for proof.

Lemma 3.2 (Identification Lemma for PMs). If µ1 and µ2 are PMs on (S,S), if µ1(A) = µ2(A)∀A ∈ A,
if A is a π-class, and if S = σ(A), then µ1 = µ2 (µ1(B) = µ2(B) ∀B ∈ S).

10
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Proof. Consider the collection C def
= {A : µ1(A) = µ2(A)}, so C ⊇ A by hypothesis. To apply 3.1, we

only need to check C is a λ-class (clear from the definition of a PM).

Theorem 3.3. • There exists a σ-finite measure λ on (R1,B1) such that λ([a, b]) = b − a for all
−∞ < a < b <∞. This is the Lebesgue measure on R (“length”).

• There exists a PM λ1 on [0, 1] such that λ1([a, b)) = b − a for all 0 ≤ a ≤ b ≤ 1. This is the
Lebesgue measure on [0, 1] or the uniform distribution on [0, 1].

Proof. See text for proof.

Consider f : (S1,S1) → (S2,S2), a measurable function. We know that for B ∈ S2, f−1(B) ∈ S1. Given a
PM µ on (S1,S2), we can define a PM µ̂ on (S2,S2) by

µ̂(B) = µ(f−1(B))

This µ̂ is a PM because f−1 commutes with Boolean operations.

3.2 Probability Measures on R1

Given a PM µ on R, define F (x) = µ((−∞, x]). This F has the properties

• increasing: x1 ≤ x2 =⇒ F (x1) ≤ F (x2)

• right-continuous: if xn ↓ x, then F (xn) ↓ F (x)

• limx→∞ = 1 and limx→−∞ F (x) = 0

A function F with these properties is called a distribution function.

Theorem 3.4. Given a distribution function F , there exists a unique PM µ such that

F (x) = µ((−∞, x]) ∀x

Undergraduate Version. Take U a RV Uniform[0, 1]. Then F−1(U) is a RV with distribution function F .

Define G (a version of F−1):

G(y) = sup{x : F (x) < y}, 0 < y < 1

= inf{x : F (x) ≥ y}, 0 < y < 1

G is increasing, so G is measurable. For each x:

G−1((−∞, x]) = {y : G(y) ≤ x} = {y : y ≤ F (x)} = [0, F (x)]

The “push-forward” lemma says that there exists a PM µ̂ on R such that

µ̂((−∞, x]) = λ1(G−1((−∞, x])) = λ1([0, F (x)]) = F (x)

3.3 Coin-Tossing Space

Take a 2-element set B = {H,T} or {0, 1}.

The infinite product space B∞ = BN is the set of all b = (b1, b2, b3, . . . ), bi ∈ B. Given a finite string
π = (π1, . . . , πn), πi ∈ B, the length is n = |π|.

Set Aπ ⊆ B∞, where Aπ = {b : (b1, . . . , b|π|) = (π1, . . . , π|π|)}.

Define a σ-field B∞ on B∞ as σ(all Aπ; π a finite string).
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Theorem 3.5. There exists a PM µ on (B∞,B∞) such that

µ(Aπ) =
1

2|π|
, ∀π

Conceptual Point. This theorem is equivalent to the theorem that λ1 exists.

The binary expansion of real x ∈ (0, 1) (for example, x = 0.110110010001 . . . ) is given by

x = 0.b1(x)b2(x)b3(x) . . . , bi(x) =

{
1, if 2ix is odd

0, if 2ix is even

The function x 7→ bi(x) is measurable.

Define g : [0, 1] → B∞ by g(x) = (b1(x), b2(x), . . . ). It is easily checked that g is measurable. Use the
push-forward lemma to set a PM µ on B∞ with

µ(Aπ) = λ1({x : g(x) ∈ Aπ}) =

[
k

2n
,
k + 1

2n

)
=

1

2n

for some k, if |π| = n.

Given µ on B∞, define h : B∞ → [0, 1] by

h(k) =
∑
i

2−ibi

The push-forward is λ1.



Lecture 4

September 6

4.1 Abstract Integration (MT Version)

Setting. Let µ be a measure (finite or σ-finite) on (S,S).

Let H+ be the set of measurable h : S → [0,∞].

Theorem 4.1 (Basic Theorem). There exists a unique map I : H+ → [0,∞] such that

1. I(1A) = µ(A), ∀A ∈ S

2. I(h1 + h2) = I(h1) + I(h2), ∀hi ∈ H+

3. I(ch) = cI(h), ∀h ∈ H+, ∀c ≥ 0

4. If 0 ≤ hn ↑ h ∈ H+, then I(hn) ↑ I(h) ≤ ∞

Background. h 7→
∫∞
−∞ h(x) dx will be the case S = R1, µ is the Lebesgue measure.

In practice, we write

I(h) =

∫
S

hdµ =

∫
S

h(s)µ(ds)

For A ∈ S, ∫
A

hdµ
def
=

∫
S

(h1A) dµ

These are definite integrals. We associate integrals with the area under curves. The area of a rectangle of
height c and length µ(A) is cµ(A) = c

∫
S

1A dµ.

Steps:

1. Define I(1A) = µ(A).

2. For simple h =
∑
i ci1Ai , define I(h) =

∑
i ciµ(Ai).

3. For 0 ≤ h ≤ m, for m a constant, we can write h = limn hn, with hn simple (2.9) and define
I(h) = limn I(hn).

4. For general h ∈ H+, set hm = min(h,m), so hm ↑ h. Define I(h) = limm↑∞ I(hm).

Note: Consider

h(s) =

{
∞, s ∈ A
0, s /∈ A

13
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where µ(A) = 0. Here, hm(s) = min(h(s),m) = m1A, so I(hm) = m · µ(A) = 0. Then

I(h) = lim
m↑∞

I(hm) = 0

Notation. (Almost Everywhere)
h1 = h2 a.e.

means {s : h1(s) 6= h2(s)} has µ-measure 0.

Notation. For x ∈ R, x+ = max(x, 0) and x− = max(−x, 0). Thus, x = x+ − x−, |x| = x+ + x−, and
|x− y| ≤ |x|+ |y|.

Definition 4.2. A measurable h : S → R̄ is integrable (w.r.t. µ) if
∫
S
|h|dµ < ∞. For integrable h,

define I(h) = I(h+)− I(h−) (but finite).

Lemma 4.3. Suppose h1, h2 are integrable.

1. (Linearity) For c1, c2 ∈ R, h
def
= c1h1+c2h2, then h is integrable and

∫
hdµ = c1

∫
h1 dµ+c2

∫
h2 dµ.

2. If h1 = 0 a.e., then
∫
h1 dµ = 0.

3. If h1 ≥ 0 a.e., then
∫
h1 dµ ≥ 0.

4. If h1 ≤ h2 a.e., then
∫
h1 dµ ≤

∫
h2 dµ.

5.
∣∣∫ hdµ

∣∣ ≤ ∫ |h|dµ.

Proof. 5. ∣∣∣∣∫ hdµ

∣∣∣∣ =

∣∣∣∣∫ h+ dµ−
∫
h− dµ

∣∣∣∣
≤
∣∣∣∣∫ h+ dµ

∣∣∣∣+

∣∣∣∣∫ h− dµ

∣∣∣∣
=

∫
(h+ + h−) dµ =

∫
|h|dµ

4.2 Probability Theory (MT Version)

Freshman Version. A RV X is a quantity with a range of possible values, the actual value of which is
determined somehow by chance.

P (X ≤ 4) is “the chance it turns out that X ≤ 4”.

A probability space is
( Ω︸︷︷︸
states of universe

, F︸︷︷︸
events, σ-field on Ω

, P︸︷︷︸
PM

)

Events A ∈ F have probabilities P (A).

A random variable (RV) is a measurable function X : Ω→ (S,S) or often R.

For a measurable set B ∈ S, {ω : X(ω) ∈ B} is an event in F and so has a probability

P ({ω : X(ω) ∈ B}) = P (X ∈ B)
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A given RV X : Ω → (S,S) has a distribution (or law) µ, defined by µ(B) = P (X ∈ B). Given a PM P
and the RV X, we obtain the push-forward PM µ.

Notation. By example: If X, Y , Z are R-valued RVs, we define almost surely (a.s.):

X2 + Y 2 ≤ Z + 4 a.s. means P (X2 + Y 2 ≤ Z + 4) = 1

P ({ω : X2(ω) + Y 2(ω) ≤ Z(ω) + 4}) = 1

Given R-valued RVs Xn, X,

Xn → X a.s. means P ({ω : Xn(ω)→ X(ω) as n→∞}) = 1

Note: Given arbitrary R-valuedXn, 1 ≤ n <∞, we can deifneX∗ = lim supnXn (X∗(ω) = lim supn→∞Xn(ω))
and X∗ is a RV.

Take a RV Y : (Ω,F , P )→ R. Then

E[Y ]
def
=

∫
Ω

Y dP

provided E|Y | ≡
∫

Ω
|Y |dP <∞. “Y is Ω-integrable.”

4.2.1 “Change of Variable” Lemmas

Consider X : (Ω, P )→ (S,S) and h : (S,S)→ R.

Lemma 4.4. If h(X) is integrable, then Eh(X) =
∫
S
hdµ for µ = distribution of X.

Lemma 4.5. If ν is a PM on R with density f , then
∫
R hdν =

∫∞
−∞ h(x)f(x) dx, provided h is ν-

integrable.

Proof. Consider the collection of h for which the stated equality is true.

1. Consider h = 1B , B ∈ S.

LHS = Eh(X) = E1X∈B = P (X ∈ B) = µ(B) =

∫
1B dµ = RHS

2. Consider h = 1B , B ⊆ R.

LHS =

∫
1B dν = ν(B) =

∫
B

f(x) dx = RHS (definition of density f(x) of ν)

Go through the steps of the sketch proof of 4.1. Both sides of the equalities are integrals. Then:

true for 1B =⇒ true for simple h =⇒ true for bounded measurable h =⇒ true for integrable h

See the textbook: “monotone class theorem”.

We can combine 4.4 and 4.5.

Lemma 4.6. Suppose X is R-valued, and its distribution has density f . Then Eh(X) =
∫
h(x)f(x) dx,

provided that h(X) is integrable.
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EX =

∫
xf(x) dx

EX2 =

∫
x2f(x) dx

etc.



Lecture 5

September 8

5.1 Expectation (Undergraduate Version)

1. EX is the limit of (X1 +X2 + · · ·+Xn)/n for IID RVs. We will prove this later as the SLLN.

2. EX is the fair stake for a random payoff X. This is the conceptual basis of martingale theory.

3. EX =
∑
i iP (X = i) or

∫
xf(x) dx.

4. Eh(X) =
∑
i h(i)P (X = i) or

∫
h(x)f(x) dx. We checked these in MT (last class).

5. Abstract rules: E(X + Y ) = EX + EY , even if X and Y are dependent.

5.2 Expectation & Inequalities (MT Version)

If X : (Ω,F , P )→ R, then

EX
def
=

∫
Ω

X(ω)P (dω) (5.1)

EX is well-defined if

1. E|X|<∞ (−∞ < EX <∞),

2. or 0 ≤ X ≤ ∞, where 0 ≤ EX ≤ ∞.

From the definition (5.1), we can use the properties of the abstract integral.

• E1A = P (A)

• E(c1X1 + c2X2) = c1EX1 + c2EX2

• Monotone convergence: If 0 ≤ X1 ≤ X2 ≤ X3 ≤ · · ·, so Xn ↑ X∞ a.s. (holds for all ω outside some
A, P (A) = 0), then EXn ↑ EX∞ ≤ ∞. Consider 0 ≤ X11Ac ≤ X21Ac ≤ · · ·. Then Xn1Ac ↑ X∞1Ac ∀ω
and EXn = EXn1Ac .

• If X ≥ 0, if EX <∞, then P (X <∞) = 1. If P (X <∞) = 1, it may not be true that EX <∞. For
example, consider P (X = i) ∼ ci−3/2.

Let X, Y be R-valued RVs.

Markov’s Inequality: If X ≥ 0, EX <∞, then

P (X ≥ x) ≤ EX

x
, 0 < x <∞

17
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Chebyshev’s Inequality: If EX2 <∞, then var(X)
def
= EX2−(EX)2 = E(X−EX)2 and 0 ≤ var(X) <∞.

If var(X) <∞, then

P (|X − EX| ≥ x) ≤ var(X)

x2
, 0 < x <∞

Theorem 5.1 (General Form of Markov’s Inequality). Let φ : R→ [0,∞) be increasing. Then

P (X ≥ x) ≤ Eφ(X)

φ(x)
, −∞ < x <∞

provided that the quantity is not 0/0.

Proof. Define

h(y) =

{
0, y < x

φ(x), y ≥ x

so h(y) = φ(x)1(y≥x). Then h(y) ≤ φ(y) ∀y. Therefore,

Eφ(X) ≥ Eh(X) = φ(x)E1(X≥x) = φ(x)P (X ≥ x)

The “special” Markov’s inequality is the case of φ(x) = x+ = max(0, x).

To prove Chebyshev: set Y = |X − EX| and φ(x) = (x+)2.

P (Y ≥ x) ≤ EY 2

x2
=

var(X)

x2

Another case is to take φ(x) = eθx for a parameter θ > 0.

P (X ≥ x) ≤ inf
θ>0

EeθX

eθx
≤ ∞, 0 < x <∞

This is called the Basic Large Deviation Inequality. The inequality is only useful if P (X > x) → 0
exponentially fast.

Suppose X ∼ Poisson(λ). Then EX = λ and varX = λ. Taking x > λ, Markov gives P (X > x) ≤ λ/x and
Chebyshev gives P (X > x) ≤ λ/(x− λ)2. We have

EeθX =
∑
i

eθie−λλi

i!
= e−λ exp(λeθ)

Minimizing this, we obtain 0 = −x+ λeθ. Take θ with λeθ = x.

P (X ≥ x) ≤ inf
θ

exp(−θx− λ+ λeθ)

= exp
(
−x log

x

λ
− λ+ x

)
Theorem 5.2 (Cauchy-Schwarz Inequality).

|E(XY )| ≤
√

(EX2)(EY 2)
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Proof. (Trick!)
a > 0, ax2 + 2bx+ c ≥ 0 ∀x⇔ b2 ≤ ac

E(X + xY )2 = EY 2︸︷︷︸
a>0

·x2 + 2E(XY )︸ ︷︷ ︸
b

·x+ EX2︸ ︷︷ ︸
c

Since b2 ≤ ac, we are done.

Note: Given x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R, take P (X = xi, Y = yi) = 1/n, 1 ≤ i ≤ n. C-S says∣∣∣∣∣ 1n∑
i

xiyi

∣∣∣∣∣ ≤
√√√√( 1

n

∑
i

x2
i

)(
1

n

∑
i

y2
i

)

Similarly for the next inequalities.

Definition 5.3. φ is convex if ∀x < y, ∀0 ≤ λ ≤ 1, φ(x+ λ(y − x)) ≤ φ(x) + λ(φ(y)− φ(x)).

In practice: φ′′(x) ≥ 0 =⇒ φ is convex.

Theorem 5.4 (Jensen’s Inequality). Consider an interval I ⊆ R. Let φ : I → R be convex. Suppose
P (X ∈ I) = 1. Then φ(EX) ≤ Eφ(X) provided both expectations are well-defined.

Proof. Given x and convex φ, there exists a “tangent line” l(y) ≤ φ(y) ∀y such that l(x) = φ(x).

Set x = EX, take the tangent l(·) at x.

Eφ(X) ≥ El(X) =︸︷︷︸
linear

l(EX) = l(x) = φ(x) = φ(EX)

Consider the distribution of (X,φ(X)). Then

x = center of mass

= (EX,Eφ(X))

Example 5.5. Take φ(x) = |x|p, 1 ≤ p. Jensen’s inequality says |EY |p ≤ E|Y |p. Apply the inequality

with 0 ≤ a < b <∞, Y = |X|a, p = b/a. Then (E|X|a)b/a ≤ E|X|b, so

(E|X|a)1/a ≤ (E|X|b)1/b (5.2)

Notation. The “Lp norm” is ‖x‖p
def
= (E|X|p)1/p, 1 ≤ p < ∞ and (5.2) says that p 7→ ‖x‖p is increasing

on 1 ≤ p <∞.

Example 5.6. Let
φ(x) = 1/x (5.3)

or
φ(x) = − log x (5.4)

with 0 < x <∞. If X > 0, then Eφ(X) ≥ φ(EX).

1.

E
1

X
≥ 1

EX
⇔ EX ≥ 1

E(1/X)
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2.
−E logX ≥ − logEX ⇔ EX ≥ exp(E logX)

Consider x1, x2, . . . , xn > 0, P (X = xi) = 1/n, 1 ≤ i ≤ n.

1

n

∑
i

xi︸ ︷︷ ︸
arithmetic mean

≥ 1

(1/n)
∑
i 1/(xi)︸ ︷︷ ︸

harmonic mean

and

1

n

∑
i

xi ≥ exp

(
1

n

∑
i

log xi

)
=

(∏
i

xi

)1/n

(geometric mean)
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6.1 Independence (Undergraduate)

Events A, B are independent if and only if P (A ∩B) = P (A)P (B).

RVs X and Y are independent if and only if P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

Idea: Knowing the value of X doesn’t change the probabilities for Y .

6.2 MT Setup (Ω,F , P )

Consider B1, B2, sub-σ-fields of F . Call B1 and B2 independent if P (B1 ∩B2) = P (B1)P (B2) ∀Bi ∈ Bi.

View X as a map from (Ω,F) to (S,S). Since X is measurable, X−1(D) ∈ F ∀D ∈ S. The collection
{X−1(D) : D ∈ S} is a sub-σ-field of F . Call this σ(X), the “σ-field generated by X”.

Call the RVs X1, X2 independent if σ(X1) and σ(X2) are independent.

Theorem 6.1. For RVs X1, X2, where Xi takes on values in (Si,Si), the following are equivalent:

(i) X1 and X2 are independent.

(ii) P (X1 ∈ B1, X2 ∈ B2) = P (X1 ∈ B1)P (X2 ∈ B2) ∀Bi ∈ Si

(iii) P (X1 ∈ B1, X2 ∈ B2) = P (X1 ∈ B1)P (X2 ∈ B2) ∀Bi ∈ Ai, where Ai is a π-class, σ(Ai) = Si.

(iv) E[h1(X1)h2(X2)] = (Eh1(X1))(Eh2(X2)) for all bounded measurable hi : Si → R.

Comments.

1. (iv) extends to integrable hi(Xi).

2. If the Xi are R-valued, independence is equivalent to

P (X1 ≤ x2, X2 ≤ x2) = P (X1 ≤ x1)P (X2 ≤ x2) ∀xi ∈ R

3. The fact

If X1, X2 are independent, then g1(X1), g2(X2) are independent (for arbitrary measurable gi).

is true because σ(g(X)) ⊆ σ(X).

21
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Outline Proof. (i)⇔ (ii) by definition.

(iv)⇒ (ii)⇒ (iii): Each is a special case of the previous one.

(ii)⇒ (iv) by the “monotone class argument”. (iv) holds for hi = 1Bi , and therefore holds for hi simple,
and therefore holds for hi which are bounded and measurable.

What remains is to prove (iii)⇒ (ii).

We want to use Dynkin’s π-λ Lemma.

• Step 1. Fix B2 ∈ A2. Consider the collection

L = {A ∈ S1 : P (X1 ∈ A,X2 ∈ B2) = P (X1 ∈ A)P (X2 ∈ B2)}

Check L is a λ-class. By hypothesis, L ⊇ A1. The Dynkin Lemma implies L = S1.

• Step 2. Consider L′ = {B2 ∈ S2 : P (X1 ∈ B1, X2 ∈ B2) = P (X1 ∈ B1)P (X2 ∈ B2) ∀B1 ∈ S1}.
Check that L′ is a λ-class. Step 1 implies L′ ⊇ A2. The Dynkin Lemma implies that

L′ ⊇ σ(A2) = S2,

which implies (ii).

Definition 6.2. B1,B2, . . . ,Bn are independent means

P

(
n⋂
i=1

Bi

)
=

n∏
i=1

P (Bi) ∀Bi ∈ Bi

This is stronger than pairwise independence.

Example 6.3. Let X, Y be fair die throws. The events {X = 3}, {Y = 6}, and {X = Y } are pairwise
independent, but not independent.

Example 6.4. Let X1, X2 be independent and uniform on {0, 1, . . . , n − 1}. Define X3 = X1 + X2

modulo n. Then (X1, X2, X3) are pairwise independent, but not independent.

Fact. If X1, X2, X3, X4, X5 are independent, then f(X1, X2, X3) and g(X4, X5) are independent. The im-
portant part is that X1, X2, X3 and X4, X5 are distinct.

Exercise. Formalize and verify the “hereditary property of independence”.

Exercise. To show that events A1, A2, . . . , An are independent, it is enough to show

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai) ∀I ⊆ {1, 2, . . . , n}

6.3 Real-Valued RVs Xi, Yi

We know that Xn → X∞ a.s. means P ({ω : Xn(ω)→ X∞(ω) as n→∞}) = 1.
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Definition 6.5. “Convergence in probability”, Xn −→
P
X∞, means that

lim
n→∞

P (|Xn −X∞| > ε) = 0 ∀ε > 0

For 1 ≤ p < ∞, we say “Xn → X∞ in Lp” or “Xn
Lp−→ X∞ to mean E|Xn −X∞|p → 0 as n → ∞ (and

E|Xn|p <∞∀n), that is ‖Xn −X∞‖p → 0 (the Lp norm).

Lemma 6.6. If Xn → X∞ in Lp, then Xn −→
P
X∞.

Proof. Use the general form of Markov’s inequality, with φ(x) = |x|p. Apply this to Xn −X∞.

P (|Xn −X∞| > ε) ≤ E(|Xn −X∞|p)
εp

→ 0

as n→∞.

6.3.1 Variance

If E(X2) <∞, define var(X) = E(X2)− E(X)2 = E(X − EX)2.

Definition 6.7. If EX2
i <∞, if E(X1X2) = (EX1)(EX2), we say X1 and X2 are uncorrelated.

Independence implies uncorrelated.

Fact. If X1, X2, . . . , Xn are pairwise uncorrelated, then var(
∑
iXi) =

∑
i var(Xi). (Exercise)

6.3.2 Weak Law of Large Numbers

Theorem 6.8 (L2 Weak Law of Large Numbers). Given Xi, i ≥ 1, suppose that supiEX
2
i ≤ c, and

suppose they are uncorrelated. Write µi = EXi. Write

Sn =

n∑
i=1

Xi

µ̄n =
1

n

n∑
u=1

µi

Then Sn/n− µ̄n → 0 in L2 as n→∞.

Proof.

1

n
ESn = µ̄n

var(Sn) =

n∑
i=1

var(Xi) ≤ cn

var

(
1

n
Sn

)
≤ c

n

E

(
Sn
n
− µ̄n

)2

= var

(
Sn
n

)
≤ c

n
→ 0



LECTURE 6. SEPTEMBER 13 24

as n→∞. This is convergence in L2.

If µi → µ as i→∞, then µ̄n → µ as n→∞ and

E

(
Sn
n
− µ

)2

→ 0
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7.1 Polynomial Approximation Theorem

“X is Bernoulli(p)” means

P (X = 1) = p

P (X = 0) = 1− p

IID means independent and identically distributed.

Theorem 7.1 (Bernstein’s Theorem). Given a continuous function f : [0, 1]→ R, define

fn(x) =

n∑
m=0

(
n

m

)
xm(1− x)n−mf

(m
n

)
, 0 ≤ x ≤ 1

fn(x) is a polynomial of degree n. Then supx|fn(x)− f(x)| → 0 as n→∞.

Proof. Fix x. Take IID Bernoulli(x) RVs (Xi, 1 ≤ i <∞). Write Sn =
∑n
i=1Xi and note that

fn(x) = Ef

(
Sn
n

)
We want to bound

|fn(x)− f(x)| =
∣∣∣∣Ef (Snn

)
− f(x)

∣∣∣∣
≤ E

∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣
= E

∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣1(|Sn/n−x|≤δ) + E

∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣1(|Sn/n−x|>δ)

≤ ε+ 2MP

(∣∣∣∣Snn − x
∣∣∣∣ > δ

)
≤ ε+

2M

δ2
var

(
Sn
n

)
≤ ε+

2M

δ2

x(1− x)

n

Explanation: We used |EY | ≤ E|Y | and Sn/n → x in probability by the WWLN. From analysis: set

25
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M
def
= sup |f | <∞. “Uniform continuity” of f says that given ε > 0, ∃δ > 0 such that

|y1 − y2| ≤ δ ⇒ |f(y1)− f(y2)| ≤ ε

Choose ε > 0 and take δ as in the definition of uniform continuity. Also, var(Sn) = n var(X) = nx(1−x)
and x(1− x) ≤ 1/4. Then, we know:

sup
n
|fn(x)− f(x)| ≤ ε+

M

2δ2

1

n

lim
n→∞

sup
n
|fn(x)− f(x)| ≤ ε, true ∀ε > 0

lim
n→∞

sup
n
|fn(x)− f(x)| = 0

7.2 Background to Proving a.s. Limits

7.2.1 Axioms

If we have events Bn ↑ B, then P (Bn) ↑ P (B). If Bn ↓ B, then P (Bn) ↓ P (B).

For arbitrary events An, the event that “An happens infinitely often” means
⋂∞
m=1

⋃∞
n=mAn. “An ult.”

means
⋃∞
m=1

⋂∞
n=mAn. These events are opposites: (An inf. often)c = (Acn ult.).

If P (Bm) = 1, 1 ≤ m <∞, then P (
⋂∞
m=1Bm) = 1.

Lemma 7.2 (Weak). (i) P (An inf. often) ≥ lim supn P (An)

(ii) P (An ult.) ≤ lim infn P (An)

Proof.

P

(
Q⋃

n=m

An

)
≥ max
m≤n≤Q

P (An)

Take Q→∞.

P

( ∞⋃
n=m

)
≥ sup
n≥m

P (An)

Take m→∞.
P (An inf. often) ≥ lim sup

n
P (An)

7.2.2 Borel-Cantelli Lemmas

Lemma 7.3 (First Borel-Cantelli-Lemma). For arbitrary events (An, 1 ≤ n <∞), if
∑
n P (An) <∞,

then P (An inf. often) = 0.

Proof. Let Xn =
∑n
i=1 1Ai be the number of events that occur. Let X∞ =

∑∞
i=1 1Ai ≤ ∞. Then

EX∞ =
∑∞
i=1 P (Ai) <∞ (by hypothesis), which implies that P (X∞ =∞) = 0.

Lemma 7.4 (Second Borel-Cantelli Lemma). For independent events (Ai, 1 ≤ i <∞),
∑
i P (Ai) =∞,

then P (An inf. often) = 1.
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(There are many variants under alternate assumptions.)

Proof. Fix m. We will prove P (
⋃∞
n=mAn) = 1, or prove P (

⋂∞
n=mA

c
n) = 0.

Fact: If 0 ≤ x ≤ 1, then 1− x ≤ e−x.

Independence implies that

P

(
Q⋂

n=m

Acn

)
=

Q∏
n=m

P (Acn)

=

Q∏
n=m

(1− P (An))

≤ exp

(
−

Q∑
n=m

P (An)

)

Let Q ↑ ∞.

P

( ∞⋂
n=m

Acn

)
≤ exp

(
−
∞∑
n=m

P (An)

)
= 0

Lemma 7.5. Consider arbitrary R-valued RVs (Yn) and arbitrary −∞ < y <∞. If∑
n

P (Yn ≥ y + ε) <∞

for each ε > 0, then lim supn Yn ≤ y a.s.

Corollary 7.6. If
∑
n P (|Yn| ≥ ε) <∞ for each ε > 0, then Yn → 0 a.s.

Deterministic Fact. For reals (yn) and y, “lim supn yn ≤ y” is equivalent to “yn ≤ y + ε ultimately, for each
ε > 0”, which is equivalent to “yn ≤ y + 1/j ultimately, for each j ≥ 1”.

Proof. The hypothesis and 7.3 imply that P (Yn ≤ y + 1/j ult.) = 1 for each j. Since

P (Bj) = 1 ∀j =⇒ P (Bj for all j) = 1

then P (Yn ≤ y + 1/j ult., for each j ≥ 1) = 1. By the deterministic fact, P (lim supn Yn ≤ y) = 1.

7.3 4th Moment SLLN

SLLN means the strong law of large numbers.

Theorem 7.7 (4th Moment SLLN). Let (Xi, 1 ≤ i < ∞) be IID, EX = 0, and EX4 < ∞. Write
Sn =

∑n
i=1Xi. Then

(i) ES4
n ≤ 3n2EX4

(ii) Sn/n→ 0 as n→∞.
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If EX = µ, applying the theorem to X − µ shows that Sn/n→ µ a.s.

Proof. (i)

ES4
n =

∑
i

∑
j

∑
k

∑
l

E[XiXjXkXl]

Note that E[XiXjXkXl] = 0 if some index “j” appears only once. For example,

E(X4X6X6X6) = E(X4)E(·) = 0

Therefore,

ES4
n = nEX4 +

(
4

2

)(
n

2

)
E[X2

1X
2
2 ]

= nEX4 + 3n(n− 1) (EX2)2︸ ︷︷ ︸
≤EX4

since (EY )2 ≤ E(Y 2).

(ii) Fix ε > 0.

P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε) ≤ E∣∣∣∣Snn

∣∣∣∣4 · 1

ε4

≤ ε−4n−4 · 3n2EX4

≤ 3ε−4EX4n−2

This implies that ∑
n

P

(∣∣∣∣Snn ≥ ε
∣∣∣∣) ≤∑

n

3ε−4EX4n−2 <∞

By 7.6, Sn/n → 0 a.s. We used the fact that s4 = |s|4 and s2 = |s|2, but this does not work for

the third moment: s3 6= |s|3.

Corollary 7.8. If (Ai, 1 ≤ i < ∞) are independent Bernoulli(p), Sn =
∑n
i=1 1Ai , then Sn/n → p a.s.

as n→∞.

We say “data” for n real numbers x1, . . . , xn. The empirical distribution is the uniform distribution on
(x1, . . . , xn). The empirical distribution function is

G(x) =
1

n

n∑
i=1

1(xi≤x)

Theorem 7.9 (Glivenko-Cantelli Theorem). If Xi, 1 ≤ i < ∞ are IID with an arbitrary distribution
function F , let Gn(ω, x) be the empirical distribution of (X1(ω), X2(ω), . . . , Xn(ω)), or

Gn(ω, x) =
1

n

n∑
i=1

1(Xi(ω)≤x)

For fixed x, the events {Xi ≤ x} are IID Bernoulli(G(x)). Using the SLLN for events, Gn(ω, x)→ G(x)
as n→∞.
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8.1 Glivenko-Cantelli Theorem

Lemma 8.1. Let Fn and F be distribution functions. If

(i) Fn(x)→ F (x) for each rational x

(ii) Fn(x)→ F (x) and Fn(x−)→ F (x−) for each atom of F (F (x)− F (x−) = P (X = x) > 0)

then supx|Fn(x)− F (x)| → 0.

Theorem 8.2 (Glivenko-Cantelli Theorem). Let (Xi, 1 ≤ i <∞) be IID with distribution function F .
Let Gn(ω, x) be the empirical distribution function of (X1, . . . , Xn).

Gn(ω, x) =
1

n

n∑
i=1

1(Xi(ω)≤x)

Then supx|Gn(ω, x)− F (x)| → 0 a.s. as n→∞.

Proof. Fix x. The events {X1 ≤ x}, {X2 ≤ x}, etc. are IID events, with probability F (x). The SLLN
implies that Gn(ω, x)→ F (x) a.s. as n→∞.

If S = {rationals} ∪ {atoms of F} (which is countable), then P ({Gn(ω, x)→ F (x) ∀x ∈ S}) = 1. Then
8.1 implies that

P

(
sup
x
|Gn(ω, x)− F (x)| → 0

)
= 1

8.2 Gambling on a Favorable Game

Example 8.3 (Betting on a Favorable Game). Take a stake s, where you gain s with probability 1/2+α
and lose s with probability 1/2− α. (Imagine α = 1%.)

Strategy : Bet some proportion q of your total, each time.

Let Xn be your fortune after n bets. Then

Xn+1 = (1− q)Xn +

{
2qXn if you win

0 if you lose the (n+ 1)th bet

29
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= (1− q)Xn + 2qXn1An+1

= (1− q + 2q1An+1)Xn

where An+1 is the event that you win the (n+ 1)th bet. Then

Xn = X0

n∏
i=1

(1− q + 2q1Ai)

logXn

n
=

logX0

n
+

1

n

n∑
i=1

Yi

where Yi = log(1− q + 2q1Ai). As n→∞,

logXn

n
→ EY a.s.

If (1/n) logXn → c, then Xn → ecn, where c is the asymptotic growth rate. The optimal choice of q is
to maximize EY .

EY =

(
1

2
+ α

)
log(1 + q) +

(
1

2
− α

)
log(1− q)

≈ 2αq − 1

2
q2

for α, q small. Choose q = 2α.

EXn = X0(1 + 2qα)n →∞, but Xn → 0 a.s. if q ≥ qcrit ≈ 4α.

8.3 a.s. Limits for Maxima

Lemma 8.4 (Deterministic Lemma). If xn ≥ 0 and 0 < bn ↑ ∞, then

lim sup
n

max(x1, . . . , xn)

bn
= lim sup

n

xn
bn

Proof. “≥” is obvious. Fix j.

LHS = lim sup
max(xj , xj+1, . . . , xn)

bn
≤ lim sup

n→∞
max
j≤i≤n

xi
bi

= sup
i≥j

xi
bi
∀j

Let j →∞. Then

LHS ≤ lim sup
i

xi
bi

Example 8.5. Let (Xi, i ≥ 1) be IID Exponential(1), so P (X > x) = e−x. Write Mn = max1≤i≤nXi.
Then

lim sup
n

Xn

log n
= 1 a.s. (8.1)
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and
Mn

log n
→ 1 a.s.

Proof. Fix ε > 0. Then

P

(
Xn

log n
> 1 + ε

)
= exp(−(1 + ε)(log n)) = n−(1+ε)

and
∑
n n
−(1+ε) <∞. The First Borel-Cantelli Lemma implies that

lim sup
n

Xn

log n
≤ 1 + ε a.s. =⇒ lim sup

n

Xn

log n
≤ 1 a.s.

Now fix ε > 0.

P

(
Xn

log n
≥ 1− ε

)
= n−(1−ε)

where
∑
n n
−(1−ε) =∞. The Second Borel-Cantelli Lemma implies that

lim sup
n

Xn

log n
≥ 1− ε a.s. =⇒ lim sup

n

Xn

log n
≥ 1 a.s.

The result (8.1) and 8.4 imply that

lim sup
n

Mn

log n
= 1 a.s.

Fix ε > 0.

P (Mn ≤ (1− ε) log n) = [P (X ≤ (1− ε) log n)]n

= (1− n−(1−ε))n

≤ exp
(
−n · n−(1−ε)

)
= exp(−nε)

where we have used 1 − x ≤ e−x. The First Borel-Cantelli Lemma implies that Mn ≥ (1 − ε) log n,
ultimately, a.s., which implies that

lim inf
n

Mn

log n
≥ 1− ε a.s. =⇒ lim inf

n

Mn

log n
≥ 1 a.s.

Here, Xn/log n→ 0 in probability, but not a.s.

P

(
Xn

log n
≥ ε
)

= n−ε → 0

8.4 2nd Moment SLLN

Lemma 8.6 (Deterministic Lemma). Let Sn be real. To prove Sn/n → 0, it is enough to prove
∃n(j) ↑ ∞ such that

(i) Sn(j)/n(j)→ 0 as j →∞,

(ii) dj/n(j)→ 0 as j →∞,

for dj = maxn(j)≤n<n(j+1)

∣∣Sn − Sn(j)

∣∣.
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Proof. Given n, for some j where n(j) ≤ n < n(j + 1),∣∣∣∣Snn
∣∣∣∣ ≤ ∣∣∣∣ Snn(j)

∣∣∣∣ ≤
∣∣Sn(j)

∣∣+ dj

n(j)
→ 0

as j →∞.

Theorem 8.7 (2nd Moment SLLN). Given (Xi, 1 ≤ i < ∞), with EXi ≡ 0, let supiEX
2
i = B < ∞

and the Xi be orthogonal, E(XiXj) = 0, j 6= i. (We are not assuming independence!) Write

Sn =

n∑
i=1

Xi

Then Sn/n→ 0 a.s.

Proof. Since var(Sn) ≤ nB, Chebyshev’s inequality implies

P

(
|Sn|
n
≥ ε
)
≤ nB

n2ε2
=

B

nε2

Take n(j) = j2.

P

(∣∣∣∣Sn(j)

n(j)

∣∣∣∣ ≥ ε) ≤ B

ε2

1

j2

Use Borel-Cantelli.
Sn(j)

n(j)
→ 0 a.s. as j →∞

By 8.6, it is enough to prove Dj/j
2 → 0 a.s., for

Dj = max
j2≤n<(j+1)2

∣∣Sn − Sj2 ∣∣
Then

D2
j = max

j2≤n<(j+1)2
(Sn − Sj2)2

ED2
j ≤︸︷︷︸

crude

(j+1)2−1∑
n=j2

E(Sn − Sj2)2

Since

E(Sn − Sj2)2 = var

 n∑
j2+1

Xi

 ≤ B(n− j2)

Letting n = j2 + i, we have

ED2
j ≤ B

2j+1∑
i=1

i =
1

2
(2j + 1)(2j + 2)B
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We have

P

(
Dj

j2
≥ ε
)
≤
ED2

j

ε2j4
∈ O(j−2)

The First Borel-Cantelli Lemma implies that Dj/j
2 → 0 as j →∞.

Theorem 8.8 (Dominated Convergence Theorem). If Xn → X a.s., if ∃Y ≥ 0 such that |Xn| ≤ Y a.s.
for all n, and if EY <∞, then EXn → EX, E(Xn −X)→ 0, and E(X) <∞.

Proof. Fix ε > 0. Define AN = {|Xn −X| ≤ ε, all n ≥ N}. Then AN ↑ A∞, say, and P (A∞) = 1.
Also, AcN ↓ Ac∞, and P (Ac∞) = 0.

E|XN −X| = E|XN −X|1AN + E|XN −X|1AcN
≤ ε+ 2E Y 1AcN︸ ︷︷ ︸

↓0 a.s.

lim sup
N

E|XN −X| ≤ ε+ 0, by monotone convergence

This is true for all ε, so E|XN −X| → 0.
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9.1 SLLN

Theorem 9.1 (Kolmogorov’s Maximal Inequality). Let (Xi, 1 ≤ i ≤ n) be independent, EXi = 0, and
EX2

i <∞. Let Sm =
∑m
i=1Xi and S∗n = max1≤m≤n|Sm|. Then

P (S∗n ≥ x) ≤ ES2
n

x2
, x > 0

Comments:

1. Markov’s inequality gives

P (|Sn| ≥ x) ≤ ES2
n

x2

The theorem gives a stronger result.

2. Idea: There is a “first time” that something happens.

3. Martingale theory develops better notation.

Proof. Fix x. Consider the event {S∗n ≥ x} =
⋃m
k=1Ak, where Ak = {|Sk| ≥ x, |Si| < x, all 1 ≤ i < k}.

The events Ak are disjoint. Note that (Sk, Ak) is independent of Sn − Sk. Sn − Sk depends on
Xk+1, Xk+2, . . . , Xn, while (Sk, Ak) depends on (X1, . . . , Xn). Then, since Sn = Sk + (Sn − Sk),

ES2
n ≥

n∑
k=1

E[S2
n1Ak ]

=

n∑
k=1

[E(S2
k1Ak) + 2E(Sk1Ak(Sn − Sk)︸ ︷︷ ︸

=0

) + E((Sn − Sk)21Ak)︸ ︷︷ ︸
≥0

]

ES2
n ≥

n∑
i=1

E(S2
k1Ak)

≥
n∑
k=1

E(x21Ak)

= x2P

(
n⋃
k=1

Ak

)
= x2P (|S∗n| ≥ x)

34
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because Sk1Ak and Sn − Sk are independent, E(Sn − Sk) = 0, and |Sk| ≥ x on Ak.

“
∑∞
i=1 xi converges” means that limN→∞

∑N
i=1 xi exists and is finite. The Cauchy criterion says that this

is equivalent to supn≥K
∣∣∑n

i=k+1 xi
∣∣→ 0 as k →∞. “

∑∞
i=1Xi converges a.s.” means

P

(
ω : lim

N→∞

N∑
i=1

Xi(ω) exists and is finite

)
= 1

Theorem 9.2. Let (Xi) be independent, with EXi = 0 and σ2
i = var(Xi) <∞. If

∑∞
i=1 σ

2
i <∞, then∑∞

i=1Xi converges a.s.

Comment. Consider the following argument: var(
∑n
i=1Xi) =

∑n
i=1 σ

2
i . Taking n→∞, then

var

( ∞∑
i=1

Xi

)
=

∞∑
i=1

σ2
i <∞ (9.1)

which shows that
∑∞
i=1Xi is finite a.s. This argument is incorrect because a priori, we do not know that

we have a convergent random variable.

Exercise. Knowing 9.2, show (9.1).

Proof. Define Mk = supn>k
∣∣∑n

i=k+1Xi

∣∣. It is enough to show that Mk → 0 a.s. as k →∞. Define also

Wk = supn2>n1>k

∣∣∑n2

i=n1+1Xi

∣∣ and note that Mk ≤Wk ≤ 2Mk and Wk decreases as k increases.

P

(
sup

k<n≤N

∣∣∣∣∣
N∑

i=k+1

Xi

∣∣∣∣∣ ≥ ε
)
≤︸︷︷︸
9.1

ε−2 var

(
N∑

i=k+1

Xi

)
= ε−2

N∑
i=k+1

σ2
i

Taking N →∞, P (Mk > ε) ≤ ε−2
∑∞
i=1 σ

2
i .

P (Wk > ε) ≤ P
(
Mk >

ε

2

)
≤ 4ε−2

∞∑
i=k+1

σ2
i → 0 as k →∞

Taking k → ∞, then Wk ↓ W∞ for some W∞ a.s. Then P (W∞ > ε) = 0, which implies that W∞ = 0
a.s., which implies that Wk ↓ 0 a.s. and Mk → 0 a.s.

Lemma 9.3 (Deterministic Lemma (Kronecker)). Let (xn) be a sequence of reals, Sn =
∑n
i=1 xi,

0 < an ↑ ∞ as n ↑ ∞. If
∑
i xi/ai converges, then Sn/an → 0.

Proof. Exercise/Textbook.

Corollary 9.4. Let (Xi) be independent, EXi = 0, EX2
i < ∞, and Sn =

∑n
i=1Xi. If 0 < an ↑ ∞ as

n ↑ ∞ and if
∑
nEX

2
n/a

2
n <∞, then Sn/an → 0 a.s.

Proof. 9.2 implies that
∑
nXn/an converges a.s. Then 9.3 implies that Sn/an → 0 a.s.

Specialization. Suppose also that EX2
n ∼ cn2α, α > 0. Take a2

n = n1+2α+2ε (ε > 0 is small). Then 9.4
implies that Sn/n

1/2+α+ε → 0 a.s.

Specialization. Suppose that supnEX
2
n <∞. Take a2

n = n(log n)1+ε. Then 9.4 implies that Sn/
√
n log1+ε n→

0 a.s. We know implicitly from the CLT that if (Xi) are IID, then Sn/
√
n→ 0 a.s. is not true. The law of

iterated logarithm gives the proper borderline.
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Theorem 9.5 (SLLN). Let (Xi) be IID with E|X| <∞. Then Sn/n→ EX a.s. as n→∞.

Proof. The idea is to truncate, center, and then apply 9.4.

If Z ≥ 0, then

EZk =

∫ ∞
0

kzk−1P (Z ≥ z) dz because ≈
∫ ∞

0

xkf(x) dx

Define Yk = Xk1(|Xk|≤k). Then

∑
k

P (Yk 6= Xk) =

∞∑
k=1

P (|X| > k) ≤
∫ ∞

0

P (|X| > x) dx = E|X| <∞

Then the First Borel-Cantelli Lemma implies that P (Yk = Xk, ultimately) = 1. It is enough to prove
that (1/n)

∑n
k=1 Yk → EX a.s.

Center: define X ′k = Yk − EYk. Claim:
∑
k var(X ′k)/k2 <∞.

EY 2
k =

∫ ∞
0

2yP (|Yk| > y) dy =

∫ ∞
0

2yP (k ≥ |Xk| ≥ y)1(y≤k) dy︸ ︷︷ ︸
Check this!

≤
∫ ∞

0

2yP (|Xk| ≥ y)1(y≤k) dy∑
k

var(Xk)

k2
≤
∑
k

EY 2
k

k2
≤
∑
k

1

k2

∫ ∞
0

2yP (|X| ≥ y)1(y≤k) dy

=

∫ ∞
0

(∑
k

1

k2
1(y≤k)2y

)
︸ ︷︷ ︸

G(y)

P (|X| ≥ y) dy

Claim: G(y) ≤ 4, for all 0 < y <∞. Since G(y) ≤
∑
k 1/k2 ≤ 2 for y ≤ 1, this is true for y ≤ 1. Take

y > 1.
1

k2
≤
∫ k

k−1

1

x2
dx

so ∑
k

1

k2
1(y≤k) =

∑
k≥dye

1

k2
≤
∫ ∞
dye−1

1

x2
dx =

1

dye − 1

Since y > 1,

G(y) ≤ 2y

dye − 1
≤ 4

(by a picture). Then ∑
k

var(X ′k)

k2
≤ 4

∫ ∞
0

P (|X| ≥ y) dy = 4E|X| <∞

Apply 9.4 to (X ′n): (1/n)
∑n
i=1X

′
i → 0 a.s., so (1/n)

∑n
i=1(Yi − EYi)→ 0 a.s. Note that

EYi = EX1(|X|≤i) → EX

as i →∞. By dominated convergence, (1/n)
∑n
i=1(EYi − EX)→ 0 a.s. Add the two equations to get

(1/n)
∑n
i=1(Yi − EX)→ 0 a.s., which implies that (1/n)

∑n
i=1 Yi → EX a.s.
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10.1 Truncation

Corollary 10.1 (SLLN). Take IID (Xi), where EX+ = ∞, EX− < ∞ (X = X+ − X−). Let
Sn =

∑n
i=1Xi. Then Sn/n→∞ a.s.

Proof. Fix a large B < ∞. Define Yi = Xi1(Xi≤B). Then the (Yi) are IID, with E|Yi| < ∞, so we can
apply the SLLN to (Yi).

1

n

n∑
i=1

Yi −−→
a.s.

EY = EX1(X≤B)

Then

lim inf
n

1

n
Sn ≥ lim inf

n

1

n

n∑
i=1

Yi =︸︷︷︸
a.s.

EX1(X≤B)

for each B. As B ↑ ∞, then E[X1(X≤B)] ↑ −EX− + EX+ = +∞. Therefore, letting B ↑ ∞,

lim inf
n

1

n
Sn ≥ ∞

10.2 Renewal SLLN

If we travel halfway at 60 mph and halfway at 20 mph, the average speed is 30 mph. To see this, traveling
120 miles takes 1 hour + 3 hours = 4 hours.

Lemma 10.2 (Deterministic Lemma). Consider real numbers s0 = 0, sn/n → a ∈ (0,∞) as n → ∞.
Let h(t) = min {n : sn ≥ t} and m(t) = max {n : sn ≤ t}. Note that m(t) ≥ h(t)−1. Then h(t)/t→ 1/a
and m(t)/t→ 1/a as t→∞.

Proof. Fix ε > 0. Then sn ≤ (a+ ε)n ultimately, which implies that h(t) ≥ t/(a+ ε) ultimately. Then

lim inf
t

h(t)

t
≥ 1

a+ ε
⇒︸︷︷︸
ε↓0

lim inf
t

h(t)

t
≥ 1

a

37
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Similarly, m(t) ≤ t/(a+ ε) ultimately, which implies that lim suptm(t)/t ≤ 1/a. We have

1

a
≤ lim inf

t

h(t)

t
≤ lim sup

t

m(t)

t
≤ 1

a

Corollary 10.3 (Renewal SLLN). Let (Xi) be IID, with EX = µ ∈ (0,∞). Let Sn =
∑n
i=1Xi. Define

Nt = max {n : Sn ≤ t} and Ht = min {n : Sn ≥ t}. Then Nt/t→ 1/µ and Ht/t→ 1/µ a.s. as t→∞.

Proof. Use the SLLN and 10.2

Story. Light bulbs have IID lifetimes X1, X2, . . . > 0. We have a new bulb at time 0, and let Nt be the
number of bulbs replaced by time t.

10.3 Stopping Times

A random variable is a measurable function Xi : (Ω,F , P )→ R. Given X0, X1, . . . , Xn, we define the σ-field
Fn = σ(X0, . . . , Xn), the collection of events of the form {ω : (X0(ω), . . . , Xn(ω)) ∈ B} for some measurable
B ⊆ Rn+1 (so Fn ⊆ F). Fn is the “information at time n”.

A stopping time is a RV T : (Ω,F , P )→ {0, 1, 2, . . . } ∪ {∞} such that

{T = n} ∈ Fn, 0 ≤ n <∞ (10.1)

This is equivalent to the definition

{T ≤ n} ∈ Fn, 0 ≤ n <∞ (10.2)

Given (10.1), {T ≤ n} = {T = 0} ∪ {T = 1} ∪ · · · ∪ {T = n} ∈ Fn, since each event is in Fn. Given (10.1),
{T = n} = {T ≤ n} \ {T ≤ n− 1} ∈ Fn, since both events are in Fn.

Example 10.4. T = min {n : Xn ∈ B} for some measurable B ⊆ R1 is a stopping time because

{T ≤ n} =

n⋃
i=0

{Xi ∈ B} ∈ Fn

Note. Given arbitrary X1, X2, . . . , Xn, define S0 = 0, Sm =
∑m
i=1Xi. Then

σ(X1, . . . , Xn) = σ(S0, S1, . . . , Sn) = Fn

and so T = min {n : Sn ≥ b} is a stopping time.

T =∞ if the event never happens.

Given X1, . . . , XN (for a given N), T = max {n : n ≤ N,Xn ≥ a} is not a stopping time.

Theorem 10.5 (Wald’s Equation/Identity/Formula). Let (Xi) be IID with EX = µ and Sn =
∑n
i=1Xi.

Let T be a stopping time with ET <∞. Then EST = µ · ET .

Note. This is an undergraduate result under the assumption that T is independent of (Xi).

Fact. E
∑∞
i=1 Yi =

∑∞
i=1EYi, provided

∑
iE|Yi| <∞.

Proof :
∑n
i=1 Yi →

∑∞
i=1 Yi a.s., and the summation is dominated by

∑n
i=1|Yi|. Use dominated convergence.
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Proof.

Sn =

∞∑
i=1

Xi1(i≤n) ⇒ ST =

∞∑
i=1

Xi1(i≤T )

Since {i ≤ T}c = {T ≤ i− 1} ∈ Fi−1, {i ≤ T} is independent of the Xi. Then

E[Xi1(i≤T )] = µP (T ≥ i)
∞∑
i=1

E[Xi1(i≤T )] = µET (10.3)

We need to show that EST = µ · ET . By the Fact, it is enough to show that
∑∞
i=1E|Xi|1(i≤T ) < ∞.

We can apply (10.3) to |Xi|. Then

∞∑
i=1

E[|Xi|1(i≤T )] = (E|X|)ET <∞

10.4 Fatou’s Lemma

Lemma 10.6 (Fatou’s Lemma). Take arbitrary Xn ≥ 0. Then E[lim infnXn] ≤ lim infnEXn ≤ ∞.

Proof. Define YN = infn≥N Xn. Then 0 ≤ YN ↑ lim inf Xn, so 0 ≤ EYN ↑ E[lim inf Xn]. Since
YN ≤ XN ,

E[lim inf Xn] = lim inf
N

EYN

≤ lim inf
N

EXN

Corollary 10.7. Take arbitrary Xn ≥ 0. If Xn → X∞ a.s., then EX∞ ≤ lim infnEXn ≤ ∞.

Recall the aggressive “gambling on a favorable game” example. There, Xn ≥ 0, Xn → 0 a.s., but EXn →∞.

10.5 Back to Renewal Theory

Under the assumptions of 10.3, with the additional assumption that X ≥ 0 a.s., then E[N(t)/t] → 1/µ as
t→∞.

Proof. By 10.6,

1

µ
≤ lim inf

t→∞
t integer

E

[
N(t)

t

]

= lim inf
t→∞

E

[
N(t)

t

]
It is enough to show the upper bound

lim sup
t

E

[
N(t)

t

]
≤ 1

µ

Since X ≥ 0, N(t) + 1 = min {n : Sn > t} is a stopping time. min(N(t) + 1,m) is also a stopping time.
Apply 10.5 to obtain

ESmin(N(t)+1,m) = µEmin(N(t) + 1,m)
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Let m ↑ ∞.
ESN(t)+1 = µE[N(t) + 1] ≤ ∞ (10.4)

Fix k. Let X̂i = min(Xi, k). Define Ŝn and N̂(t) similarly. Then

Ŝn ≤ Sn ⇒ N̂(t) ≥ N(t)

We can apply (10.4) to (X̂i).

E[N̂(t) + 1] · Emin(X, k) = EŜN̂(t)+1 ≤ t+ k <∞

Therefore,
E[N(t) + 1]

t
≤ t+ k

t

1

Emin(X, k)

This implies that

lim sup
t

EN(t)

t
≤ 1

Emin(X, k)

which is true for all k. Let k ↑ ∞ to obtain

lim sup
t

EN(t)

t
≤ 1

EX
=

1

µ



Lecture 11

September 29

11.1 Miscellaneous Measure Theory Related Topics

11.1.1 Kolgomorov’s 0-1 Law

Theorem 11.1 (Kolmogorov’s 0-1 Law). Consider X1, X2, . . . mapping onto any range space. Define
τn = σ(Xn, Xn+1, Xn+2, . . . ) and

⋂
n≥1 τn = τ (the “tail σ-field”). If (X1, X2, . . . ) are independent,

then A ∈ τ implies that P (A) is 0 or 1, that is, τ is a trivial σ-field.

Note. lim supnXn is τn-measurable for all n, so it is τ -measurable.

Proof. Define Fn−1 = σ(X1, . . . , Xn−1). Fn−1 is independent of τn, which implies that Fn−1 is
independent of τ , which implies that the field

⋃
n Fn is independent of τ . By the π-λ Lemma,

σ(
⋃
Fn) = σ(X1, X2, . . . ) is independent of τ , which implies that τ is independent of τ . Then, A ∈ τ

implies that P (A ∩A) = P (A)P (A) = P (A). x2 = x implies that x = 0 or 1.

Lemma 11.2. If A is a trivial σ-field, and if X, a RV that takes on values in [−∞,∞], is A-measurable,
then there exists x0 such that P (X = x0) = 1.

Proof. Define x0 = inf {x : P (X ≤ x) = 1}. For the case where x0 ∈ (−∞,∞), then P (X ≤ x0 + ε) = 1
and P (X ≤ x0 − ε) = 0 for all ε.

11.1.2 “Modes of Convergence” for R-Valued RVs

Xn
a.s.−−→ X means P (ω : Xn(ω)→ X(ω)) = 1.

Xn
P−→ X means P (|Xn −X| > ε)→ 0 as n→∞, for all ε > 0.

Xn
Lp−→ X means that E|Xn −X|p → 0 and supnE|Xn|p <∞ (∞ > p ≥ 1).

Facts:

1. We showed before that
Lp−→ implies

P−→, but not conversely.

2.
a.s.−−→ implies

P−→, but not conversely.

Example 11.3. Let U be uniform on [0, 1]. Let Xn = n1(U≤1/n). Then Xn
P−→ 0, but EXn = 1, so

Xn → 0 in L1 is false.

41
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If Xn
a.s.−−→ X, since P (An inf. often) ≥ lim supn P (An),

0 = P (|Xn −X| ≥ ε inf. often)

≥ lim sup
n

P (|Xn −X| ≥ ε) = 0

which implies that Xn → X in probability.

Example 11.4. Take independent events (An) with P (An) → 0, which implies that 1An → 0 in
probability.

∑
n P (An) = ∞ implies, by the Second Borel-Cantelli Lemma, that P (An inf. often) = 1,

which implies that 1An → 0 a.s. is false.

Recall the Dominated Convergence Theorem (DCT): If Xn → X a.s., if ∃Y ≥ 0 with EY <∞, and |Xn| ≤ Y
for all n, then E|Xn −X| → 0 and EXn → EX.

Lemma 11.5. If Xn
P−→ X, then there exists a subsequence, n1 < n2 < n3 < · · · such that Xnj

a.s.−−→ X
as j →∞.

Proof. Choose nj inductively.

nj = min {n > nj−1, P (|Xn −X| ≥ 2−j) ≤ 2−j}

Then
∑
j P (|Xn −X| ≥ 2−j) < ∞. The First Borel-Cantelli Lemma implies that

∣∣Xnj −X
∣∣ ≤ 2−j ,

ultimately in j, a.e., which implies that Xnj → X a.s.

Aside. The result is related to the fact that “a.s. convergence” is not convergence in a metric.

Corollary 11.6. The DCT remains true under the assumption that Xn → X in probability.

Proof. Suppose that the statement is false: ∃ε > 0 and a subsequence m1 < m2 < m3 < · · · such that
E
∣∣Xmj −X

∣∣ ≥ ε ∀j. Now Xmj → X in probability, so 11.5 implies that there exists a subsequence (nj)

of (mj) such that Xnj → X a.s. and E
∣∣Xnj −X

∣∣ ≥ ε ∀j. This contradicts the DCT.

This proof uses the “subsequence trick”.

Exercise. Obvious: If f is continuous, Xn → X a.s. implies that f(Xn) → f(X) a.s. Less obvious: If f is
continuous, Xn → X in probability implies that f(Xn) → f(X) in probability. (This can be proven with
the subsequence trick.)

11.1.3 Radon-Nikodym Derivative

There are two views of integration in calculus.

1. Given f, a, b, then
∫ b
a
f(x) dx is a number.

2.

F (x) =

∫ x

0

f(y) dy ⇔ f(x) =
dF (x)

dx

Integration is an operation f 7→ F , which is the opposite of F 7→ F ′.

In MT, given a PM µ, integration is a map h 7→ I(h) =
∫
hdµ. The analog in MT involves measures, not

functions.
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Take a measurable space (S,S). Fix a σ-finite measure µ on (S,S). Consider a measurable h : S → [0,∞).
For A ∈ S, define ν(A) =

∫
A
hdµ ≤ ∞.

Claim. ν is a σ-finite measure on (S,S).

The fact that µ is σ-finite implies that there exists An ↑ S, with µ(An) <∞. Define Bn = An∩{s : h(s) ≤ n}.
Then Bn ↑ S and ν(Bn) ≤ nµ(An) <∞.

The two measures ν and µ have a relationship. For all A, if µ(A) = 0, then ν(A) = 0. This property has a
name: ν is absolutely continuous with respect to µ, denoted ν � µ.

Theorem 11.7 (Radon-Nikodym Theorem). If µ and ν are σ-finite measures on (S,S), if ν � µ, then
there exists a measurable h : S → [0,∞) such that ν(A) =

∫
A
hdµ ∀A ∈ S.

Notation. Write

h =
dν

dµ

and

h(s) =
dν

dµ
(s)

and call h =
dν

dµ
the Radon-Nikodym density of ν with respect to µ.

In particular, if µ is a probability measure on R1 and if µ� Leb, then h =
dµ

dLeb
exists (the density function,

e.g. Normal, Exponential, etc.).

Proof of Radon-Nikodym. See the MT text. We will prove this via martingales later.

11.1.4 Probability Measures on R
We know there is a 1-1 correspondence between probability measures µ and distribution functions F .

F (x) = µ(−∞, x]

“x is an atom of µ” means that µ({x}) > 0. µ can have only countably many atoms.

There are three basic types of PMs µ:

1. µ� Leb, so it can be described by its density f .

F (x) =

∫ x

−∞
f(y) dy

Here, f can be any measurable function with f ≥ 0 and
∫∞
−∞ f(x) dx = 1.

2. µ is purely atomic if there exists a countable set of atoms x1, x2, . . . and
∑
i µ({xi}) = 1, which

implies that µ(R \ ∪i{xi}) = 0 (discrete).

3. Singular measures: there exists A such that Leb(A) = 0, µ(A) = 1, but there are no atoms.

Take x ∈ [0, 1] with a binary expansion, e.g. 0.10110100011 . . . . Say that bi(x) is the ith digit of the binary
expansion of x (b2inc mod 2), which defines a map from [0, 1] to B∞. Next, map to {0, 1, 2}∞ by converting
1s to 2s, and then map back to [0, 1] by interpreting the result base 3, to obtain

∑∞
i=1 3−i(2bi(x)). Putting

these together yields a measurable map H : [0, 1] → [0, 1]. Take U to be Uniform[0, 1]. What is the distri-
bution of H(U)?
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F (x) = P (H(U) ≤ x) is the Cantor function, which is continuous. The set of possible values of H is “the
base-3 expansion has no “1”” is the Cantor set, C, and Leb(C) = 0 while P (H(U) ∈ C) = 1.

The distribution of H(U) is called the “uniform distribution on the Cantor set”.

Fact. Any PM µ on R1 has a unique decomposition

µ = a1 µ1︸︷︷︸
type 1

+a2 µ2︸︷︷︸
type 2

+a3 µ3︸︷︷︸
type 3

where ai ≥ 0, a1 + a2 + a3 = 1.
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12.1 Large Deviations Theorem (Durrett)

If an ∼ ceβn as n → ∞, then (1/n) log an → β, where β is the asymptotic growth (decrease) rate. Today,
β < 0.

Assumptions. Let (Xi) be IID, with Sn =
∑n
i=1Xi, EX = µ. Fix a > µ, P (X ≥ a) > 0. Define

φ(θ) = E exp(θX), and assume θ∗ = sup {θ : φ(θ) <∞} > 0.

Consider P (Sn/n ≥ a). We know that P (Sn/n ≥ a)→ 0 as n→∞ by the WLLN. How fast?

Our general LD inequality gives

P (Y ≥ y) ≤ inf
θ≥0

EeθY

eθy

Therefore,

P

(
Sn
n
≥ a

)
= P (Sn ≥ an) ≤ inf

θ

E exp(θSn)

exp(θan)

On the other hand,

exp(θSn) = exp

(
θ

n∑
i=1

Xi

)
=

n∏
i=1

exp(θXi)

E exp(θSn) =

n∏
i=1

E exp(θXi) = (φ(θ))n

This implies:

P

(
Sn
n
≥ a

)
≤ inf
θ>0

E exp(θSn)

exp(θan)
≤
(

inf
θ

φ(θ)

eθa

)n
1

n
logP

(
Sn
n
≥ a

)
≤ inf

θ
[log φ(θ)− aθ]

Theorem 12.1. As n→∞,

lim
n→∞

1

n
logP

(
Sn
n
≥ a

)
= inf

θ
(log φ(θ)− aθ) = inf

θ
G(θ)

There are three steps in the proof.

• analysis of φ(θ)

45
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• tilting lemma

• put it together

Lemma 12.2.
φ′(0+) = µ

We believe this because

d

dθ
φ(θ) =

d

dθ
EeθX =︸︷︷︸

how to justify in detail?

E
d

dθ
eθX = E[XeθX ] ∀θ

Taking θ = 0, φ′(0+) = EX.

Proof. We know that (eθX − 1)/θ → X a.s. as θ ↓ 0. We want

E

[
eθX − 1

θ

]
→ EX (12.1)

We seek to use the Dominated Convergence Theorem. For x > 0,

eθx − 1 =

∫ θx

0

ey dy ≤ θxeθx

For x < 0, ∣∣eθx − 1
∣∣ =

∫ 0

θx

ey dy ≤ |θx|

These imply ∣∣eθx − 1
∣∣ ≤ θ|x|max(1, eθx)

For 0 < θ ≤ θ0,
(12.1) ≤ |x|max(1, eθ0x) (12.2)

By hypothesis, there exists θ1 such that Eeθ1X <∞. Choose θ0 < θ1, so that E[|X|max(1, eθ0X)] <∞.
Now, the RVs are bounded by (12.2). Apply the DCT.

The same argument applies to
d2

dθ2
EeθX = E

d2

dθ2
eθX = EX2eθX

Lemma 12.3. φ′(0+) = µ, and for 0 < θ < θ∗,

φ′(θ) = E[XeθX ]

φ′′(θ) = E[X2eθX ]

Suppose X is discrete. Fix θ. Define a distribution for X̂ by

P (X̂ = x) =
eθxP (X = x)

φ(θ)

Fix θ. Then
φ(θ) =

∑
x

eθxP (X = x)
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Also,

EX̂ =
∑
x

xP (X̂ = x) =

∑
x xe

θxP (X = x)

φ(θ)

=
EXeθX

φ(θ)
=
φ′(θ)

φ(θ)
=

d

dθ
log φ(θ)

and

E[X̂2] =
E[X2eθX ]

φ(θ)
=
φ′′(θ)

φ(θ)

var(X̂) = E[X̂2]− (EX̂)2

=
φ′′(θ)

φ(θ)
−
(
φ′(θ)

φ(θ)

)2

=
d

dθ

(
φ′(θ)

φ(θ)

)
=

d2

dθ2
log φ(θ)

For general X, define the distribution of X̂ by the Radon-Nikodym density

dP (X̂ ∈ ·)
dP (X ∈ ·)

(x) =
eθx

φ(θ)

Lemma 12.4 (Tilting Lemma).

EX̂ =
d

dθ
log φ(θ)

and

var(X̂) =
d2

dθ2
log φ(θ)

Now, we study G(θ) = log φ(θ)− aθ.

G′(0+) =
φ′(0+)

φ(0)
− a = µ− a < 0

G′′(θ) = var X̂θ > 0 on 0 < θ < θ∗

G(0) = 0

It is easy to see that G(θ)→∞ as θ →∞. G is strictly convex.

Find infθ G(θ) by solving G′(θ) = 0, or
φ′(θ)

φ(θ)
= a

Case 1. There exists a solution θa ∈ (0, θ∗) of the equation φ′(θ)/φ(θ) = a.

Bad Case. Take the density f(x) ∼ x−2e−λx as x→∞. Then φ(λ) <∞, but φ(λ+) =∞.

Assume case 1. Choose θ ∈ (θa, θ
∗). Consider the tilted distribution X̂ = X̂θ.

EX̂ =
d

dθ
(log φ(θ)) >

d

dθ
(log φ(θ))

∣∣∣
θ=θa

because EX̂θ > a and EX̂θ ↓ a as θ ↓ θa. (Check!)
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Fix b > EX̂θ. The trick is to apply the WLLN to the tilted (X̂i). Since

P (X̂ = x)

P (X = x)
=

eθx

φ(θ)

we have

P (X̂1 = x1, . . . , X̂n = xn)

P (X1 = x1, . . . , Xn = xn)
=
eθ

∑n
i=1Xi

φn(θ)

which gives
P (Ŝn = s)

P (Sn = s)
=

eθs

φn(θ)

Therefore,
P (y1 ≤ Ŝn ≤ y2)

P (y1 ≤ Sn ≤ y2)
≤ eθy2

φn(θ)

with y1 = an, y2 = bn, so

P

(
a ≤ Sn

n
≤ b
)
≥ e−θbnφn(θ)P

(
a ≤ Ŝn

n
≤ b

)
︸ ︷︷ ︸
→1 as n→∞

Hence,

lim inf
n→∞

1

n
logP

(
Sn
n
≥ a

)
≥ −bθ + log φ(θ)

≥ −bθa + log φ(θa)

≥ −aθa + log φ(θa)

= G(θa)

(Let θ ↓ θa. Since this is true for all b > a, let b ↓ a.)

12.2 Conditional Distributions

Undergraduate Version. Consider (X,Y ):

discrete continuous

p(x, y) = P (X = x, Y = y) f(x, y) joint density

marginal distribution pX(x) = P (X = x) fX(x) = density of X

conditional distribution of Y given X = x conditional density of Y given X = x

pY |X(y | x) = P (Y = y |X = x) y 7→ fY |X(y | x)

p(x, y) = pX(x)pY |X(y | x) f(x, y) = fX(x)fY |X(y | x)
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13.1 Conditional Distributions

Consider two measurable spaces (S1,S1) and (S2,S2). Then

(S1 × S2,S1 ⊗ S2) = σ(A×B : A ∈ S1, B ∈ S2)

Consider two RVs, X : (Ω,F , P ) → (S1,S1) and Y : (Ω,F , P ) → (S2,S2). (X,Y ) is one RV with values in
S1 × S2. (X,Y ) has a distribution µ, a PM on S1 × S2. X has a distribution µ1, a PM on S1. What is the
conditional distribution of Y given X?

Suppose that S1 = S2 = S is countable. Then P (Y = y |X = x) = f(y | x) has the following properties:

• f(y | x) ≥ 0

•
∑
y f(y | x) = 1 ∀x

These properties define a stochastic matrix. The joint distribution is

P (X = x, Y = y) = P (X = x)P (Y = y |X = x)

Definition 13.1. A kernel Q from S1 to S2 is a map Q : (S1 × S2)→ [0, 1] such that

(a) for fixed s1, B 7→ Q(s,B) is a PM on S2,

(b) for fixed B ∈ S2, s1 7→ Q(s1, B) is a measurable function S1 → R.

For S1 = S2 = S countable, we have a 1-1 correspondence between Q and f(y | x) given by

Q(s1, B) =
∑
y∈B

f(y | s1)

Warning. If h : S1 × S2 → R, consider:

1. h is measurable.

2. ∀s1, s2 7→ h(s1, s2) is measurable S2 → R and
∀s2, s1 7→ h(s1, s2) is measurable S1 → R.

Fact. 1 implies 2, but 2 does not imply 1.
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Example 13.2. Let S1 = S2 = [0, 1], with some non-measurable A ⊂ [0, 1], and consider

h(x, x) =

{
1, if x ∈ A
0, otherwise

Comment. We interpret P (Y ∈ B |X = s1) = Q(s1, B).

Proposition 13.3. Given a PM µ on S1 × S2, a PM µ1 on S1, and a kernel Q from S1 to S2, the
following are equivalent:

µ(A×B) =

∫
A

Q(s1, B)µ1(ds1) ∀A ∈ S1, ∀B ∈ S2 (BR1)

µ(D) =

∫
S1

Q(s1, Ds1)µ1(ds1) ∀D ∈ S1 ⊗ S2 (BR2)

Here, Ds1 = {s2 : (s1, s2) ∈ D}.∫
S1×S2

h(s1, s2)µ(ds) =

∫
S1

(∫
S2

h(s1, s2)Q(s1,ds2)

)
µ1(ds1) (BR3)

where s = (s1, s2), provided that h is measurable with h ≥ 0 or h is µ-integrable.

First, a technical lemma.

Lemma 13.4. For each D ∈ S1 ⊗ S2,

(i) Ds1 ∈ S2 ∀s1 ∈ S2

(ii) The map s1 7→ Q(s1, Ds1) is measurable.

Proof. Let D be the collection of all D satisfying (i) and (ii). The rectangles A × B are in D. Apply
the π-λ Theorem. If Dn ↑ D, then Dn

s1 ↑ Ds1 , which implies that Q(s1, D
n
s1) ↑ Q(s1, Ds1). We check

the λ-class property for D.

Outline Proof. (BR1) ⇒ (BR2): Consider D′, the collection of D where (BR2) holds. Use the π-λ
Theorem.

(BR2)⇒ (BR3): Use a monotone class argument.

Theorem 13.5 (Easy Theorem). Given a PM µ1 on S1, given a kernel Q from S1 to S2, the definition

µ(D) =

∫
S1

Q(s1, Ds1)µ1(ds1), D ∈ S1 ⊗ S2

defines a PM µ on S1 × S2.

Proof. The proof follows from the definitions and the properties of integrals.

Theorem 13.6 (Hard Theorem). Given a PM µ on S1 × S2, define the marginal PM µ1 on S1 by
µ1(A) = µ(A× S2). If S2 is a Borel space, then there exists a kernel Q from S1 to S2 such that (BR1)
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to (BR3) hold.

Proof. Fix B ∈ S2. Consider ν(A)
def
= µ(A×B), A ∈ S1. ν is a (sub-probability) measure on S1. Also,

ν(A) ≤ µ(A× S2) = µ1(A)

This implies that ν � µ1. Consider the Radon-Nikodym density

dν

dµ1
(s1) = Q(s1, B) (definition of Q(s1, B))

which has the properties: s1 7→ Q(s1, B) is measurable (requirement for a kernel), and

ν(A) =

∫
A

dν

dµ1
(s1)µ1(ds1) ⇔ µ(A×B) =

∫
S1

Q(s1, B) ds1 ∀A ∈ S1

which is (BR1). Repeat for every B ∈ S2 to set Q(s1, B) defined. We need the second property of a
“kernel”, which is: ∀s1, the map B 7→ Q(s1, B) is a PM on S2.

Issue. If h1 = h2 a.e. (with respect to µ1), then
∫
A
h1 dµ1 =

∫
A
h2 dµ1.

Take the case where S2 = R. For each rational r ∈ R, do the construction for B = (−∞, r]. Write
F (s1, r) = Q(s1, (−∞, r]). This has the properties: s1 7→ F (s1, r) is measurable, and

µ(A× (−∞, r1]) =

∫
A

F (s1, r)µ1(ds1) ∀A

Given r1 < r2,

µ(A× (r1, r2]) =

∫
A

(F (s1, r2)− F (s1, r1))µ(ds1) ∀A

≥ 0, ∀A

which implies that F (s1, r2) ≥ F (s1, r1) a.e. in S1.

Redefine F (s1, r) = Φ(r) ∀r for s1 in the null set. Repeat for all pairs (r1, r2). We now have a version
of (F (s1, r)) such that r 7→ F (s1, r) is monotone on rational r, for all s1 (Property A).

Easy. Modify F again to make

lim
r↑∞

F (s1, r) = 1 ∀s1

lim
r↓−∞

F (s1, r) = 0 ∀s1

(Property B). Consider rn ↓ r (for all rationals). Then µ(A × (r, rn]) → 0 ∀A, so F (s1, rn) ↓ F (s1, r)
a.e. Modify F again so that (Property C) rn ↓ r (for all rationals) implies that F (s1, rn) ↓ F (s1, r) ∀s1.

Deterministic Fact. If r 7→ F (r), where r is rational, has the properties A, B, and C, then

F̂ (x) = lim
r↓x
r>x

r rational

F (r)
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is a distribution function, with F̂ (r) = F (r).

Use the fact to define F̂ (s1, x) = limr↓x F (s1, r) ∀x ∈ R. Here, S1 7→ F̂ (s1, x) is measurable, and

x 7→ F̂ (s1, x) is a distribution function. Define Q by Q(s1, ·) is the PM with distribution function
F (s1, x).
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14.1 Recap

Given a PM µ on S1 × S2, there exists a marginal PM µ1 on S1, and (if S2 is Borel) there exists a kernel Q
from S1 to S2 such that (BR1) to (BR3) hold.

Interpretation: If µ is the distribution of (X,Y ), then µ1 is the distribution of X, and

Q(x,B) = P (Y ∈ B |X = x)

14.2 Product Measure

Given PMs µ1 on (S1,S2), µ2 on (S2,S2), there exists a “product measure” µ = µ1 ⊗ µ2 on S1 × S2.

1. µ(A×B) = µ1(A)× µ2(B) for A ∈ S1 and B ∈ S2.

2. If D ∈ S1 ⊗ S2, then µ(D) =
∫
µ2(Ds1)µ1(ds1).

3. For measurable h : S1 × S2 → R,∫
S1×S2

h(s1, s2)µ(ds) =

∫
S1

[∫
S2

h(s1, s2)µ2(ds2)

]
µ(ds1)

provided h ≥ 0 or |h| is µ-integrable. This is Fubini’s Theorem.

Define Q(s1, B) = µ2(B) ∀s1 ∀B. Use (BR1) through (BR3).

Saying dist(X,Y ) = µ1⊗µ2 is equivalent to X and Y are independent, with dist(X) = µ1 and dist(Y ) = µ2.

Comment. 3 works for σ-finite measures, such as λ, the Lebesgue measure on R1.

3, in terms of expectations, says that Eh(X1, X2) = Eh1(X1), where h1(x1) = Eh(x1, X2). The general
identity is (usually) best viewed as calculating the same quantity in two different ways.

Example 14.1. If X ≥ 0, then EX =
∫∞

0
P (X ≥ t) dt.

To prove this, let D = {(x, t) : x ≥ t} and µ be the distribution of X. λ(Dx) = x and Dt = (t,∞), so

(µ× λ)(D) =

∫
λ(Dx)︸ ︷︷ ︸

x

µ(dx) = EX
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(µ× λ)(D) =

∫
µ(t,∞)︸ ︷︷ ︸
P (X≥t)

λ(dt)

Example 14.2. Let X1, X2 be independent. For j = 1, 2, µj = dist(Xj) and φj(t) = exp(itXj) for
t ∈ R. (Here, i =

√
−1.) We can prove Parseval’s identity:∫

φ2(t)µ1(dt) =

∫
φ1(t)µ2(dt)

We know that
E exp(iX1X2) = Eh1(X)

where

h1(x1) = E exp(ix1X2) = φ2(x1)

E exp(iX1X2) = Eφ2(X1) =

∫
φ2(t)µ1(dt)

Do this for the other way too, and we get E exp(iX1X2) = Eφ1(X2).

Example 14.3 (Convolution Formula (Undergraduate)). Suppose X and Y have independent densities
fX and fY , with distribution functions FX and FY . Then S = X + Y has density

f(s) =

∫ ∞
−∞

fY (s− x)fX(x) dx

Now, suppose that we have no regularity assumptions. Let D = {(x, y) : x + y ≤ s}, µX be the
distribution of X, and µY be the distribution of Y .

P (S ≤ s) = µX ⊗ µY (D) =

∫
µY (Dx)︸ ︷︷ ︸
FY (s−x)

µX(ds)

This implies

P (S ≤ s) =

∫
FY (s− x)µX(dx)

Informally, differentiate with respect to s, provided that µY has a density fY .

fS(s) =

∫
fY (s− x)µX(dx) dx (14.1)

How do we justify (14.1)? Justify identities involving differentiation by checking the integrated form.
We need to show

P (S ≤ s0) =

∫ s0

−∞

(∫ ∞
−∞

fY (s− x)µX(dx)

)
ds

=

∫ (∫ s0

−∞
fY (s− x) ds

)
µX(dx) =

∫
FY (s0 − x)µ(dx) = P (S ≤ s0)

With a “change of variables”, ∫
µX(dx) =

∫
fX(x) dx
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so if µX has a density fX , then the change of variables gives

fS(s) =

∫
fY (s− x)fX(s) dx

Example 14.4. Suppose (X,Y ) has joint density f(x, y) and a marginal density f1(x). We can define
f(y | x) = f(x, y)/f1(x). Define the kernel Q by Q(x, ·) is the PM with density y 7→ f(y | x). Then this
Q is the kernel in the general theorem about µ = dist(X,Y ).

We need to verify (BR1).

P (X ∈ A, Y ∈ B) =

∫
A

Q(x,B)µX(dx)

Left =

∫∫
1(X∈A)1(Y ∈B)f(x, y) dxdy

Right =

∫
1(X∈A)

(∫
1(Y ∈B)f(y | x) dy

)
f1(x) dx =︸︷︷︸

Fubini

∫∫
1(X∈A)1(Y ∈B)f1(x)f(y | x) dxdy

14.3 RVs & PMs

Know. X = (Ω,F , P )→ (S,S) has a distribution µ = dist(X), a PM on (S,S).

“Given µ, is there an X with dist(X) = µ?” has a trivial “yes” answer. We can take (S,S, µ).

Know. There exists a RV U with a uniform distribution on [0, 1].

Know. For any PM µ on R, the RV X = F−1
µ (U) has dist(X) = µ.

Know. The binary expansion U = 0.b1(U)b2(U)b3(U) . . . gives an infinite sequence of RVs (bi(U)) which are
independent,

P (bi(U) = 1) =
1

2

P (bi(U) = 0) =
1

2

Definition 14.5. (S,S) is a Borel space if there exists a Borel-measurable A ⊆ R and a bijection
φ : A→ S such that both φ and φ−1 are measurable.

φ, the identity map from (S0,S1) to (S0,S2) is measurable iff S2 ⊆ S1. φ−1 is measurable iff S1 ⊆ S2. φ and
φ−1 are measurable is equivalent to S1 = S2.

Outsource to analysis:

Theorem 14.6. Every complete separable metric space is a Borel space.

Consider a PM ν on a Borel space (S,S). Let µ be the PM on A, the push-forward of ν under φ−1.
X = F−1

µ (U) is a RV with distribution µ. ν is the push-forward of µ under φ. Then φ(F−1
µ (U)) has distri-

bution ν.

We have proved:
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Lemma 14.7. Given a PM ν on a Borel space (S,S), there exists a measurable h : [0, 1]→ S such that
h(U) has distribution ν.

Observation. Let πk be the kth prime number, and I(k) = {πk, π2
k, π

3
k, . . . } is an infinite set. Then

I(2), I(3), I(4), . . . are disjoint. Given a sequence µk of PMs on R, define Uk =
∑∞
i=1 2−ibπik(U). Then

Uk is Uniform[0, 1], independent as k varies. Define Xk = F−1
µk

(Uk). We get an infinite sequence of inde-
pendent RVs with the given distribution µk, which are all functions of some U . If X = (X1, X2, . . . ), then
dist(X) is a PM on R∞ with distribution µ1 ⊗ µ2 ⊗ µ3 ⊗ · · ·.
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15.1 More “RVs & Distributions”

Corollary 15.1. Given a PM µ on S ×R, given a RV X : Ω→ S where dist(X) = µ1 is the marginal
of µ, given a RV U : Ω → [0, 1], where dist(U) is Uniform(0, 1) and U is independent of X, then
∃f : S × [0, 1]→ R such that, writing Y = f(X,U), dist(X,Y ) = µ.

Proof. Let Q be the kernel S → R associated with µ. Let f(s, u) be the inverse distribution function of
the PM Q(s, ·). f(s, U) has the distribution Q(s, ·).

Check this f works. The above statement is equivalent to Q(s,B) = λ{u : f(s, u) ∈ B}.

P (X ∈ A, Y ∈ B) = P (X ∈ A, f(X,U) ∈ B) =

∫∫
1(X∈A)1(f(x,u)∈B) µ(dx)⊗ λ(du)

=︸︷︷︸
Fubini

∫
1(X∈A)Q(x,B)µ(dx) =︸︷︷︸

def. of Q

∫
µ(A×B)

Consider the map
π̃n,m : (x1, x2, . . . , xn)︸ ︷︷ ︸

Rn

→ (x1, . . . , xm)︸ ︷︷ ︸
Rm

for 1 ≤ m < n <∞. πm,n is the associated map P(Rn)→ P(Rm) given by

dist(X1, . . . , Xn) 7→ dist(X1, . . . , Xm)

Theorem 15.2 (Kolmogorov Extension (Consistency) Theorem). Given PMs µn on Rn, 1 ≤ n < ∞,
which are consistent in the sense that πn,mµn = µm, 1 ≤ m < n < ∞, then there exists a PM µ∞ on
R∞ such that π∞,mµ∞ = µm, 1 ≤ m <∞.

To define (xi, 1 ≤ i <∞), it is enough to define xi for each i.

To define (Xi, 1 ≤ i <∞), it is enough to define each Xi.

Proof. Take U1, U2, . . . , independent U[0, 1]. Define X1 = F−1
µ1

(U1). Inductively, suppose we have
defined Xn = (X1, . . . , Xn) as functions of (U1, . . . , Un), such that dist(Xn) = µn. We will show that
there exists fn+1 such that, defining Xn+1 = fn+1(Xn, Un+1), we have

dist(Xn+1 = (Xn, Xn+1)) = µn+1
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This constructs an infinite sequence (Xn, 1 ≤ n < ∞). Define µ∞ = dist(Xn, 1 ≤ n < ∞). Use 15.1
with S = Rn, X = Xn, U = Un+1, and µ = µn+1 on Rn × R.

Example 15.3. Given a measurable h : R → R, and a PM µ that is invariant under h (dist(X) = µ
implies that dist(h(X)) = µ), for each n, take dist(Xn) = µ. Define Xi = h(Xi+1), 1 ≤ i ≤ n − 1.
Let µn = dist(X1, . . . , Xn). (This is a separate construction for different n.) Then 15.2 implies that
∃µ∞ = dist(Y1, Y2, . . . ) such that dist(Y1, . . . , Yn) = dist(X1, . . . , Xn) ∀n, where Yi = h(Yi+1) for all
1 ≤ i <∞.

15.2 Intermission: Example Relevant to Data

Hypothesis: Probabilities from gambling odds are indistinguishable from “true probabilities” as formalized
in math.

Does this hypothesis make predictions that can be checked against data?

Consider P (home team wins), which starts off at 50%. The probability fluctuates over time, eventually
reaching 0% or 100%. Suppose there is a half-time break. The perceived probability at half-time will change
from game to game.

Model. Let Z1 be the point difference at half-time (home team − away team) in the first half. Let Z2 be

the point difference in the second half. The home team wins if and only if Z1 + Z2 > 0. Assume Z1
d
= −Z1

(symmetric), with Z1 and Z2 independent. Suppose that Z1 has a continuous distribution.

P (home team wins | Z1 = z) = P (Z2 ≥ −z | Z1 = z)

= P (Z2 ≥ −z) by independence

= P (Z2 ≤ z) by symmetry

= F2(z)

P (home team wins | Z1) = F2(Z1)
d
= Uniform[0, 1]

15.3 Conditional Expectation in a Measure Theory Setting

Undergraduate Version. Let X,Y be R-valued and A be an event. EX is a number. E[X | A] is a number.
E[X |Y = y] is a number depending on y (is a function of y), which equals h(y), say. Write E[X |Y ] = h(Y ),
which we view as a RV. This is useful because EE[X | Y ] = EX.

MT Setup. X is a map from (Ω,F , P ) to R, with E|X| <∞. Consider a sub-σ-field G ⊆ F . We will define
E[X | G] to be a certain G-measurable RV.

G is “information”.

EX is the fair stake now to get the payoff X tomorrow. The gain is X − a, and in order for the stake to be
fair, E[gain] = 0 means that a = EX.

Suppose that we know the information in G. The fair stake now is Y , say.

Strategy: Choose G ∈ G. Bet if G happens, not if Gc happens. We gain (X − Y )1G. The stake is fair if
E[gain] = 0 for all stakes, which is equivalent to E(X − Y )1G = 0 ∀G.
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Define E[X | G] to be the RV Y satisfying:

Y is G-measurable (15.1)

EY 1G = EX1G ∀G ∈ G (15.2)

15.3.1 Existence

For G ∈ G, define ν(G) = EX1G. If P (G) = 0, then ν(G) = 0, which says that ν � P as measures on
(Ω,G). The Radon-Nikodym Theorem says that there is a density

dν

dP
(ω) = Y (ω)

which is G-measurable. The defining property of the Radon-Nikodym density is (15.2). (This works when ν
is a signed measure.)

15.3.2 Uniqueness

Lemma 15.4. If Y is G-measurable, if E|Y | <∞, if E[Y 1G] ≥ 0 ∀G ∈ G, then Y ≥ 0 a.s.

Proof. If not, G
def
= {Y < 0} has P (G) > 0 and EY 1G < 0. Contradiction.

Corollary 15.5. If Y1 and Y2 each satisfy (15.1) and (15.2), then Y1 = Y2 a.s.

Proof. E(Y1 − Y2)1G = 0 ∀G, which by 15.4 implies that Y1 ≥ Y2 a.s. and Y1 ≤ Y2 a.s.

Lemma 15.6 (Technical Lemma). (a) If Z = E[X | G], then E[V Z] = E[V X] for all bounded G-
measurable V . Use the definition for V = 1G and the Monotone Class Theorem.

(b) If Z is G-measurable, then to prove that Z = E[X | G], it is enough to prove

EZ1A = EX1A ∀A ∈ A

where A is a π-class, G = σ(A). (Dynkin π-λ Lemma)
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16.1 Conditional Expectation

Let X : (Ω,F , P )→ R, E|X| <∞, and G ⊆ F . E[X | G] is the RV Z such that

(i) Z is G-measurable.

(ii) E[Z1G] = E[X1G] ∀G ∈ G

Conditional expectation is only unique up to a null set. For example, if we write Z = Z1 + Z2 (where
these are RVs as in the definition of conditional expectation), then the statement is implicitly qualified as
Z = Z1 + Z2 a.s.

Lemma 16.1. For Z = E[X | G], we have E[V Z] = E[V X] for all bounded G-measurable RVs V .

16.1.1 General Properties of Conditional Expectation

Setting : Take a fixed G.

Idea: The general properties of CE mimic the general properties of ordinary expectation, but with G-
measurable RVs playing the role of constants.

Properties of expectation:

• E[X1 +X2] = E[X1] + E[X2]

• E[cX] = cE[X]

• |EX| ≤ E|X|

• E[c] = c

Properties of conditional expectation:

(a) E[X1 +X2 | G] = E[X1 | G] + E[X2 | G]

(b) E[V X | G] = V E[X | G] for all bounded G-measurable V

(c) If 0 ≤ Xn ↑ X a.s., then E[Xn | G] ↑ E[X | G] a.s.

(d) If X ≥ 0 a.s., then E[X | G] ≥ 0 a.s.

(e) |E[X | G]| ≤ E[|X| | G] a.s.

(f) E[E[X | G]] = EX (use G = Ω in the definition)
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(g) If X is G-measurable, then E[X | G] = X by definition. If G is trivial, then E[X | G] = EX (G trivial
implies that E[X | G] is constant, which equals EX).

(h) If G ⊆ H, then E[X | G] = E[E[X | H] | G]. This is called the tower property.

In fact, the properties above are true provided that E|V Z| <∞.

Proofs. (a) Write Zi = E[Xi | G]. We need to show that Z
def
= Z1 + Z2 = E[X1 + X2 | G]. Is Z

G-measurable? Yes, since Zi is G-measurable. For the second part of the definition,

E[Z1G] = E[Z11G] + E[Z21G] = E[X11G] + E[X21G] = E[(X1 +X2)1G] ∀G ∈ G

(b) Define Z = V E[X | G]. We need to show Z = E[V X | G]. Is Z G-measurable? Yes, since V and
E[X | G] are G-measurable.

E[E[X | G]V 1G] = E[XV 1G] ∀G ∈ G

The equality is true by 16.1 applied to V 1G, since V 1G is G-measurable.

(c) Easy exercise.

(d) Easy exercise.

(e) Easy exercise.

(h) Write Z = E[X | G]. We need to check:

E[Z1G] = E[X1G] = E[E[X | H]1G]

by the definition of Z. The second equality is because of the definition of E[X | H] and G ⊆ H, so
G ∈ G implies that G ∈ H.

16.1.2 Orthogonality

X 7→ E[X | G] is an orthogonal projection in Hilbert space. Recall from 16.1 that

E[(X − E[X | G])V ] = 0

for V G-measurable and EV 2 <∞. (By the Cauchy-Schwarz Inequality, E|V X| ≤
√

(EX2)(EV 2) <∞.)

(i) X − E[X | G] and V are orthogonal for all G-measurable V .

16.1.3 Conditional Variance

Recall that var(X) = E [X − E[X]]
2
.

Definition 16.2. Define conditional variance by

var(X | G) = E
[
(X − E[X | G])2 | G

]
(j) If Y is G-measurable, EY 2 <∞, then E[(X − Y )2 | G] = var(X | G) + (E[X | G]− Y )2.

Proof.
Left = E[((X − E[X | G])︸ ︷︷ ︸

a

+ (E[X | G]− Y )︸ ︷︷ ︸
b

)2 | G]
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Expand the square. We have E[ab|G] = bE[a|G] = 0, so the cross-terms vanish. Since b is G-measurable,
E[a2 + b2 | G] = var(X | G) + b2.

The constant c that minimizes E(X − c)2 is c = EX.

(k) The G-measurable RV that minimizes E(X − Y )2 is Y = E[X | G].

Take the expectation of (j). Then

E(X − Y )2 = E var(X | G) + E(E[X | G]− Y )2

(l) var(X) = E var(X | G) + varE[X | G]

Proof. Replacing X by X − c changes no terms, so we can assume EX = 0.

varX = E[X2] = E
[
E[X2 | G]

]
E[X2 | G] = E[((X − E[X | G])︸ ︷︷ ︸

a

+E[X | G]︸ ︷︷ ︸
b

)2 | G]

= E[a2 | G] + b2

= var(X | G) + (E[X | G])2

var(X) = E
[
var(X | G) + (E[X | G])2

]
= E var(X | G) + E(E[X | G]− 0)2︸ ︷︷ ︸

=varE[X | G]

since E[ab | G] = 0 and E[E[X | G]] = EX = 0.

16.1.4 Independence

What is the connection with independence?

(m) X is independent of G iff

E[h(X) | G] = Eh(X) for all bounded measurable h : S → R (16.1)

Here, X can be S-valued.

Proof. Suppose X is independent of G. We need to show:

E[(Eh(X))1G] = (Eh(X))(E1G) = E[h(X)1G]

This holds by independence.

Suppose that (16.1) holds. Take h = 1B for B ⊆ S. (16.1) implies (by the same argument as above)

P (X ∈ B,G) = E[h(X)1G] = E[h(X)]E[1G] = P (X ∈ B)P (G)

for all B and G, which implies that X and G are independent.

Recall that X and Y are independent if and only if E[h1(X)h2(Y )] = (Eh1(X))(Eh2(Y )) ∀h1, h2.

16.2 Background to Conditional Independence

There are three general contexts in which this idea arises.
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1. Bayes

(a) Take a random Θ, which takes values in {PMs on R1} = P(R).

(b) Conditional on Θ = θ ∈ P(R), take X1, X2, X3, . . . which are IID θ.

The (Xi) are conditionally independent given Θ.

2. The simple Markov property for (Xn, n ≥ 0)

P (Xn+1 = xn+1 |Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1 |Xn = xn)

(Xn+1) and (Xn−1, Xn−2, . . . , X0) are conditionally independent given Xn.

3. Given (Wx,x = (x1, x2) ∈ Z2), let N(x) be the neighbors of x. The idea is that Wx depends only on
{Wy,y ∈ N(x)} and not on the other W s. We formalize the idea as Wx and (Wz, z /∈ N(x)∪{x}) are
conditionally independent given {Wy,y ∈ N(x)}.



Lecture 17

October 20

17.1 Two Final “Conditioning” Topics

Recall Jensen’s inequality: Eφ(X) ≥ φ(EX) if φ is convex, if E|X| <∞ and E|φ(X)| <∞.

(n) Conditional Jensen’s inequality: E[φ(X) | G] ≥ φ(E[X | G]) a.s.

17.1.1 Conditional Independence

Recall that in MT, independence is a property of G1 and G2. The RVs X1 and X2 are independent if σ(X1)
and σ(X2) are independent. Recall that for X : (Ω,F , P )→ (S,S), σ(X) ⊆ F . Independence is also equiv-
alent to E[h1(X1)h2(X2)] = (Eh1(X1))(Eh2(X2)) for all hi : Si → R which are bounded and measurable.
This is also equivalent to E[h1(X1) |X2] = Eh1(X1) a.s. for all h1.

Undergraduate Setting. Given a discrete RV V , define P (X1 = x1 | V = v) and define P (X2 = x2 | V = v).
Then, we can construct (X1, X2, V ) such that

P (X1 = x1, X2 = x2 | V = v) = P (X1 = x1 | V = v)× P (X2 = x2 | V = v)

Definition 17.1. X1 and X2 are conditionally independent (CI) given G means

E[h1(X1)h2(X2) | G] = E[h1(X1) | G]× E[h2(X2) | G] ∀hi

We can replace X1 with a σ-field H1, and h1(X1) with a bounded H1-measurable RV.

Homework (Later). This is equivalent to E[h1(X1) | G, X2] = E[h1(X1) | G] a.s. for all h1. Once you know G,
knowing also X2 gives no extra info about X1.

17.1.2 Conditional Probability & Conditional Expectation

Undergraduate. We define a conditional P by

P (Y = y |X = x) =
P (X = x, Y = y)

P (X = x)

and a conditional E by

E[h(Y ) |X = x] =
∑
y

h(y)P (Y = y |X = x)

and the two concepts are related.

64
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From (X,Y ) : (Ω,F , P )→ S1×S2, we get a kernel Q from S1 to S2, where Q(x,B) means P (Y ∈ B |X = x).
Given W : (Ω,F , P )→ R, E|W | <∞, G ⊆ F , we defined E[W | G] = Z, specified by E[Z1G] = E[W1G] for
all G ∈ G. What is the relationship between these two concepts?

Write W = h(Y ), where h : S2 → R. Write G = σ(X). Write I : (Ω,F) → (Ω,G), the identity function.
We have (I, Y ) : Ω → (Ω,G) × (S2,S2). Write α(ω,B) for the kernel associated with (I, Y ). Then α(ω,B)
means P (Y ∈ B | G)(ω).

We can start from conditional expectation: let P (A) = E[1A]. Define P (A | G)(ω) = E[1A | G](ω). Then
α(·, B) = P (Y ∈ B | G). This is the regular conditional distribution for Y given G. It is “regular” in
the sense that B 7→ α(ω,B) is a PM.

What is this in MT?

E[h(Y ) | G](ω) =

∫
h(y)α(ω,dy)

(Homework)

17.2 Martingales

A σ-field G is a collection of events: A ∈ G, where A is an event. For a RV X, “X is G-measurable” means
σ(X) ⊆ G. We use the shorthand X ∈ G. (This can, in principle, cause confusion: consider J ∈ F?)

17.2.1 General Setup (Ω,F , P )

Sub-σ-fields F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F form a filtration. We interpret Fn as the “information known at
time n”.

A sequence (Xn, n ≥ 0) is adapted to (Fn) means Xn ∈ Fn ∀n.

Definition 17.2. A R-valued process (Xn, 0 ≤ n <∞) is a martingale (MG) if

(i) E|Xn| <∞ ∀n

(ii) (Xn) is adapted to (Fn)

(iii) E[Xn+1 | Fn] = Xn, 0 ≤ n <∞

In condition (iii), if we have E[Xn+1 | Fn] ≥ Xn, we have a submartingale. If E[Xn+1 | Fn] ≤ Xn, we have
a supermartingale.

Note that (iii) can be rewritten as E[Xn+1 −Xn | Fn] = 0 ∀n.

Typical Use of Theory : We have a complicated system (Yn) and we look for h such that h(Yn) is a MG.
Take Fn = σ(Y0, Y1, . . . , Yn). If we take Xn = h(Yn), then (Xn) is adapated to (Fn).

If we define Xn and we say “Xn is a MG”, then we are taking Fn = σ(X0, X1, . . . , Xn), the natural
filtration for (Xn).

17.2.2 Examples Based on Independent RVs ξ1, ξ2, ξ3, . . . , Fn = σ(ξ1, . . . , ξn)
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Example 17.3. If E|ξi| <∞ and Eξi = 0 ∀i, then Sn =
∑n
i=1 ξi is a MG.

E[Sn+1 | Fn] = E[Sn + ξn+1 | Fn] = Sn + E[ξn+1 | Fn] = Sn + Eξn+1︸ ︷︷ ︸
0

= Sn

because Sn ∈ Fn and Sn+1 is independent of Fn.

Example 17.4. As in 17.3, suppose also σ2
i = Eξ2

i <∞. Then Qn = S2
n −

∑n
i=1 σ

2
i is a MG.

Qn+1 −Qn = S2
n+1 − S2

n − σ2
n+1 = 2Snξn+1 + ξ2

n+1 − σ2
n+1

E[Qn+1 −Qn | Fn] = E[2Snξn+1 | Fn]︸ ︷︷ ︸
Sn∈Fn

+E[ξ2
n+1 | Fn]︸ ︷︷ ︸
indep.

−σ2
n+1

= 2SnE[Sn+1 | Fn]︸ ︷︷ ︸
=0

+E[ξ2
n+1]− σ2

n+1

= 0

Example 17.5. Suppose (ξi) are independent, Eξi = 1. Then Mn =
∏n
i=1 ξi is a MG.

Mn+1 = Mnξn+1, Mn ∈ Fn
E[Mn+1 | Fn] = E[Mnξn+1 | Fn] = MnE[ξn+1 | Fn]

= MnE[ξn+1]

= Mn · 1

Example 17.6. Suppose that (ξi) are independent. Fix t, Sn =
∑n
i=1 ξi, and suppose that we have

φi(t)
def
= E exp(tξi) <∞. Then

Xn =
exp(tSn)∏n
i=1 φi(t)

is a MG.

Xi =

n∏
i=1

Yi

Yi =
exp(tξi)

φi(t)

By independence, the expectation is 1.

Example 17.7. Take (ξi) IID. Take density functions f and g > 0. Define the likelihood ratio

Ln =

n∏
i=1

g(ξi)

f(ξi)

(a) If the (ξi) have density f , then (∀g) (Ln) is a MG.

Ln =

n∏
i=1

Yi,

Yi =
g(ξi)

f(ξi)
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EYi =

∫
g(y)

f(y)
· f(y) dy

=

∫
g(y) dy = 1

(b) If the (ξi) have density g, then, provided that ELn < ∞, (Ln) is a sub-MG. (a) implies that
(1/Ln, n ≥ 0) is a MG.

1

Ln
= E

[
1

Ln+1

∣∣∣∣ Fn] ≥ 1

E[Ln+1 | Fn]

by Conditional Jensen’s Inequality. Therefore, E[Ln+1 | Fn] ≥ Ln, so this is a sub-MG.
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October 25

18.1 General Constructions of MGs

Consider a filtration (Fn, 0 ≤ n <∞) on (Ω,F , P ). Recall that (Xn, 0 ≤ n <∞) is adapted to (Fn) means
Xn ∈ Fn, 0 ≤ n <∞.

We can define F∞ = σ(
⋃
n Fn) ⊆ F . We are usually not given a RV X∞. When we consider XT for a

stopping time T , we need to care about {T =∞}.

Example 18.1. Consider any X with E|X| <∞, then Xn = E[X | Fn], 0 ≤ n <∞ is a MG.

E[Xn | Fn−1] = E [E[X | Fn] | Fn−1]

= E[X | Fn−1] = Xn−1

by the Tower Property, since Fn−1 ⊆ Fn.

Similarly, for any event A, Yn = P (A | Fn) is a MG.

Notation. For any X = (Xn), define ∆X
n = Xn − Xn−1, n ≥ 1. Then (Xn, n ≥ 0) is a MG if and only if

∆X
n ∈ Fn for n ≥ 1, E

∣∣∆X
n

∣∣ <∞ for n ≥ 1, E[∆X
n | Fn] = 0 a.s. for n ≥ 1, and X0 ∈ F0, E|X0| <∞. Call

(∆X
n , n ≥ 1) a martingale difference sequence. To get the sub-MG property, E[∆X

n | Fn−1] ≥ 0 a.s. for
n ≥ 1.

Example 18.2. Consider any (Xn, n ≥ 0), adapted to (Fn) and E|Xn| < ∞ ∀n. Define (Yn) by
Y0 = X0, ∆Y

n = ∆X
n − E[∆X

n | Fn−1]. Define (Zn) by Z0 = 0, ∆Z
n = E[∆X

n | Fn−1]. Then

(i) Xn = Yn + Zn

(ii) (Yn) is a MG.

(iii) Zn ∈ Fn−1, for n ≥ 1 and Zn = 0. (Zn) is predictable and E|Zn| <∞.

This is the unique decomposition with these properties.

Why is this unique?

E[∆X
n | Fn−1] = E[∆Y

n | Fn−1] + E[∆Z
n | Fn−1]

= 0 + ∆Z
n

68
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since (Yn) is a MG and Z is predictable.

This is called the Doob decomposition.

If (Xn) is a MG, then (Xn −X0, n ≥ 0) is a MG. We often say “WLOG assume X0 = 0”.

For a MG, E[Xn | Fn−1] = Xn−1 implies that EXn = EXn−1, which implies that EXn = EX0 ∀n. For a
sub-MG, E[Xn | Fn−1] ≥ Xn−1, which implies that EXn ≥ EXn−1, which implies that EXn ≥ EX0 ∀n.

Theorem 18.3 (Convexity Theorem). Let (Xn) be adapted to (Fn), φ be convex, and E|φ(Xn)| <∞.

(a) If (Xn) is a MG, then φ(Xn) is a sub-MG.

(b) If (Xn) is a sub-MG and if φ is increasing, then φ(Xn) is a sub-MG.

Proof. (b)

E[φ(Xn+1) | Fn] ≥ φ(E[Xn+1 | Fn]︸ ︷︷ ︸
≥Xn

)

≥ φ(Xn)

where we used Conditional Jensen, (Xn) is a sub-MG, and φ is increasing. Hence, φ(Xn) is a
sub-MG. We have equality if (Xn) is a MG.

Example 18.4. If (Xn) is a MG, then (provided integrable)

(i) |Xn|p (p ≥ 1) is a sub-MG, because x 7→ |x|p is convex

(ii) X2
n is a sub-MG

(iii) exp(θXn), (−∞ < θ <∞) is a sub-MG, because x 7→ eθx is convex

(iv) max(Xn, c) is a sub-MG, because x 7→ max(x, c) is convex

(v) min(Xn, c) is a super-MG

18.2 Stopping Times

Definition 18.5. A RV T : Ω→ {0, 1, 2, . . . } ∪ {∞} is a stopping time if

{T = n} ∈ Fn, 0 ≤ n <∞ (18.1)

This implies that {T =∞} ∈ F∞. Equivalently,

{T ≤ n} ∈ Fn, 0 ≤ n <∞ (18.2)

Definition 18.6. For a stopping time T , define FT as the collection of sets A ∈ F such that

A ∩ {T = n} ∈ Fn, 0 ≤ n <∞ (18.3)

or equivalently,
A ∩ {T ≤ n} ∈ Fn, 0 ≤ n <∞ (18.4)
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This is the pre-T σ-field.

There are many “obvious” properties.

1. If (Xn) is adapted, if T is a stopping time, T <∞, then XT is FT -measurable.

Proof. Want : {XT ∈ B} ∈ FT ∀B.

Want : {XT ∈ B}∩ {T = n} ∈ Fn. This is the same as {Xn ∈ B}∩ {T = n}. {Xn ∈ B} ∈ Fn since Xn

is adapted. {T = n} ∈ Fn by the definition of a stopping time.

2. If T1 ≤ T2 are stopping times, then FT1
⊆ FT2

.

3. If S and T are stopping times, then {S = T} ∈ FS ∩ FT , and for A ⊆ {S = T},

A ∈ FS ⇔ A ∈ FT

Given an adapted (Xn) and a stopping time T , the process X̂n = Xmin(n,T ) is adapted. Call X̂ the “stopped
process”.

Story. Fn is the information at the end of day n. You can buy a stock at the end of any day n. Xn is the
price of 1 share at the end of day n. Hn is the number of shares I hold during day n (they must be bought at
day n− 1 or earlier). Therefore, Hn ∈ Fn−1. Yn is my accumulated profit at the end of day n. What is the
relation? ∆Y

n = Hn∆X
n . Also, Y0 = 0. Write Y = H ·X, a “martingale transform” or a “discrete-time

stochastic integral”.

Theorem 18.7 (Durrett 2.7). Suppose (Xn) is adapted and (Hn) is predictable. Consider Y = H ·X
(for simplicity, assume Hn is bounded).

(i) If (Xn) is a MG, then (Yn) is a MG.

(ii) If (Xn) is a sub-MG and Hn ≥ 0, then (Yn) is a sub-MG.

Proof. (ii)

E[∆Y
n ] = E[Hn∆X

n | Fn−1]︸ ︷︷ ︸
Hn∈Fn−1

= Hn︸︷︷︸
≥0

E[∆X
n | Fn−1]︸ ︷︷ ︸
≥0

≥ 0

since (Xn) is a sub-MG. Therefore, (Yn) is a sub-MG.

Corollary 18.8. If (Xn) is a (sub-)MG, if T is a stopping time, then X̂n = Xmin(n,T ) is a (sub-)MG.

Proof. Buy 1 share at the end of day 0 and sell at the end of day T .

Hn = 1(0≤n≤T )

(Hn) is predictable because {n ≤ T} = {T ≤ n − 1}c ∈ Fn−1. The process Y = H · X is explicitly
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Yn = Xmin(n,T ) −X0. Apply 18.7.



Lecture 19

October 27

19.1 Optional Sampling Theorem

Last class: let (Xn) be a sub-MG w.r.t. (Fn). (Hn) is a predictable process which is bounded. Define
Y = H ·X by Y0 = 0, ∆Y

n = Hn∆X
n . Then (Yn) is a sub-MG, provided Hn ≥ 0. Hn is the number of shares

held on day n.

The sub-MG property is
E[Xn | Fn−1] ≥ Xn−1

which implies that EXn is increasing.

Corollary 19.1. Let (Xn) be a sub-MG. Let 0 ≤ T1 ≤ T2 ≤ t0 be stopping times. Then

E[XT2 | FT1 ] ≥ XT1

Proof. Fix an event A ∈ FT1
. The strategy is: “If A happens, buy 1 share at T1 and sell at T2. If A does

not happen, do nothing.” Hn = 1A1(T1<n≤T2). We want to check that Hn is predictable. In other words,
we want to check A∩{T1 < n ≤ T2} ∈ Fn−1. We can write {T1 < n ≤ T2} as {T1 ≤ n−1}\{T2 ≤ n−1},
because T2 ≥ T1, so we have (A∩ {T1 ≤ n− 1}) \ (A∩ {T2 ≤ n− 1}). By the definition of A ∈ FT1 , the
two events are in Fn−1.

So, (Yn) is a sub-MG. Yn = (XT2∧n−XT1∧n)1A, where a∧ b = min(a, b). The sub-MG property implies
that EYt0 ≥ EY0 = 0. We have shown

E[(XT2
−XT1

)1A] ≥ 0 ∀A ∈ FT1

Fact. If E[Z1A] ≥ 0 ∀A ∈ G, then E[Z | G] ≥ 0 a.s. Therefore,

E[XT2
−XT1

| FT1
] ≥ 0 a.s.

“OST” is the Optional Sampling Theorem.

Theorem 19.2 (Basic Version of OST). If (Xn) is a (sub-)MG, 0 = T0 ≤ T1 ≤ T2 ≤ · · · are stopping
times, if Ti ≤ ti (a constant), then (XTi , i = 0, 1, 2, . . . ) is a (sub-)MG w.r.t. (FTi , i = 0, 1, 2, . . . ).

In particular, EXTi ≥ EX0 for a sub-MG and EXTi = EX0 for a MG, and EXT2
≥ EXT1

if T2 ≥ T1. There
are many other versions without the restriction that T ≤ t0.
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Write X∗N = max(X0, X1, . . . , XN ). We know that P (X∗N ≥ x) ≤
∑N
n=0 P (Xn ≥ x) is always true. If the

(Xi) are independent, then P (X∗N ≥ x) = 1−
∏N
n=0 P (Xn < x). With MGs, we can get better bounds than

the former.

19.2 Maximal Inequalities

Lemma 19.3. Let (Xn) be a super-MG, Xn ≥ 0 a.s. Write X∗ = supnXn, so X∗N ↑ X∗ as N → ∞.
Then P (X∗ ≥ λ) ≤ EX0/λ, for all λ > 0.

Proof. Define T = min {n : Xn ≥ λ}. Apply the OST 19.2 to 0 and T ∧N . Then

EX0 ≥ EXT∧N = EXT 1(T≤N) + EXN1(T>N)

≥ λP (T ≤ N) + 0

This implies

P (T ≤ N) ≤ λ−1EX0

The event {T ≤ N} is the same as the event {X∗N ≥ λ}. Therefore

P (X∗N ≥ λ) ≤ λ−1EX0

Let N →∞. Then we only have
P (X∗ > λ) ≤ λ−1EX0

Apply this to λj ↑ λ to obtain
P (X∗ ≥ λ) ≤ λ−1EX0

(Check this.)

Lemma 19.4 (Doob’s (L1) Maximal Inequality). Let (Xn) be a sub-MG. For λ > 0,

λP (X∗N ≥ λ) ≤ E[XN1(X∗
N≥λ)] ≤ EX+

N = Emax(X, 0)

Note that
max
A

E[Y 1A] = E[Y 1(Y≥0)] = Emax(Y, 0) = EY +

which implies that E[Y 1A] ≤ EY +.

Proof. Let T = min {n : Xn ≥ λ}. Apply the OST 19.2 to T ∧N and N : EXT∧N ≤ EXN . Therefore,

EXT 1(T≤N) + EXN1(T>N) ≤ EXN1(T≤N) + EXN1(T>N)

XT ≥ λ, so
λP (T ≤ N) ≤ EXN1(T≤N) = EXN1(X∗

N≥λ)

Corollary 19.5. If (Xn) is a MG, then (because Yn = |Xn| is also a sub-MG)

P

(
max

0≤n≤N
|Xn| ≥ λ

)
≤ E|XN |

λ
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Also, Zn = X2
n is a sub-MG (provided EX2

n <∞). Apply 19.4 to (Zn):

λ2P

(
max

0≤n≤N
X2
n ≥ λ2

)
≤ EX2

N

or

P

(
max

0≤n≤N
|Xn| ≥ λ

)
≤ EX2

N

λ2

These are two different bounds for the same quantity.

Use the notation

a ∨ b = max(a, b)

a ∧ b = min(a, b)

Theorem 19.6 (Doob’s L2 Maximal Inequality). Let (Xn) be a sub-MG. Then

E[(0 ∨X∗N )2] ≤ 4E[(X+
N )2]

Proof.

E[(0 ∨ Z)2] = 2

∫ ∞
0

λP (Z ≥ λ) dλ

E[(0 ∨X∗N )2]︸ ︷︷ ︸
a

= 2

∫ ∞
0

λP (X∗N ≥ λ) dλ ≤ 2

∫ ∞
0

E[XN1(X∗
N≥λ)] dλ

≤ 2

∫ ∞
0

E[X+
N1(X∗

N≥λ)] dλ

≤ 2E

[
X+
N

∫ ∞
0

1(X∗
N≥λ) dλ

]
= 2E[X+

N (0 ∨X∗N )]

≤ 2(E[(X+
N )2]︸ ︷︷ ︸
b

×E[(0 ∨X∗N )2]︸ ︷︷ ︸
a

)1/2

by the Cauchy-Schwarz Inequality. The inequality is saying a ≤ 2
√
ba, so a ≤ 4b. There is also a special

case when a =∞.

If we use the Hölder Inequality instead of the Cauchy-Schwarz Inequality, then we obtain

E[(0 ∨X∗N )p] ≤
(

p

p− 1

)p
E[(X+

N )p]

for 1 < p <∞. This is not true for p = 1.

Example 19.7. Let X0 = 1 and consider a simple symmetric RW on Z, stopping at

T = min {n ≥ 1 : Xn = 0}

(Xn) is a MG. EXn = 1 ∀n. Also, X∗N ↑ X∗ = supnXn. Elementary fact: P (X∗ ≥ m) = 1/m.
Therefore, EX∗ =∞, so EX∗N ↑ ∞, but EXN = 1 ∀N .
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20.1 Upcrossing Inequality

Take any R-valued (Xn, n ≥ 0) and any a < b. Define S1 = min {n : Xn ≤ a}, T1 = min {n : Xn ≥ b},
S2 = min {n > T1 : Xn ≤ a}, T2 = min {n > S2 : Xn ≥ b}, etc.

Define Un = Un[a, b] = max {k : Tk ≤ n}, the number of upcrossings over [a, b] completed by time n.

Theorem 20.1 (The Upcrossing Inequality). Suppose (Xn) is a sub-MG. Then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+

≤ EX+
n + |a|

Proof. Note that (x− a)+ ≤ x+ + |a|, so E(X − a)+ ≤ EX+ + |a|.

(Trick) In the case that Xn ≥ a ∀n, we will prove (b− a)EUn ≤ EX+
n −EX+

0 . For general (Xn), apply
the result to max(Xn, a)− a, which is a sub-MG.

Use the “buy low, sell high” strategy: buy 1 share at Si, and sell 1 share at Ti. Consider Y = H ·X,
where Hn = 1(S1<n≤T1) + 1(S2<n≤T2) + · · ·. This is a predictable process, so (Yn) is a sub-MG.

Yn =

Un∑
i=1

(XTi −XSi) + (Xn −XSUn+1
)1(n>SUn+1)

≥ (b− a)Un + 0

Take expectations.
(b− a)EUn ≤ EYn

Consider the opposite strategy K: Kn = 1−Hn. (Xn − Yn) = (K ·X)n +X0 is a sub-MG.

E[X0 − Y0] ≤ E[Xn − Yn]

EX0 ≤ EXn − EYn
(b− a)EUn ≤ EXn − EX0

20.2 Martingale Convergence
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Theorem 20.2 (Martingale Convergence Theorem). If (Xn) is a sub-MG, if supnEX
+
n < ∞, then

Xn → X∞ a.s., for some X∞ with E|X∞| <∞.

Proof. Un[a, b] ↑ U∞[a, b], so

EU∞[a, b] = lim
n
EUn[a, b] ≤ supnEX

+
n + |a|

b− a

which implies that U∞[a, b] <∞ a.s. This implies

P (Un[a, b] <∞, all rational pairs a < b) = 1

For reals (xn), if lim supn xn > lim infn xn, then U∞[a, b] =∞, for some a < b. Since U∞[a, b] <∞ for all
rational a < b, then lim supxn = lim inf xn ∈ [−∞,∞]. Therefore, Xn → X∞ a.s., but X∞ ∈ [−∞,∞].

Recall Fatou’s Lemma: If Yn ≥ 0,
E lim inf

n
Yn ≤ lim inf

n
EYn

X+
n → X+

∞ a.s. implies (by Fatou’s Lemma) that EX+
∞ ≤ lim infnEX

+
n <∞. Also,

EX−n = EX+
n − EXn ≤ EX+

n − EX0

since EX0 ≤ EXn. Since X−n → X−∞ a.s., by Fatou’s Lemma,

EX−∞ ≤ lim inf
n

EX−n ≤ sup
n
EX+

n − EX0 <∞

Since EX+
∞ <∞ and EX−∞ <∞, then E|X∞| <∞.

Corollary 20.3. If (Xn) is a super-MG, if Xn ≥ 0 a.s., then Xn → X∞ a.s. and 0 ≤ EX∞ ≤ EX0.

Proof. Apply 20.2 to (−Xn), so Xn → X∞ a.s. Use Fatou’s Lemma: EX∞ ≤ lim infnEXn ≤ EX0.

Recall the simple RW X0 = 1, stopped at T = min {n : Xn = 0}. Let Yn = Xmin(T,n). Then Yn → 0 = Y∞
a.s., but EYn = 1 ∀n but EY∞ = 0.

20.3 Facts About Uniform (Equi-)Integrability

Consider R-valued RVs.

Definition 20.4. A family (Yα) is UI if

lim
b→∞

sup
α
E
[
|Yα|1(|Yα|≥b)

]
= 0

If E|Y | <∞, then limb→∞E[|Y |1(|Y |>b)] = 0.

We will quote some facts (see Durrett or Billingsley).

1. If supαE|Yα|
q
<∞ for some q > 1, then (Yα) is UI, which implies that supαE|Yα| <∞.

2. if Yn → Y∞ a.s., if (Yn) is UI, then E|Y∞| <∞ and E|Yn − Y∞| → 0, i.e. Yn → Y∞ in L1.

3. If Yn → Y∞ in L1, then (Yn) is UI.
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4. If E|Y | <∞, the family of {E[Y | G], all G} is UI.

Theorem 20.5. For a MG (Xn), the following are equivalent.

(i) (Xn) is UI.

(ii) Xn converges in L1.

(iii) There exists a RV X∞ with E|X∞| <∞ such that Xk = E[X∞ | Fk] ∀k.

If these conditions hold, then ∃X∞ such that Xn → X∞ both a.s. and in L1.

Proof. (iii)⇒ (i), by 4.

(i) implies, by 1, supnE|Xn| <∞, which by 20.2 implies Xn converges to some X∞ a.s., which implies
by 2 that Xn → X∞ in L1, which implies (ii).

Given (ii), Xn → X∞ in L1, which implies that E|Xn −X∞| → 0 with E|X∞| < ∞. We need
to prove that EX∞1A = EXk1A ∀A ∈ Fk. Fix A and k. By the MG property, for n > k,
E[Xn | Fk] = Xk, so EXn1A = EXk1A. Hence, |EX∞1A − EXn1A| ≤ E|X∞ −Xn| → 0 as n→∞, so
|EX∞1A − EXk1A| = 0.

Theorem 20.6 (Levy’s 0-1 Law). Take any process (Yn, n ≥ 0). Take any RV Z with E|Z| < ∞ and
Z ∈ σ(Yn, n ≥ 0). Then Xn = E[Z | Y1, . . . , Yn] is a UI martingale, so by 20.5, Xn → X∞ a.s. and in
L1. In fact, X∞ = Z because

Xn = E[X∞ | Y1, . . . , Yn]

= E[Z | Y1, . . . , Yn]

so E[X∞ − Z | Fn] = 0, so E[X∞ − Z | F∞] = 0 = X∞ − Z (since X∞ − Z is F∞-measurable).

Remark: In particular, take Z = 1A. Then

P (A | Y1, . . . , Yn)(ω)→ 1A(ω) a.s.

for all A ∈ σ(Yn, n ≥ 0).

For independent (Yn), suppose A is in the tail σ-field.

P (A | Y1, . . . , Yn)(ω) = P (A)→ 1A a.s. as n→∞

which implies that 1A is a constant a.s., which implies that P (A) = 0 or 1.
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21.1 “Converge or Oscillate Infinitely”

Lemma 21.1. Let (Xn) be a MG such that |Xn −Xn−1| ≤ K ∀n. Then P (C ∪D) = 1 for the events

C =
{
ω : lim

n→∞
Xn(ω) exists and is finite

}
D =

{
ω : lim sup

n
Xn(ω) = +∞ and lim inf

n
Xn(ω) = −∞

}

Proof. WLOG X0 = 0. Fix L > 0. Define T = min {n : Xn < −L}. The stopped process (XT∧n, n ≥ 0)
is a MG which is always at least −L − K. By the (positive super-MG) convergence theorem, XT∧n
converges to some finite limit a.s. as n → ∞. This implies {infnXn > −L} = {T = ∞} ⊆ C. This is
true for all L, so let L→∞. Therefore,

A1 =
{

inf
n
Xn > −∞

}
⊆ C

The same argument applied to (−Xn) gives

A2 =

{
sup
n
Xn <∞

}
⊆ C

so we are done because (A1 ∩A2)c = D.

21.2 Conditional Borel-Cantelli

Lemma 21.2 (Conditional Borel-Cantelli Lemma). Consider events (An) adapted to (Fn). Define
Bn =

⋃
m≥nAm and B =

⋂
nBn = {An inf. often}. Then

(a) {An inf. often} = {
∑∞
n=1 P (An | Fn−1) =∞} a.s.

(b) P (Bn+1 | Fn)→ 1B a.s. as n→∞.

B1 = B2 a.s. means P (B1 4B2) = 0.
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Proof. (b) Consider K < n. Then B ⊆ Bn ⊆ BK and

P (B | Fn) ≤ P (Bn+1 | Fn) = P (Bn+1 | Fn) ≤ P (BK | Fn)

Take the limit as n→∞.

1B ≤ lim inf
n

P (Bn+1 | Fn) ≤ lim sup
n

P (Bn+1 | Fn) ≤ 1BK

Let K ↑ ∞. Then 1BK ↓ 1B .

(a) Consider Xn =
∑n
m=1(1Am − P (Am | Fm−1)), which is a MG, and |Xn+1 −Xn| ≤ 1. Then 21.1

implies that P (C ∪D) = 1. We want to prove{∑
m

1Am =∞

}
=

{∑
m

P (Am | Fm−1) =∞

}
a.s.

Observe that Xn =
∑n
m=1 1Am −

∑n
m=1 P (Am | Fm−1). On event D, both sums are ∞. On event

C, either both sums are finite or both sums equal ∞.

21.3 “Product” MGs

21.3.1 Convergence for “Multiplicative” MGs

Theorem 21.3 (Kakutani’s Theorem). Take (Xi, i ≥ 1) to be independent, Xi > 0, EXi = 1. We

know that Mn =
∏n
i=1Xi is a MG and so Mn

a.s.−−→ M∞, with EM∞ ≤ 1. Then properties (i) to (v)
below are equivalent:

(i) EM∞ = 1.

(ii) Mn →M∞ in L1.

(iii) (Mn, n ≥ i) is UI.

(iv) Set ai = EX
1/2
i and note that 0 ≤ ai ≤ 1.

∏∞
i=1 ai > 0.

(v)
∑
i(1− ai) <∞.

Proof. Conditions (i), (ii), (iii) are equivalent by the L1 MG convergence theorem.

Conditions (iv), (v) are equivalent by calculus. Use 1− x+ x2 ≥ e−x ≥ 1− x for small x > 0.

Suppose (iv) holds. Consider

Nn =
X

1/2
1

a1
· X

1/2
2

a2
· · · X

1/2
n

an

which is a MG.

E[N2
n] =

EMn∏n
i=1 a

2
i

≤ 1∏∞
i=1 a

2
i

= K <∞



LECTURE 21. NOVEMBER 3 80

Apply the Doob L2 maximal inequality.

E

[
sup
n
Nn

]
≤ 4K

Note that Mn ≤ N2
n since Mn = N2

n

∏n
i=1 a

2
i . Therefore, E[supnMn] ≤ (4K)2 < ∞. This implies that

(Mn, n ≥ 1) is UI. If Z ≥ 0, EZ <∞, the family {X : 0 ≤ X ≤ Z} is UI. This gives (iii).

Suppose that (iv) is false, so
∏∞
i=1 ai = 0. For the MG (Nn), we have Nn → N∞ a.s. We must have

N∞ =

∏∞
i=1X

1/2
i∏∞

i=1 ai

Since the denominator is 0, then
∏∞
i=1X

1/2
i = M

1/2
∞ = 0 a.s., so (i) fails.

21.3.2 Likelihood Ratios (Absolute Continuity of Infinite Product Measures)

Given densities fi, 1 ≤ i <∞ and gi, 1 ≤ i <∞, assume fi > 0 and gi > 0. Take Ω = R∞ with X(ω) = ωi.
Work with P , the product measure where the (Xi) are independent with densities fi. Consider Q, where
the (Xi) have densities gi. The “likelihood ratio”

Ln =

n∏
i=1

gi(Xi)

fi(Xi)

is the Radon-Nikodym density
dQn
dPn

(Qn is the probability measure with corresponding density f1 ⊗ f2 ⊗ · · · ⊗ fn.)

Know. (Ln, n ≥ 1) is a MG w.r.t. P .

Suppose that (Ln, n ≥ 1) is UI. Then Ln → L∞ in L1 and Ln = E[L∞ | Fn]. What this means, from the
definition of the R-N density, is

Q(A) = ELn1A ∀A ∈ Fn
= EL∞1A ∀A ∈

⋃
n

Fn

= EL∞1A ∀A ∈ F∞

so L∞ is the R-N density
dQ

dP

on R∞. Therefore, Q� P .

Similarly, if Q� P , then we can prove (Ln, n ≥ 1) is UI. So Q� P ⇔ (Ln, n ≥ 1) is UI⇔
∑
i(1−ai) <∞.

ai = E

(
gi
fi

(Xi)

)1/2

=

∫
g

1/2
i (x)f

1/2
i (x) dx

1− ai =
1

2

∫ (
g

1/2
i (x)− f1/2

i (x)
)2

dx

(by algebra). Our condition is
∞∑
i=1

∫ (
g

1/2
i (x)− f1/2

i (x)
)2

dx <∞
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“fi and gi become close for large i.”

We know that for f 6≡ g, then Q and P are singular.
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22.1 Setup for OST

Let (Xn, n ≥ 0) be a sub-MG and T <∞ a.s. be a stopping time. We want to conclude that EX0 ≤ EXT .
What extra assumptions do we need?

Know. It is sufficient that T ≤ t0 <∞ a.s., so it is sufficient that E|XT −XT∧n| → 0 as n→∞.

Theorem 22.1. (See Durrett.) It is sufficient that

(a) E|Xn|1(T>n) → 0 as n→∞, and

(b) E|XT | <∞.

Theorem 22.2 (Useful Version of OST). Suppose: (Xn) is a sub-MG, T is a stopping time, and
ET <∞. Write ∆n = Xn −Xn−1. If there exists a constant b such that

E[|∆n| | Fn−1] ≤ b on {n ≤ T} (22.1)

then EX0 ≤ EXT .

Proof.

XT = X0 +

T∑
n=1

∆n

Consider Y = |X0|+
∑T
n=1|∆n|. Note that |XT | ≤ Y and |XT∧n| ≤ Y . Then

EY = E|X0|+
∞∑
n=1

E|∆n|1(T≥n)

We have

E[|∆n|1(T≥n) | Fn−1] = 1(T≥n)E[|∆n| | Fn−1]

≤ b1(T≥n) by (22.1)

Take expectations of both sides.
E[|∆n|1(T≥n)] ≤ bP (T ≥ n)
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Therefore,

EY ≤ E|X0|+
∞∑
n=1

bP (T ≥ n)

= E|X0|+ bET <∞

so E|XT | ≤ EY <∞, which checks (b). For condition (a),

E|Xn|1(T>n) = E|XT∧n|1(T>n)

≤ EY 1(T>n) → 0

as n→∞, since EY <∞. (We are using the fact that E|W | <∞ and P (An)→ 0 imply E[W1An ]→ 0.)

22.2 Martingale Proofs

Principle. Given a MG proof of an exact formula, one can often get inequality conclusions out of inequality
assumptions.

Corollary 22.3 (Inequality Version of Wald’s Identity). Suppose (ξi) are independent, µi ≤ Eξi ≤ µ2,
and supiE|ξi| <∞. Let Sn =

∑n
i=1 ξi. Then, for any stopping time T with ET <∞,

µ1ET ≤ EST ≤ µ2ET

Wald: If the (ξi) are IID, then EST = (Eξ) · (ET ).

Proof. Apply 22.2 to Xn = Sn − nµ1, so that ∆n = ξn − µ1. E[∆n | Fn−1] = Eξn − µ1 ≥ 0, so (Xn) is
a sub-MG. We have

E[|∆n| | Fn−1] = E|∆n| ≤ E|ξn|+ |µ1| ≤ b

by hypothesis. Therefore, EX0 ≤ EXT , so 0 ≤ EST − µ1ET , so EST ≥ µ1ET .

Lemma 22.4. Take (ξi) IID, Sn =
∑n
i=1 ξi. Fix a > 0 and b > Eξ. Suppose ∃θ > 0 such that

E exp(θξ) = eθb. Then P (Sn ≥ a+ bn for some n ≥ 0) ≤ e−θa.

Proof. Set ξ̂i = ξi − b. Then Ŝn = Sn − nb and E exp(θξ̂) = 1 by definition. Then (exp(θŜn), n ≥ 0) is
a MG. Apply the L1 maximal inequality, so

P

(
sup
n

exp(θŜn) ≥ λ
)
≤ 1

λ

Set λ = eθa. Then

P

(
sup
n
Ŝn ≥ a

)
≤ e−θa

which implies the result.

Lemma 22.5. Suppose (ξi) are IID and let Sn =
∑n
i=1 ξi. Suppose ∃θ > 0 such that

φ(θ) = E exp(θξ) = 1
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Suppose T is a stopping time with ET <∞ and Sn ≤ B on {n < T} for all n. Then E exp(θST ) = 1.

Proof. Xn
def
= exp(θSn) is a MG. We need to check (22.1) from 22.2.

∆n = Xn −Xn−1 = Xn−1(exp(θξn)− 1)

|∆n| ≤ Xn−1|exp(θξn)− 1|
E[|∆n| | Fn−1] ≤ Xn−1E|exp(θξ)− 1| ≤ 2Xn−1

On {n ≤ T} = {n− 1 < T}, we have Sn−1 ≤ B, so Xn−1 ≤ eθB . Therefore, 2Xn−1 ≤ 2eθB on {n ≤ T}.
This verifies (22.1).

22.3 Boundary Crossing Inequalities

Setting. Let (ξi) be IID with Sn =
∑n
i=1 ξi. Suppose that |ξi| ≤ L and assume Eξ < 0, with P (ξ > 0) > 0.

Fix a < 0 < b, and consider T = min {n : Sn ≥ b or Sn ≤ a}.

Exercise. ET <∞.

So, P (ST ≥ b and ST ≤ b+ L) = x, say, and P (ST ≤ a and ST ≥ a− L) = 1− x.

Consider φ(θ) = E exp(θξ) < ∞. We know that φ(0) = 1, φ′(0) = Eξ < 0, and φ(θ) → ∞ as θ → ∞.
Therefore, ∃θ > 0 such that φ(θ) = 1.

Apply 22.5 to conclude that E exp(θST ) = 1.

xeθb + (1− x)eθ(a−L) ≤ 1 ≤ xeθ(b+L) + (1− x)eθa (22.2)

With some algebra,
1− eθa

eb+L − eθa
≤ x ≤ 1− eθ(a−L)

eθb − eθ(a−L)

Special Case. If P (ξ = 1) = p < 1/2 and P (ξ = −1) = q = 1 − p and a < 0 < b are integers, then (22.2) is
an equality, so

x =
1− eθa

eθb − eθa
=

1− (q/p)a

(q/p)b − (q/p)a

Write φ(θ) = peθ + qe−θ = 1 and solve, so eθ = q/p. This yields the result that we see in an undergraduate
course.
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23.1 Patterns in Coin-Tossing

We will say this in words. (Exercise: Rewrite the argument with mathematical notation for a general pat-
tern.)

Fix the pattern HTTHT . Toss a fair coin until we see this pattern: this requires W tosses. W is random
and 5 ≤W <∞ a.s. What is EW?

Strategy 7: Bet $1 that Toss 7 is H. If we win the bet, bet $2 that Toss 8 is T . If we win again, bet $4
that Toss 9 is T . If we win again, bet $8 that Toss 10 is H. If we win again, bet $16 that Toss 11 is T .

Overall Strategy: Do strategy i for each 1 ≤ i ≤W and then stop after toss W .

The OST tells us that E[profit] = 0. The cost is W and our return is 32 + 4 = 36 (because HT is the start
of the pattern). Therefore, E[36−W ] = 0 so EW = 36.

For a pattern of HHHHH, we would have EW = 32 + 16 + 8 + 4 + 2 = 62.

We can also show the existence of “non-transitive dice”: 3 patterns such that no matter what pattern you
choose, I can choose a pattern such that the odds will be favorable that my pattern comes up before yours.

23.2 MG Proof of Radon-Nikodym

Theorem 23.1. Consider (S,S, µ), a probability space, where S = σ(A1, A2, A3, . . .) (generated by
countable events). If ν � µ, ν(S) < ∞, then there exists a measurable h : S → [0,∞) such that
ν(A) =

∫
A
hdµ, for all A ∈ S.

Proof. Heuristics:

h(s) =
dν

dµ
(s) = lim

A↓{s}

ν(A)

µ(A)

Define Fn = σ(A1, A2, . . . , An), a finite field with 2n atoms. Define

Xn(s) =


ν(F )

µ(F )
, for the atom s ∈ F

0, if µ(F ) = 0
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(Recall that ν � µ means “µ(A) = 0⇒ ν(A) = 0”.)

EµXn1F =
ν(F )

µ(F )
× µ(F ) for atom F

so
EµXn1F = ν(F ) for each F ∈ Fn (23.1)

Claim: (Xn,Fn) is a MG.

Why : Take G ∈ Fn−1. Then
G = (G ∩An)︸ ︷︷ ︸

G1

∪ (G ∩Acn)︸ ︷︷ ︸
G2

EXn1G = EXn1G1
+ EXn1G2

= ν(G1) + ν(G2) = ν(G) = EXn−11G

by 23.1 for all G ∈ Fn−1, so Xn−1 = E[Xn | Fn−1]. By the MG convergence theorem, Xn → X∞ ≥ 0
a.s. If we prove (Xn, n ≥ 1) is UI, then by the theorem we have proven, Xn = E[X∞ | Fn].

For F ∈ Fn,

EX∞1F = EXn1F = ν(F )

which implies

EX∞1F = ν(F ) ∀F ∈
⋃
n

Fn

which implies that this holds ∀F ∈ σ(
⋃
n Fn) = S. Then

ν(F ) = EµX∞1F =

∫
F

X∞ dµ

which shows that X∞ is the R-N density
dν

dµ
.

Proof that (Xn) is UI. We know that

EXn1(Xn≥b) = ν(Xn ≥ b)

by (23.1). Given ε > 0, take b such that ν(S)/b ≤ δ(ε). Then

µ(Xn ≥ b) ≤
EXn

b
=
ν(S)

b
≤ δ(ε)

by Markov’s inequality. Then 23.2 implies that ν(Xn ≥ b) ≤ ε, so supnEXn1(Xn≥b) ≤ ε, which implies
UI.

Lemma 23.2. Suppose ν � µ. ∀ε > 0 ∃δ(ε) > 0 such that µ(A) ≤ δ(ε) implies ν(A) ≤ ε.

Proof. If the statement is false for ε, ∃An µ(An) ≤ 2−n, ν(An) > ε. Consider Λ = {An inf. often}.
Then µ(Λ) = 0, ν(Λ) ≥ ε, which contradicts the definition of ν � µ.

23.3 Azuma’s Inequality
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Theorem 23.3 (Azuma’s Inequality). Let Sn =
∑n
i=1Xi be a MG with |Xi| ≤ 1 a.s. Then we have

P (Sn ≥ λ
√
n) ≤ e−λ2/2 for all λ > 0, so P (|Sn| ≥ λ

√
n) ≤ 2e−λ

2/2 for λ > 0.

Lemma 23.4. If EY = 0 and |Y | ≤ 1, then EeαY ≤ eα2/2 ∀α.

Proof. eαx is convex, so draw the straight line L between e−α and eα. By convexity,

EeαY ≤ EL(Y ) = L(EY ) = L(0) =
eα + e−α

2

≤ eα
2/2

by calculus. Look at the coefficient of α2n in the series expansion.

1

(2n)!
≤ 1

2nn!

Proof of Azuma’s Inequality. Apply 23.4 to the conditional distribution of Xi given Fi−1. Then we

obtain E[eαXi | Fi−1] ≤ eα2/2.

E[eαSn | Fn−1] = eαSn−1E[eαXn | Fn−1] ≤ eα
2/2eαSn−1

so

EeαSn ≤ eα
2/2EeαSn−1

EeαSn ≤ (eα
2/2)n = exp

(
α2n

2

)
Then, by the large deviation inequality,

P (Sn ≥ λ
√
n) ≤ EeαSn

eαλ
√
n
≤ exp

(
α2n

2
− αλ

√
n

)
= exp

(
−λ

2

2

)
We minimize over α, so take α = λ/

√
n.

23.4 Method of Bounded Differences

Corollary 23.5. Take (ξ1, ξ2, . . . , ξn) to be independent in arbitrary state spaces. Take a R-valued
Z = f(ξ1, ξ2, . . . , ξn) such that f has the property: if x = (x1, . . . , xn) and y = (y1, . . . , yn) are such

that |{i : yi 6= xi}| = 1, then |f(x)− f(y)| ≤ 1. Then P (|Z − EZ| ≥ λ
√
n) ≤ 2e−λ

2/2, λ > 0.

Proof. WLOG, take EZ = 0. Write Sm = E[Z | Fm], with Fm = σ(ξ1, ξ2, . . . , ξm), so (Sm, 1 ≤ m ≤ n)
is a MG. We need to prove |Sm − Sm−1| ≤ 1 and then apply Azuma’s inequality 23.3.

Fix m. If we know all (ξi, i 6= m), then apply 23.6 conditionally.

|Z − E[Z | ξi, i 6= m]︸ ︷︷ ︸
Z∗

| ≤ 1 (23.2)



LECTURE 23. NOVEMBER 10 88

and

E[Z∗ | Fm] = E[Z∗ | Fm−1, ξm] = E[Z∗ | Fm−1] = E[Z | Fm−1]

since Z∗ and Fm−1 are in σ(ξi, i 6= m), ξm is independent of the two, and 23.7. Then, we applied the
tower property. This implies

|Sm − Sm−1| = |E[Z | Fm]− E[Z∗ | Fm]|
≤ E[|Z − Z∗| | Fm]

≤ 1

by (23.2).

Lemma 23.6 (Obvious Lemma). If Y is such that any 2 possible values are within 1 of each other,
then |Y − EY | ≤ 1.

Lemma 23.7 (Obvious Lemma). If W is independent of (Y,G), then E[Y | G,W ] = E[Y | F ].



Lecture 24

November 15

24.1 Examples Using “Method of Bounded Differences”

Last class: Theorem. Suppose ξ1, ξ2, . . . , ξn are independent, Z = f(ξ1, . . . , ξn), where f has the property

|f(x)− f(y)| ≤ 1 (24.1)

whenever |{i : xi 6= yi}| = 1. Then P (|Z − EZ| ≥ λ
√
n) ≤ 2e−λ

2/2 for λ > 0.

Example 24.1. Put n balls “at random” into m boxes. Consider Z(n,m), the number of empty boxes.
EZ(n,m) = m(1− 1/m)n. There is a complicated formula for the distribution. However, we can apply
the theorem to ξi, the box containing ball i, for 1 ≤ i ≤ n. Then (24.1) holds.

Example 24.2. Take two independent Bernoulli(1/2) sequences of length n (e.g. 10100110 and 01101000).
Let Zn be the length of the longest common subsequence.

Fact. Zn/n
a.s.−−→ c as n→∞, but there is no formula for c.

Take ξi to be the pair of digits in the two strings at position i. Any change x 7→ y has f(y)−f(x) ≥ −2,
which also implies that f(y′)− f(x′) ≤ 2 for any x′,y′. Therefore, Zn/2 satisfies (24.1).

Recall : A c-coloring of G means assigning one of c colors to each vertex such that color(v) 6= color(v′)
whenever (v, v′) is an edge. The chromatic number is χ(G) = min {c : ∃c-coloring}.

Recall : An Erdős–Renyi random graph model G(n, p) has n vertices and each of the
(
n
2

)
possible edges is

present with probability p.

Let Z = χ(G(n, p)). Order the vertices as 1, 2, 3, . . . , n. For i ≥ 2, let

ξi = (1(i,1) is an edge, . . . , 1(i,i−1) is an edge)

Then (24.1) holds for Z = f(ξ2, ξ3, . . . , ξn).

(To check (24.1), we are using the trick supi 6=j |xi − xj | = supi6=j (xi − xj).)

Example 24.3. Put n points IID uniform in the unit square. Fix 0 < c < 1. Let Z(n, c) be the
maximum number of disjoint c× c squares containing 0 points. Let ξi be the position of the ith point.
(24.1) holds.
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24.2 Reversed MGs

Consider sub-σ-fields G0 ⊇ G1 ⊇ G2 ⊇ · · ·, where G∞ =
⋂
n Gn. We say that (Xn) is a reversed MG if:

E|Xn| < ∞, E[Xm | Gn] = Xn, for m ≤ n, and (Xn) is adapted to (Gn). (In Durrett, Gn = F−n.) The
definition implies that Xn = E[X0 | Gn].

Theorem 24.4. For a reversed MG, Xn → E[X0 | G∞] a.s. and in L1.

Proof. (XN , XN−1, . . . , X0) is a MG. If UN is the number of upcrossings of the martingale over [a, b],
the upcrossing inequality says

EUN ≤
E|X0|+ |a|

b− a

(As in the proof for MGs:) UN ↑ U∞, where

EU∞ ≤
E|X0|+ a

b− a

which implies that U∞ < ∞ a.s., which implies that Xn → X∞ ∈ [−∞,∞] a.s. However, we have
Xn = E[X0 | Gn], so (Xn) is UI, so Xn → X∞ in L1 (also), with E|X∞| <∞.

We need to show X∞ = E[X0 | G∞]. Xn ∈ Gn ⊆ GK for n > K. Take n → ∞, so X∞ ∈ GK .
Take K → ∞, so X∞ ∈ G∞. We need to show EX∞1G = EX01G for G ∈ G∞. Xn = E[X0 | Gn]
implies that EXn1G = EX01G for G ∈ G∞. Xn → X∞ in L1 implies that EXn1G → EX∞1G, so
EX01G = EX∞1G.

24.3 Exchangeable Sequences

A sequence of RVs (X1, X2, X3, . . . ) is called exchangeable if

(X1, X2, . . . , Xn)
d
= (Xπ(1), Xπ(2), . . . , Xπ(n))

for all n and all permutations π of (1, 2, . . . , n).

Clearly, IID implies exchangeable.

Theorem 24.5. Suppose (Xi, 1 ≤ i < ∞) are exchangeable and R-valued and E|X1| < ∞. Write
Sn =

∑n
i=1Xi. Then Sn/n→ E[X1 | τ ] a.s. and in L1, where τ = tail(Xi, i ≥ 1).

Corollary 24.6. If (Xi) are IID, E|X1| < ∞, then τ is trivial, which implies that E[X1 | τ ] = EX1

and 24.5 implies that Sn/n→ EX1.

Fact. If (Z1,W )
d
= (Z2,W ) and E|Z1| <∞, then E[Z1 |W ] = E[Z2 |W ] a.s.

Proof. Let Q be the kernel associated with the distribution (Z1,W ). E[Z1 |W ] = φ(W ), where the
function φ(w) =

∫
zQ(ω,dz), and E[Z2 |W ] = φ(W ).

Exercise. Let E|X| <∞. If X
d
= E[X | G], then X = E[X | G] a.s.

Comment. The proof is easy if EX2 <∞.
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Proof of 24.5. Define

Gn = σ(Sn, Xn+1, Xn+2, . . . )

= σ(Sn, Sn+1, Sn+2, . . . )

Gn ⊇ Gn−1 ⊇ · · · are decreasing. Then

Sn = E[Sn | Gn] =

n∑
i=1

E[Xi | Gn] = nE[X1 | Gn]

by 24.7. Therefore, Sn/n = E[X1 | Gn] → E[X1 | G∞] a.s. and in L1. Note that G∞ ⊇ τ . However,
limSn/n is τ -measurable. Therefore, E[X1 | G∞] is τ -measurable, so

E[X1 | τ ] = E[E[X1 | G∞] | τ ] = E[X1 | G∞]

Lemma 24.7. E[Xi | Gn] = E[X1 | Gn] a.s., 1 ≤ i ≤ n.

Proof. Take a permutation π of (1, . . . , n).

(Xπ(1), . . . , Xπ(n), Xn+1, Xn+2, . . . )
d
= (X1, . . . , Xn, Xn+1, Xn+2, . . . )

Set W = (Sn, Xn+1, Xn+2, . . . ). Then (Xπ(i), . . . , Xπ(n),W )
d
= (X1, . . . , Xn,W ), which implies that

(Xπ(i),W )
d
= (X1,W ), which implies that (Xi,W )

d
= (X1,W ) for 1 ≤ i ≤ n. By the Fact proven above,

E[Xi |W ] = E[X1 |W ], and Gn = σ(W ).
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25.1 “Play Red”

Consider a finite set S and let X1, X2, . . . , XN be a uniform random ordering. This is clearly a (finite)
exchangeable sequence.

Proposition 25.1. If (X1, . . . , XN ) is an exchangeable sequence, if 0 ≤ T ≤ N − 1 is a stopping time,

then XT+1
d
= X1.

Proof. Recall from last lecture:

Lemma: If (Z1,W )
d
= (Z2,W ), then E[φ(Z1) |W ] = E[φ(Z2) |W ] a.s.

(Xn+1, X1, . . . , Xn)
d
= (XN , X1, . . . , Xn). By the Lemma, P (Xn+1 ∈ A | Fn) = P (XN ∈ A | Fn) a.s.,

which implies that P (Xn+1 ∈ A | FT ) = P (XN ∈ A | FT ) a.s. on {T = n}, for all n, so they equal each
other everywhere. Now, take expectations:

P (XT+1 ∈ A) = P (XN ∈ A)

XT+1
d
= XN

d
= X1

25.2 de Finetti’s Theorem

Given random A and B > 0, form the following construction: given A = a and B = b, let (Xi, 1 ≤ i < ∞)
be IID Normal(a, b). This is a parametric Bayes formulation.

Let P(R) be the space of all PMs on R. M is a random variable with values in P(R). Construction: given
M = µ, let (Xi, i ≥ 1) be IID(µ). This gives an infinite exchangeable sequence.

Theorem 25.2 (de Finetti’s Theorem). Let (Xi, 1 ≤ i < ∞) be exchangeable and R-valued. Let τ be
the tail σ-field. Then, conditionally on τ , the (Xi) are IID. That is,

(a) X1, X2, . . . are CI given τ .

(b) There exists a kernel Q(ω, ·) (a random PM) such that Q(ω, ·) is the regular conditional distribution
of Xi given τ , for each i.

P (Xi ∈ A | τ)(ω) = Q(ω,A) ∀i
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Proof (Sophisticated). Let φ : R→ R be bounded and measurable. Exchangeable implies that

(X1, . . . , Xn)
d
= (X1, Xk, Xk+1, . . . , Xn+k−1)

Let n→∞. Then, (X1, X2, . . . )
d
= (X1, Xk, Xk+1, . . . ). Therefore,

E[φ(X1) |X2, X3, . . . ]
d
= E[φ(X1) |Xk, Xk+1, . . . ]

σ(Xk, Xk+1, . . . ) ↓ τ as k →∞. Apply reversed MG convergence, so the RHS converges to E[φ(X1) | τ ]

a.s. We conclude that E[φ(X1) |X2, X3, . . . ]
d
= E[φ(X1) | τ ].

Fact : If E[Z |G]
d
= Z, then E[Z |G] = Z a.s. If G ⊆ H, if E[Z |G]

d
= E[Z |H], then E[Z |G] = E[Z |H] a.s.

By the exercise, E[φ(X1) |X2, X3, . . . ] = E[φ(X1) | τ ] a.s. By the same argument: ∀k ≥ 1,

E[φ(Xk) |Xk+1, Xk+2, . . . ] = E[φ(Xk) | τ ] a.s.

U and V are CI given τ if and only if E[φ(U)|V, τ ] = E[φ(U)|τ ] a.s. Therefore, Xk and (Xk+1, Xk+2, . . . )
are CI given τ . This is enough to show that (X1, X2, X3, . . . ) are CI given τ .

Exchangeable implies that (X1, Xi+1, Xi+2, . . . )
d
= (Xi, Xi+1, Xi+2, . . . ). By the Lemma,

E[φ(X1) |Xi+1, Xi+2, . . . ] = E[φ(Xi) |Xi+1, . . . ] a.s.

Condition on τ : E[φ(X1) | τ ] = E[φ(Xi) | τ ] a.s. Therefore, X1 and Xi have the same conditional
distribution given τ .

Recall Glivenko-Cantelli: Define F (x1, x2, . . . , xn, t) to be the empirical distribution of (x1, . . . , xn):

F (x1, x2, . . . , xn, t) =
1

n

n∑
i=1

1(xi≤t)

If (Xi, i ≥ 1) are IID with distribution function F , then F (X1, . . . , Xn, t)
a.s.−−→ F (t), for each t, as n→∞.

Given exchangeable (Xi, 1 ≤ i <∞), de Finetti’s Theorem 25.2 implies that

F (X1, · · · , Xn, t)
a.s.−−→ G(ω, t) (25.1)

which is the distribution function of Q(ω, ·).

We can identify Q with the limit 25.1.

25.3 MGs in Galton-Watson Branching Processes

ξ takes values in {0, 1, 2, . . . }. Each individual in generation g has ξ offspring in generation g+ 1. The ξ are
independent. Zn is the number of individuals in generation n, with Z0 = 1 as a default. Write µ = Eξ <∞.

“Extinction” is the event {Zn = 0 for some n} and “survival” is the event {Zn ≥ 1 ∀n}.

Let Fn = σ(Z0, Z1, . . . , Zn).

E[Zn+1 | Fn] = µZn (25.2)

This implies that EZn+1 = µ · EZn, so inductively, EZn = µn.
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If µ < 1, then P (Zn ≥ 1) ≤ EZn ≤ µn → 0, so P (extinction) = 1.

Undergraduate: “P (extinction) < 1” if and only if µ > 1 or P (ξ = 1) = 1.

Study the case µ > 1. 25.2 implies that (Zn/µ
n, n ≥ 0) is a MG, since E[Zn/µ

n] = 1. By the MG conver-

gence theorem, Zn/µ
n a.s.−−→W ≥ 0, EW ≤ 1. Suppose Eξ2 <∞. We will show (Zn/µ

n, n ≥ 1) is UI. Then,
Zn/µ

n → W in L1 and EW = 1. Clearly, {extinction} ⊆ {W = 0}. We can prove {extinction} = {W = 0}
a.s. So, either we have extinction, or Zn grows exponentially fast.

Calculation:

var(Zn) = E var(Zn | Fn−1)︸ ︷︷ ︸
Zn−1 var(ξ)

+ varE[Zn | Fn−1]︸ ︷︷ ︸
µ·Zn−1

var

(
Zn
µn

)
=

var(ξ)

µn+1
+ var

(
Zn−1

µn−1

)
By induction,

var

(
Zn
µn

)
= var(ξ) ·

n+1∑
i=2

1

µi

≤ K <∞ for all n

so (Zn/µ
n, n ≥ 1) is UI.

25.4 L2 Theory

Topic: L2 theory. (See Durrett for more.)

Consider (Mn, n ≥ 0), M0 = 0, with ∆n = Mn −Mn−1. Suppose EM2
n <∞, for all n.

Orthogonality of Increments. E[∆i∆j ] = 0, for i < j, because E[∆i∆j | Fj−1] = ∆iE[∆j | Fj−1] = 0. So
EM2

n =
∑n
i=1E[∆2

i ]. Say that the martingale is “L2 bounded” if supnEM
2
n < ∞, which is equivalent to∑∞

i=1E[∆2
i ] < ∞. If (Mn) is L2 bounded, then (L1 convergence) Mn

a.s.−−→ M∞ and in L1. In fact, we also
have Mn →M∞ in L2.

For n1 < n2, E[(Mn2
−Mn1

)2] =
∑n2

i=n1+1E[∆2
i ]. If (Mn) is L2 bounded,

lim
n→∞

sup
n2>n1

‖Mn2 −Mn1‖2 = 0

“Cauchy criterion =⇒ convergence” is the definition of a “complete metric space”.

Fact. L2 is a complete metric space.

This implies that Mn →M∞ in L2.
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26.1 Brownian Motion

A R1-valued process (B(t), 0 ≤ t <∞) is (standard) Brownian motion (Wiener process) if B(0) = 0
and

(a) B(t0), B(t1)−B(t0), . . . , B(tn)−B(tn−1) are independent, for any 0 ≤ t0 < t1 < · · · < tn (“independent
increments”).

(b) B(t)−B(s) has the Normal(0, t− s) distribution, where t− s is the variance.

(c) The sample paths t 7→ B(t) are continuous. We have a measurable function B(ω, t). In other words,
for all ω, t 7→ B(ω, t) is continuous [0,∞)→ R.

Write Q2 for the dyadic rationals, the set of {i/2j , i, j ≥ 0}. We will work on the time interval [0, 1].
Enumerate Q2 as q1, q2, q3, . . . . For each n, properties (a) and (b) specify a joint distribution of

(B(q1), B(q2), . . . , B(qn))

by relabeling the qi. These are consistent, as n increases. Suppose that we add a time s between t1 and t2.
We check that Normal(0, s− t1) + Normal(0, t2 − s) = Normal(0, t2 − t1) for independent normals. Use the
Kolmogorov Extension Theorem to show that there exists a process (B(q), q ∈ Q2 ∩ [0, 1]).

For f : Q2 ∩ [0, 1]→ R and δ > 0, define

w(f, δ) = sup
0≤q1<q2≤1
qi∈Q2
q2−q1≤δ

|f(q2)− f(q1)|

Lemma 26.1. If
w(f, δ)→ 0 as δ → 0 (26.1)

then there exists a continuous f̃ : [0, 1]→ R such that f̃(q) = f(q) ∀q ∈ Q2 ∩ [0, 1].

Proof. Define

f̃(t) = lim sup
q↓t
q∈Q2

f(q)

If |t− s| ≤ δ, then |f̃(t)− f̃(s)| ≤ w(t, δ). Then, (26.1) implies that f̃ is continuous.
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Now, it is enough to show P (w(B(·), δ) ≥ ε)→ 0 as δ ↓ 0, with ε > 0 fixed. This will imply w(B(·), δ)→ 0
a.s. as δ → 0. Then, we can apply 26.1 to show that there exists B̃ such that (t 7→ B̃(ω, t) is continuous)
a.s. It is easy to check that properties (a) and (b) remain true for all real t. Redefine B(t, ω) ≡ 0 ∀t on a
null set.

Define
w̄(f, 2−m) = max

0≤j≤2m−1
sup

j/2m≤q≤(j+1)/2m
|f(q)− f(j/2m)|

Consider 0 ≤ q1 < q2 ≤ 1 with q2−q1 ≤ 1/2m, which means they are either in the same or adjacent intervals.
Then |f(q2)− f(q1)| ≤ 3w̄(f, 2−m). It is enough to prove P (w̄(B(·), 2−m) ≥ ε) → 0 as m → ∞. (Yn ↓ 0 in
probability implies Yn ↓ 0 a.s.)

Define Sm = sup0≤q≤1/2m |B(q)|. w̄(B(·), 2−m) is the maximum of 2m identically distributed RVs. Then

P (w̄(B(·), 2−m) ≥ ε) ≤ 2mP (Sm ≥ ε).

Fix m and take n > m. Consider B(i/2n, 0 ≤ i ≤ 2n/2m). This is a MG. Therefore, B4(i/2n, i ≥ 0) is a
sub-MG. Use the L1 maximal inequality.

P

(
max

i/2n≤1/2m
B4

(
i

2n

)
≥ ε4

)
≤ ε−4EB4

(
1

2m

)
= ε−42−2mEZ4

(If Z is Normal(0, 1), then B(t)
d
= t1/2Z.) Let n→∞. Then P (Sm > ε) ≤ ε−42−2mEZ4.

P (w̄(B(·), 2−m) ≥ ε) ≤ 2mP (Sm ≥ ε) ≤ 2−mε−4EZ4 → 0 as m→∞

Theorem 26.2. For almost all ω, the sample path t 7→ B(ω, t) is nowhere differentiable.

If Brownian motion were differentiable at the origin, we would expect B(t) ∼ O(t) as t → 0, which contra-
dicts the fact that B(t) has SD t1/2.

Analysis. Consider f : [0, 1]→ R. Fix C <∞. Suppose ∃s such that f ′(s) exists and |f ′(s)| ≤ C/2. Then,
there exists n0 such that for n ≥ n0,

|f(t)− f(s)| ≤ C|t− s| for all t such that |t− s| ≤ 3/n (26.2)

Rewrite the above statement: define An = {f : (26.2) holds for some s}. As n→∞,

An ↑ A ⊇ {f : |f ′(s)| ≤ C/2 for some s}

For 0 ≤ k ≤ n− 1, define

Y (f, k, n) = max

(∣∣∣∣f (k + 3

n

)
− f

(
k + 2

n

)∣∣∣∣, ∣∣∣∣f (k + 2

n

)
− f

(
k + 1

n

)∣∣∣∣, ∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣)
Given f ∈ An, (26.2) holds for some s, say k/n ≤ s ≤ (k + 1)/n. Near s, the slope is C, so the maximum
difference is at most C · 5/n, so Y (f, k, n) ≤ 5C/n. Then

An ⊆ Dn
def
= {f : Y (f, k, n) ≤ 5C/n for some k ≤ n− 1}

Probability.

P

(∣∣∣∣B(k + 1

n

)
−B

(
k

n

)∣∣∣∣ ≤ 5C

n

)
= P

(
|Z| ≤ 5C

n1/2

)
(26.3)

≤ (2π)−1/2 · 10C

n1/2
(26.4)
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since the increment is Normal(0, 1/n) = n−1/2Z. Regard B(·) as a random f .

P

(
Y (B, k, n) ≤ 5C

n

)
≤ (26.3)

3 ≤ 1000C3

n3/2
(26.5)

Then

P (B(·) ∈ Dn) ≤ n · (26.5)

≤ 1000C3

n1/2

P (B(·) ∈ An) ≤ 1000C3

n1/2

Let n→∞. P (B(·) ∈ A) = 0.



Lecture 27

November 29

27.1 Aspects of Brownian Motion

• model for many processes fluctuating continuously: stock market, etc.

• (Theory) limit of RWs with small step size

• Gaussian process

• “diffusions”: continuous-path Markov processes

• martingale properties

We will concentrate on the last aspect.

Definition 27.1. Brownian motion (B(t), 0 ≤ t <∞) has the properties

• for s < t, B(t)−B(s)
d
= Normal(0, t− s)

• for 0 ≤ t1 < t2 < · · · < tn, the increments (B(ti+1)−B(ti), 1 ≤ i ≤ n− 1) are independent

• the sample paths t 7→ B(t) are continuous

• B(0) = 0

27.2 Continuous-Time Martingales

(Mt,Ft) with the filtration (Ft, 0 ≤ t <∞) is a MG if

• E|Mt| <∞ ∀t

• Mt is adapted to Ft

• for s < t, E[Mt | Ft] = Ms a.s.

All of our MGs will have continuous paths. The general theory requires only right-continuity.

T : Ω→ [0,∞) is a stopping time if {T ≤ t} ∈ Ft, for all 0 ≤ t <∞. In discrete time, the stopping time
property with {T ≤ n} was equivalent to the definition with {T = n}, but this is not true in continuous time.

Theorem 27.2 (Optional Sampling Theorem). If (Mt) is a MG, if T is a stopping time, and if (for t0
an integer, WLOG) P (T ≤ t0) = 1, then EMT = EM0.
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Proof. Fix m and look at times that are multiples of 2−m. Define Tm = inf {i/2m : i/2m > T}. Note
that {T < t} =

⋃
n{T ≤ t − 1/n} ∈ Ft. This Tm is a stopping time for (Mi/2m ,Fi/2m , i ≥ 0), and

Tm ≤ t0 + 1. Apply the discrete-time OST to obtain EMTm = EM0 and MTm = E[Mt0+1 | FTm ] (which
implies that (MTm ,m ≥ 1) is UI). As m → ∞, Tm ↓ T , and right-continuity implies that MTm → MT

a.s., so EMTm → EMT .

With BM we associate the natural filtration Ft = σ(Bs, 0 ≤ s ≤ t).

Proposition 27.3. The following are MGs.

• Bt

• B2
t − t

• exp(θBt − θ2t/2), for θ ∈ R

• B3
t − 3tBt

• B4
t − 6tB2

t + 3t2

Proof. Fix s < t.

Bt = Bs + (Bt −Bs)
E[Bt | Fs] = Bs + E[Bt −Bs | Fs]

= Bs + E[Bt −Bs]
= Bs + 0 = Bs

Bt − Bs is independent of (Bs1 , Bs2 , . . . , Bsn) for all 0 ≤ s1 < s2 < · · · < sn ≤ s. We conclude that

Bt − Bs is independent of Fs
def
= σ(Bi, 0 ≤ u ≤ s) using the MT fact about independence: it suffices to

prove independence for any finite subcollection.

Write Yt = B2
t − t = (Bt + (Bt −Bs))2 − t.

Yt = Ys + 2Bs(Bt −Bs) + (Bt −Bs)2 − (t− s)
E[Yt | Fs] = Ys + 2BsE[Bt −Bs | Fs]︸ ︷︷ ︸

=0

+E[(Bt −Bs)2 | Fs]︸ ︷︷ ︸
=E(Bt−Bs)2=t−s

−(t− s) = Ys

Aside. If W
d
= Normal(0, σ2), then E exp(θW ) = exp(θ2σ2/2).

Write Zθt = exp(θBt − θ2t/2).

Zt = Zs exp(θ(Bt −Bs)) exp

(
−θ

2

2
(t− s)

)
E[Zt | Fs] = Zs exp

(
θ2

2
(t− s)

)
E exp(θ(Bt −Bs))︸ ︷︷ ︸

=exp(θ2(t−s)/2)

= Zs

Informally, (Zθt , 0 ≤ t <∞) is a MG, so (
dk

dθk
Zθt , 0 ≤ t <∞

)
should be a MG. If we differentiate k times, and set θ = 0, we get a sequence of polynomials in Bt.
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A typical stopping time is Tb = inf {t : B(t) = b} = inf {t : B(t) ≥ b} (for b > 0). Also, for b > 0, t > 0,
{Tb ≤ t} = {sups≤tB(s) ≥ b}. Note that

sup
s≤t

B(s) = sup
u≤t

u rational

B(u)

is Ft-measurable.

Lemma 27.4. Fix −a < 0 < b. Consider T = min {T−a, Tb}. Then

P (BT = b) =
a

a+ b
= P (Tb < T−a) (27.1)

P (BT = −a) =
b

a+ b
(27.2)

ET = ab (27.3)

Proof. P (T > t) ≤ P (B(t) ∈ [−a, b])→ 0 as t→∞, so T <∞ a.s. Apply OST, 27.2, to 0 and T ∧ t.

0 = EB0 = EBT∧t

As t→∞, BT∧t → BT a.s. and

|BT∧t| ≤ max(a, b)

This implies that 0 = EBT , but BT takes values in {−a, b} only, so we must have the distribution (27.1)
and (27.2).

Apply the OST 27.2 to B2
t − t. Then EB2

T∧t = E[T ∧ t]. Let t→∞.

EB2
T = ET = b2

(
a

a+ b

)
+ (−a)2

(
b

a+ b

)
= ab

Note P (Tb <∞) ≥ P (Tb < T−a)→ 1 as a→∞, so Tb <∞ a.s.

Fix c > 0 and −∞ < d <∞. Consider T = inf {t : Bt = c+ dt} ≤ ∞.

Lemma 27.5.

E exp(−λT ) = exp
(
−c
(
d+

√
d2 + 2λ

))
for 0 ≤ λ <∞. This is the Laplace transform of T .

Proof. Consider θ > max(0, 2d). Apply the OST 27.2 to exp(θBt − θ2t/2) and T ∧ t.

1 = E exp

(
θBT∧t −

θ2

2
(T ∧ t)

)
(27.4)

Case d ≤ 0, θ > 0: Here, BT∧t − (θ2/2)(T ∧ t) ≤ θc, T ≤ Tc <∞.
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Case d > 0, θ > 2d:

θBT∧t −
θ2

2
(T ∧ t) ≤ sup

0≤s<∞

(
θ(c+ ds)− θ2

2
s

)
≡ θc

and θBT∧t − (θ2/2)(T ∧ t)→∞ as t→∞ on {T =∞}.

Let t→∞. 1 = E[exp(θBT − (θ2/2)T )]1(T<∞). Put BT = c+ dT on {T <∞}.

1 = exp

(
θc+

(
θd− θ2

2

)
T

)
1(T<∞)

Given λ > 0, define θ = θ(λ) as the solution of θd− θ2/2 = −λ, so θ(λ) = d+
√
d2 + 2λ > max(0, 2d).

1 = E exp(cθ(λ)− λT )

E exp(−λT ) = exp(−cθ(λ))



Lecture 28

December 1

28.1 Explicit Calculations with Brownian Motion

Last class:

Ta = inf {t : Bt = a} (28.1)

Tc,d = inf {t : Bt = c+ dt}, c > 0,−∞ < d <∞ (28.2)

E exp(−λTc,d) = exp
(
−c
(
d+

√
d2 + 2λ

))
, 0 < λ <∞ (28.3)

28.1.1 Consequences of Formula (28.3)

Special Cases.

1. d = 0, c > 0.

E exp(−λTc) = exp(−c
√

2λ), 0 < λ <∞

We can invert this to get the formula for the density.

2.

P (Tc,d <∞) = lim
λ↓0

E exp(−λTc,d) =

{
exp(−2cd), d ≥ 0

1, d ≤ 0

We know 0 < T ≤ ∞. As λ ↓ 0, exp(−λT ) ↑ 1(T<∞), so the expectation converges to P (T < ∞) by
monotone convergence.

Define Md
def
= supt≥0 (Bt − dt), which is BM with drift −d. The event {Md ≥ c} = {Tc,d < ∞}, so

P (Md ≥ c) = exp(−2dc) (for d > 0). Therefore, the distribution of Md is Exponential(2d),

EMd =
1

2d

28.1.2 Reflection Principle Formula & Consequences

Theorem 28.1 (Reflection Principle). For a, b > 0, t > 0,

P (Ta ≤ t, Bt ≥ a+ b) = P (Ta ≤ t, Bt ≤ a− b)

Condition on Ta = s, say. The future process B̃u = Bs+u − a, 0 ≤ u <∞, is distributed as BM.

P (Bt ≥ a+ b | Ta = s) = P (B̃t−s ≥ b)

102
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P (Bt ≤ a− b | Ta = s) = P (B̃t−s ≤ −b)
P (Bt ≥ a+ b | Ta = s) = P (Bt ≤ a− b | Ta = s)

This implies (by integration)

P (Bt ≥ a+ b | Ta ≤ t) = P (Bt ≤ a− b | Ta ≤ t)

P (Ta ≤ t) = 2P (Bt ≥ a) = P (|Bt| ≥ a) (28.4)

The standard Normal density for Z is

φ(x) =
1√
2π

exp

(
−x

2

2

)
Φ̄(x) =

∫ ∞
x

φ(u) du

and Bt
d
= t1/2Z.

P (Ta ≤ t) = 2P (Z ≥ at−1/2) = 2Φ̄(at−1/2)

Ta has density

fTa(t) = 2 ·
(
−1

2
at−3/2

)
(−φ(at−1/2))

=
a√
2π
t−3/2 exp

(
−a

2

2t

)
, 0 < t <∞

Check that this is consistent with E exp(−λTa) = exp(−a
√

2λ). Because fTa(t) ≈ t−3/2 as t→∞, ETa =∞.

Consider Mt = sup0≤s≤tBs. Then the event {Mt ≥ a} equals the event {Ta ≤ t}, so

P (Mt ≥ a) = P (Ta ≤ t) = P (|Bt| ≥ a)

by (28.4). Therefore, Mt
d
= |Bt|, for each 0 < t <∞, but they are not the same as processes.

We can use the Reflection Principle 28.1 formula to find the joint distribution of (Mt, Bt). We know that
P (Ta ≤ t, Bt ≥ a+ b) = P (Bt ≥ a+ b), so P (Bt ≥ a+ b) = P (Mt ≥ a,Bt ≤ a− b). Replace b by a− b.

P (Bt ≥ 2a− b) = P (Mt ≥ a,Bt ≤ b)

(for a > 0, a > b). Hence,

P (Mt ≥ a,Bt ≤ b) = Φ̄

(
2a− b
t1/2

)
So, (Mt, Bt) has joint density

fMt,Bt(a, b) = − d

da

d

db
Φ̄

(
2a− b
t1/2

)
=

d

da

(
t−1/2φ

(
2a− b
t1/2

))
= −t−1/2 · 2t−1/2φ′

(
2a− b
t1/2

)
=

2

t

2a− b
t1/2

1√
2π

exp

(
− (2a− b)2

2t

)
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fMt,Bt(a, b) =
2(2a− b)√

2πt3/2
exp

(
− (2a− b)2

2t

)
, for ∞ > a ≥ b > −∞ (28.5)

using φ′(x) = −xφ(x).

Special Cases of (28.5) with t = 1.

f(a, 0) = =
4a√
2π

exp(−2a2)

The conditional density of M1 given B1 = 0 is

fM1 | B1
(a | 0) =

fM1,B1
(a, 0)

fB1
(0)

= 4a exp(−2a2)

since

fB1
(0) = φ(0) =

1√
2π

Therefore,

P (M1 ≥ a |B1 = 0) = exp(−2a2)

Brownian bridge (B0
t , 0 ≤ t ≤ 1) is defined as (Bt, 0 ≤ t ≤ 1), conditioned on (B1 = 0). Hence,

P (M0 ≥ a) = exp(−2a2) for M0 = sup0≤t≤1B
0
t .

Another Special Case: a = 0. Consider

fB1|M1
(−b | 0) =

fM1,B1
(0,−b)

fM1
(0)

=
2b√
2π

exp

(
−b

2

2

)
·
√

2π

2

= b exp

(
−b

2

2

)
Therefore,

P (B1 ≥ b |Bt ≥ 0 ∀t ∈ [0, 1]) = exp

(
−b

2

2

)
, b > 0

M1
d
= |B1| implies fM1

(0) = 2φ(0).

Brownian meander (B
(m)
t , 0 ≤ t ≤ 1) is defined as BM conditioned on (Bt ≥ 0, 0 ≤ t ≤ 1). The calculation

gives the distribution of B
(m)
1 .
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