s and Expectations

eceding, to show

$$\frac{1}{\sqrt{2\pi}}e^{-c^2/2}$$

e at least as large

/2

$$e^{-c^2/2}$$

iean λ . Show that,

es that for c > 0

obtained from the

dependent Bernoulli

 c^2/n

parameters n and p,

8. Prove that

$$E[f(X)] \ge E[f(E[X|Y])] \ge f(E[X])$$

Suppose you want a lower bound on E[f(X)] for a convex function f. The preceding shows that first conditioning on Y and then applying Jensen's inequality to the individual terms E[f(X)|Y=y] results in a larger lower bound than does an immediate application of Jensen's inequality.

- 9. Let X_i be binary random variables with parameters $p_i, i = 1, \ldots, n$. Let $X = \sum_{i=1}^{n} X_i$, and also let I, independent of the variables X_1, \ldots, X_n , be equally likely to be any of the values $1, \ldots, n$. For R independent of I, show that
 - (a) $P(I = i | X_I = 1) = p_i / E[X]$
 - (b) $E[XR] = E[X]E[R|X_I = 1]$
 - (c) $P(X > 0) = E[X] E[\frac{1}{X} | X_I = 1]$
- 10. For X_i and X as in Exercise 9, show that

$$\sum_{i} \frac{p_i}{E[X|X_i = 1]} \ge \frac{(E[X])^2}{E[X^2]}$$

Thus, for sums of binary variables, the conditional expectation inequality yields a stronger lower bound than does the second moment inequality.

Hint: Make use of the results of Exercises 8 and 9.

- 11. Let X_i be exponential with mean 8 + 2i, for i = 1, 2, 3. Obtain an upper bound on $E[\max X_i]$, and compare it with the exact result when the X_i are independent.
- 12. Let U_i , i = 1, ..., n be uniform (0,1) random variables. Obtain an upper bound on $E[\max U_i]$, and compare it with the exact result when the U_i are independent.
- 13. Let U_1 and U_2 be uniform (0,1) random variables. Obtain an upper bound on $E[\max(U_1, U_2)]$, and show this maximum is obtained when $U_1 = 1 U_2$.

- 11. Let $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Using inequality (3.7), verify the inequality $n\sqrt[n]{n+1} \le n + H_n$ for any positive integer n (Putnam Competition 1975).
- 12. Show that the loglikelihood L(r) in Example 3.4.1 is concave under the reparameterization $r_i = e^{\theta_i}$.
- 13. Suppose in Example 3.4.2 we minimize the function

$$h_{\epsilon}(\theta) = \sum_{i=1}^{p} \left\{ \left[y_i - \sum_{j=1}^{q} x_{ij} \theta_j \right]^2 + \epsilon \right\}^{1/2}$$

instead of $h(\theta)$ for a small, positive number ϵ . Show that the same MM algorithm applies with revised weights $w_i(\theta^n) = 1/\sqrt{r_i(\theta^n)^2 + \epsilon}$.

- 14. Suppose the random variables X and Y have densities f(u) and g(u) such that $f(u) \geq g(u)$ for $u \leq a$ and $f(u) \leq g(u)$ for u > a. Prove that $E(X) \leq E(Y)$. If in addition f(u) = g(u) = 0 for u < 0, show that $E(X^n) \leq E(Y^n)$ for all positive integers n [49].
- 15. If the random variable X has values in the interval [a, b], then show that $Var(X) \leq (b-a)^2/4$. (Hints: Reduce to the case [a, b] = [0, 1]. If E(X) = p, then show that $Var(X) \leq p(1-p)$.)
- 16. Let X be a random variable with E(X)=0 and $E(X^2)=\sigma^2$. Show that

$$\Pr(X \ge c) \le \frac{a^2 + \sigma^2}{(a+c)^2} \tag{3.8}$$

for all nonnegative a and c. Prove that the choice $a = \sigma^2/c$ minimizes the right-hand side of (3.8) and that for this choice

$$\Pr(X \ge c) \le \frac{\sigma^2}{\sigma^2 + c^2}.$$

This is Cantelli's inequality [49].

17. Suppose g(x) is a function such that $g(x) \le 1$ for all x and $g(x) \le 0$ for $x \le c$. Demonstrate the inequality

$$\Pr(X \ge c) \ge \operatorname{E}[g(X)]$$
 (3.9)

for any random variable X [49]. Verify that the polynomial

$$g(x) = \frac{(x-c)(c+2d-x)}{d^2}$$

with d > 0 satisfies t If X is nonnegative then prove that the

Finally, if $E(X^2) = 1$

18. Let X be a Poisson 1 the Chernoff bound

 \mathbf{P}

amounts to

for any integer $c > \lambda$

- 19. Let $B_n f(x) = \mathbf{E}[f(S_n)]$ approximating $f(S_n)$
 - (a) $B_n f(x)$ is linea
 - (b) $B_n f(x) \ge 0$ if j
 - (c) $B_n f(x) = f(x)$
 - $(d) B_n x(1-x) = 2$
- 20. Suppose the function show that Bernstein

$$\left| \mathbf{E} \right| f \left(\frac{S}{2} \right)$$

Conclude from this

21. Let f(x) be a convex polynomial of degree Show that

$$\frac{d^2}{dx^2} \mathrm{E} \Big[f \Big(\frac{S_n}{n} \Big) \Big]$$

in the notation of E

, verify the inequality Putnam Competition

3.4.1 is concave under

ction

$$+\epsilon$$

. Show that the same $\theta^n = 1/\sqrt{r_i(\theta^n)^2 + \epsilon}$.

ensities f(u) and g(u) g(u) for u > a. Prove g(u) = 0 for u < 0, show g(u) = 0 for u < 0, show

terval [a, b], then show the case [a, b] = [0, 1]. If

nd $E(X^2) = \sigma^2$. Show

(3.8)

ce $a = \sigma^2/c$ minimizes hoice

for all x and $g(x) \leq 0$

e polynomial

x)

with d > 0 satisfies the stated conditions leading to inequality (3.9). If X is nonnegative with E(X) = 1 and $E(X^2) = \beta$ and $c \in (0,1)$, then prove that the choice $d = \beta/(1-c)$ yields

$$\Pr(X \ge c) \ge \frac{(1-c)^2}{\beta}.$$

Finally, if $E(X^2) = 1$ and $E(X^4) = \beta$, show that

$$\Pr(|X| \ge c) \ge \frac{(1-c^2)^2}{\beta}.$$

18. Let X be a Poisson random variable with mean λ . Demonstrate that the Chernoff bound

$$\Pr(X \ge c) \le \inf_{t>0} e^{-ct} \operatorname{E}(e^{tX})$$

amounts to

$$\Pr(X \ge c) \le \frac{(\lambda e)^c}{c^c} e^{-\lambda}$$

for any integer $c > \lambda$.

- 19. Let $B_n f(x) = \mathbb{E}[f(S_n/n)]$ denote the Bernstein polynomial of degree n approximating f(x) as discussed in Example 3.5.1. Prove that
 - (a) $B_n f(x)$ is linear in f(x),
 - (b) $B_n f(x) \ge 0 \text{ if } f(x) \ge 0,$
 - (c) $B_n f(x) = f(x)$ if f(x) is linear,
 - (d) $B_n x(1-x) = \frac{n-1}{n} x(1-x)$.
- 20. Suppose the function f(x) has continuous derivative f'(x). For $\delta > 0$ show that Bernstein's polynomial satisfies the bound

$$\left| \mathbb{E} \left[f \left(\frac{S_n}{n} \right) \right] - f(x) \right| \leq \delta ||f'||_{\infty} + \frac{||f||_{\infty}}{2n\delta^2}$$

Conclude from this estimate that

$$\left|\left|\mathrm{E}\left[f\!\left(\frac{S_n}{n}\right)\right] - f\right|\right|_{\infty} = O(n^{-\frac{1}{3}}).$$

21. Let f(x) be a convex function on [0,1]. Prove that the Bernstein polynomial of degree n approximating f(x) is also convex. (Hint: Show that

$$\frac{d^2}{dx^2} \mathbf{E} \Big[f \Big(\frac{S_n}{n} \Big) \Big] = n(n-1) \Big\{ \mathbf{E} \Big[f \Big(\frac{S_{n-2} + 2}{n} \Big) \Big] -2 \mathbf{E} \Big[f \Big(\frac{S_{n-2} + 1}{n} \Big) \Big] + \mathbf{E} \Big[f \Big(\frac{S_{n-2}}{n} \Big) \Big] \Big\}.$$

in the notation of Example 3.5.1.)