Chapter 5 Markov Chains
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10.

11.

where |A| denotes the number of elements in A.

{b) Obtain a lower bound for the mean number of flips required
until all 2¥ patterns of length & have appeared when a fair coin
is repeatedly flipped.

Consider a Markov chain whose state space is the set of non-
negative integers. Suppose its transition probabilities are given
by

Ri=p,120, F;1=11>0

where ‘Zi ip; < oo. Find the limiting probabilities for this
Markov chain.

. Consider a Markov chain with states 0,1,..., N and transition

probabilities
Py =1, Pijxl/i,i>0,j<i

That is, from state 0 the chain always goes to state NV, and from
state ¢ > 0 it is equally likely to go to any lower numbered state.
Find the limiting probabilities of this chain.

Consider a Markov chain with states 0,1, ..., N and transition
probabilities

Fiivi=p=1-F;,,i=1,...,.N-1

Poo=FPyn=1

Suppose that X¢ = i, where 0 < ¢ < N. Argue that, with
probability 1, the Markov chain eventually enters either state
0 or N. Derive the probability it enters state N before state 0.
This is called the gambler’s ruin probability.

If X, is a stationary ergodic Markov chain, show that X, Xo, ...
is an ergodic sequence.

Suppose X1, Xo,... are iid integer valued random variables
with M, = max;<, X;. Is M, necessarily a Markov chain?
If yes, give its transition probabilities; if no, construct a coun-
terexample.
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12. Suppose X, is a finite state stationary Markov chain, and let a Markov
T =min{n > 0: X;, = Xo}. Compute E{T]. :

13. Hastings-Metropolis algorithm. Given an irreducible Markov
chain with transition probabilities P;; and any positive proba-
bility vector {m;} for these states, show that the Markov chain
with transition probabilities Q;; = min{ Py, 7; Pyi/m;) if © # j
and Qi =1~ E#i Qij, is time reversible and has stationary
distribution {;}. '

Show that
probabilit

14. Consider a time reversible Markov chain with transition prob-
abilities P;; and stationary probabilities m;. If A is a set of

states of this Markov chain, then we define the A-truncated 17. Consider

), ) ] integers,
chain as being a Markov chain whose set of states is A and - inbegers,
whose transition probabilities P;;‘ i, € A, are given by h

Py if § 4
132.4 = { I e e Show tha
J o : =
Patdugabin 5=t from stat
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15. A collection of M balls are distributed among m urns. At each
stage one of the balls is randomly selected, taken from whatever
urn it is in and then randomly placed in one of the other m — 1 %
urns. Consider the Markov chain whose state at any time is .}
the vector (n1,mg,..-,Nm) where n; is the number of balls in
urn ¢. Show that this Markov chain is time reversible and find
its stationary probabilities.

16. Let Q be an irreducible symmetric transition probability matrix
on the states 1,...,n. That is,

Qij=jS, ?:,j=1,...,n

Let b;,i = 1,...,n be specified positive numbers, and consider
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ndom variable with n trials and 16. Let Zy, Z1, Z,,
pling argument that Pr(X > k)
ad in p for fixed n and k. 20, Zry Zog,

... be a realization of a finite-state ergodic chain. If
we sample every kth epoch, then show (a) that the sampled chain
-« 18 ergodic, (b) that it possesses the same equilibrium

distribution as the original chain, and (c} that it is reversible if the
with mean A. Demonstrate that original chain is. Thus, based on the ergodic theorem, we can estimate
fixed. (Hint: If A; < Xy, then

theoretical means by sample averages using only every kth epoch of

ariables Y; and Y, with means the original chain.

17. Take three numbers z;, x5, and x3 and form the stuccessive running

es. Between every pair of nodes, AVETARES Ty = (Zpn. 3 + Tp_o + Trn_1)/3 starting with z,. Prove that

h probability p. If ¢(p) denotes
.ected, then it is intuitively clear lm z, = =L + 25 + 3:63.
npling proof of this fact. n—roo 6

rs0,...,m with transition prob- 18. Consider a random walk on the integers {0,1,...,n}. States 0 and
S n are absorbing in the sense that P00 = Pnn = L. If { is a transient
state, then the transition probabilities Piiy1 = p and pi,y = g,

jg=i—1 where p + ¢ = 1. Verify that the hitting probabilities are
Jj=i+1 o~y
" e - { o1 p#a
= 1. All other transition proba- in b
ts trapped at 0 or m. Let f; be ne p=q
tbed at 0 starting from <. Show and the mean hitting times are
1e eniries of ¢ = (g1,...,qm_1). s
ori=1,...,m— 1. Construct o (-1
“and g* such’ that Xg =Y =4 t, = { P-g (%?"—1 g P 74
X3. This requires coordinating i(n — 1), p=gq.
7, then run the X,, chain until {Hint: First argue that
- case, take another coordinated -
i, = 14 Zpiktk
total variation norm given in k=1

in the notation of Section 7.5.)

th success probability p and ¥ a 19

- An acceptance function a : (0, 00) + [0,1] satisfies the functional
ve the total variation inequality

identity a(x) = za(1/z). Prove that the detailed balance condition

TalijQiy = Wiqya5
2 7.18 )
s P ( ) holds if the acceptance probability a;; is defined by
-of X and Y. (quji)
;s = =
wriables U4, Us, V4, and V5 are Tidij

wnd V1 and V; are independent. in terms of an acceptance function o(z). Check that the Barker func-

tion a(z) = /(1 4 ) qualifies as an acceptance function and that
any acceptance function is dominated by the Metropolis acceptance

— il + 7w, — 7yl (7.19) function in the sense that a(x) < min{z, 1} for all z.




