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Chapter 3 Conditional Expectation and Martingales

Suppose X, Xs, ..., are independent and identically distributed

mean 0 random variables which each take value +1 with prob-

ability 1/2 and take value -1 with probability 1 /2. Let §, =
1 X;. Which of the following are stopping times? Compute

the mean for the ones that are stopping times.

(a) i =min{i >5:8;, =85 + 5}

b)) To=Ty-5

(C) T3 =T5 +10.

Consider a sequence of independent flips of a coin, and let
Py, denote the probability of a head on any toss. Let A be
the hypothesis that P, = g and let B be the hypothesis that
Py = b, for given values 0 < a,b < 1. Let X; be the outcome of
flip 4, and set
7 P(Xy,...,X,|A)

" P(Xy,...,X,|B)

If P, = b, show that Z,,n > 1, is a martingale having mean 1.

Let Z,,n > 0 be a martingale with Zy = 0. Show that

n

E[Z?) = ZE{(Zz — Zi—1)?]
i=1

Consider an individual who at each stage, independently of
past movements, moves to the right with probability p or to
the left with probability 1 — p. Assuming that p > 1/2 find
the expected number of stages it takes the person to move %
positions to the right from where she started.

In Example 3.19 obtain bounds on p when 8 < 0.

Use Wald’s equation to approximate the expected time it takes
a random walk to either become as large as a or as smiall as —b,
for positive @ and b. Give the exact expression if o and b are
integers, and at each stage the random walk either moves up 1
with probability p or moves down 1 with probability 1 — p.

Consider a branching process that starts with a single individ-
ual. Let 7 denote the probability this process eventually dies
out. With X, denoting the number of individuals in generation
n, argue that 7%, n >0, is a martingale.
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Given X1, Xs,..., let S, = 3.0, X; and F, = o(X,,.. Xy).
Suppose for all n E|S,| < oc and E[S,.1|Fn] = Sn. Show
E[X;X;] = 0if i # j.

Suppose n random points are chosen in a circle having diam-
eter equal to 1, and let X be the length of the shortest path
connecting all of them. For a > 0, bound P(X — E{X] > a).

Let X3, X9,...,X, beindependent and identically distributed
discrete random variables, with P(X; = j} = p;. Obtain
bounds on the tail probability of the number of times the pat-
tern 0,0,0,0 appears in the sequence.

Repeat Example 3.27, but now assuming that the X; are inde-
pendent but not identically distributed. Let P; ; = P(X; = j).

Let Z,,n > 0, be a martingale with mean Zy = 0, and let
v4,7 2 0, be a sequence of nondecreasing constants with vy = 0.
Prove the Kolmogorov-Hajek-Renyi inequality:

k1
P(|Zj| Swj, forall j=1,...,n) > 1= Y E[(Z; — Zj_1)"]/v}

J=1

Consider a gambler who plays at a fair casino. Suppose that the
casino does not give any credit, so that the gambler must quit
when his fortune is 0. Suppose further that on each bet made
at least 1 is either won or lost. Argue that, with probability 1,
a gambler who wants to play forever will eventually go broke.

What is the implication of the martingale convergence theorem
to the scenario of Exercise 107

Three gamblers each start with a,b, and ¢ chips respectively.
In each round of a game a gambler is selected uniformly at
random to give up a chip, and one of the other gamblers is
selected uniformly at random to receive that chip. The game
ends when there are only two players remaining with chips.
Let X,,Y,, and Z, respectively denote the number of chips
the three players have after round n, so (Xg, Yo, Zo) = (a, b, ¢).
(a) Compute E[Xn1Yn1Zn+1 | (Xn, Ya, Zn) = (z,y, 2)]-

(b) Show that M,, = X,,Y¥,,Z, + n{a+b+c)/3 is a martingale.

(c) Use the preceding to compute the expected length of the
game.
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10.6 Problems 217

Let Y7, ..., Y, be independent Bernoulll random variables with suc-
cess probability p. Graphically compare the large deviation bound
(10.22) to Chebyshev’s bound

np(l — 1)
Pr(|S, —nul > A) < SV
when g = 1/2. Which bound is better? If neither is uniformly better
than the other, determine which combinations of values of n and A
favor Chebyshev’s bound.

Suppose that vi,...,v, € R™ have Euclidean norms ||v;||2 < 1. Let
¥1,..., Y, be independent randomn variables uniformly distributed on
the two-point set {—1,1}. If Z = ||[Yiv1 + - - + Y,vnliz, then prove
that

Pr[Z —E(Z) > A/n] < e 5.




