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3.7 Exercises

1. For F = {¢.1}, show that E[X|F]= E[X].

9. Qive the proof of Proposition 3.2 when X and Y are jointly

continuous.

3. If E|Xi|} <00, 8= 1,...,n, show that

B[y XilF) =D Bl

i=1 i=1
4. Prove that if f is a convex function, then
E(f(X)1F) = fEXIFD

provided the expectations exist.

5. Let Xy, X2,--+» be independent random variables with mean

1. Show that Zn = ey Xisn 2 1, is a martingale.

6. 1t E[Xns1lX1:--- , Xnl = a4 Xn+bn for constants an, bn,n 2 0,
find constants An, By, so that Zn = ApXn 4 Bnyn 2 0, is a

martingale with respect to the filtration o(Xo,. - Xn)-

7. Consider a population of individuals as it evolves over time,
and suppose that, independent of what occurred in prior gen-
erations, each individual in generation 7 independently has i
offspring with probability Pj, j > 0.The offspring of individuals
of generation n then make up generation 7 4+ 1. Assume that
m = 3;jpj < °° Let X, denote the number of individuals
in generation 7, and define a martingale related to Xn,n 20

The process Xn, ™ > 0 is called a branching process. ..

8. Suppose X1, Xq,..., are independent and identically distributed
random variables with mean zero and finite variance o2, BT

is a stopping time with finite mean, show that

T
Var(z X)) = 2 E(T).
i=1
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11.

9.

10.

12.

13.
14.

E 15.
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Suppose X}, Xs, ..., are independent and identically distributed
mean 0 random variables which each take value +1 with prob-
ability 1/2 and take value -1 with probability 1/2. Let S, =
S0 1 Xi. Which of the following are stopping times? Compute
the mean for the ones that are stopping times.

(a) Ty = min{s > 5:5; = S;_5 + 5}

b)Te=T1-5

(C) T3 = T2 + 10.

Consider a sequence of independent flips of a coin, and let
Py, denote the probability of a head on any toss. Let A be
the hypothesis that P, = ¢ and let B be the hypothesis that
P, = b, for given values 0 < a,b < 1. Let X; be the outcome of
flip 7, and set

P(Xy,...,Xn|A)

P(le R ,Xn|B)

If P, = b, show that Z,,n > 1, is a martingale having mean 1.

Zy =

Let Z,,n > 0 be a martingale with Zy = 0. Show that

E[Z7] = ZE[(Zi — Zi1)?

i=1

Consider an individual who at each stage, independently of
past movements, moves to the right with probability p or to
the left with probability 1 — p. Assuming that p > 1/2 find
the expected number of stages it takes the person to move ¢
positions to the right from where she started.

In Example 3.19 obtain bounds on p when 6 < 0.

Use Wald’s equation to approximate the expected time it takes
a random walk to either become as large as a or as small as —b,
for positive a and b. Give the exact expression if e and b are
integers, and at each stage the random walk either moves up 1
with probability p or moves down 1 with probability 1 — p.

Consider a branching process that starts with a single individ-
ual. Let m denote the probability this process eventually dies
out. With X, denoting the number of individuals in generation
n, argue that «#%X» n >0, is a martingale.
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16.

17.

18.

19.

20.

21.

22.

23.
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subtle bound on the mar-
-aveling salesman problem
n 10.5.1, we take Z to be
2. Constider the integrand
i — Xi—1. If § denotes the
mning as in Example 5.7.2

~2min ||v; —wil

-2 mi s
min flv; — il

${w;}). It follows that

} i PRSI
tanin |lu; — il

 B(min [|Y; - i|).
=

(mings: |[¥; = yl| > 1) for
‘e at a distance of r or less
treme case occurs when y
result,

_ (n—i)mr?

€

nui)mﬂQ
f

dr

_tn—iyme?

|

we use the crude inequality

I 2v2,
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then the sum Z?:l c? figuring in Proposition 10.5.1 can be bounded by

7 n—1
1
ZC? < (2\/5)2 4 42 Z — < &+ 16(nn+1).
i=1

i=1

This in turn translates into the Azuma-Hoeffding bound

Pr| Dy — E(Dn)| 2 X < 2¢ ¥R,

10.6 Problems

. Define the random variables Y, inductively taking by ¥y = 1 and

Yy41 to be uniformly distributed on the interval (0,Y,). Show that
the sequence X, = 2"V, is a martingale.

. An urn contains b black balls and w white balls. Each time we ran-

domly withdraw a ball, we replace it by ¢+ 1 balls of the same color.
Let X,, be the fraction of white balls after n draws. Demonstrate that
X, is a martingale.

. Let ¥1,Y5,... be a sequence of independent random variables with

zero means and common variance ¢2. If X, = ¥1 + -+ + Yy, then
show that X2 — no? is a martingale.

. Let Y1, Ya. ... be a sequence of 1.i.d. random variables with common

moment generating function M (t) = E{ef¥). Prove that
X, = M) ettt i)

is a martingale whenever M {t} < co.

. Let Y,, be a finite-state, discrete-time Markov chain with transition

matrix P = (p;;). If v is a column eigenvector for P with nonzero
eigenvalue A, then verify that X, = A""wy, is a martingale, where
vy, is coordinate Y7, of v.

. Suppose Y, is the number of particles at the nth generation of a

branching process. If s is the extinction probability, prove that

X, = sl7 is a martingale. (Hint: If Q(s) is the progeny generating

function, then Q(8c) = 8oc.)

. In Example 10.3.2, show that Var{X.) = 'ﬁiT) by differentiating

equation (10.12) twice. This result is consistent with the mean square
convergence displayed in equation (10.9).
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8. In Example 10.3.2, show that the fractional linear transformation

solves equation (10.12) when Q(s) =

equation (10.13).

. In Example 10.2.2, suppose that each ¥}, is equally likely to assume
the values 2 and . Show that [[2, ¥; =0, but [[3Z, E(Y;) = 1 {19].
(Hint: Apply the strong law of large numbers to the sequence InY,.)

. Given Xg = p € (0,1), define X, inductively by

Xn+1

where a, 3 > 0 and a+ 8 = 1. Prove that X, is a martingale with (a)
X, € (0,1), (b) E(Xn) = , and (c) Var(Xn) = [1—(1-)"u(1—p).
Also prove that Proposition 10.3.2 implies that lim, X, =X
exists with E(Xe) = ¢ and Var(Xo} = p{l — u). (Hint: Derive a
recurrence relation for Var(X, 1) by conditioning on X,.)

. Let S, = X1+ -4 X, be a symmetric random walk on the integers
{-a,...,b} starting at Sy = 0. For the stopping time

T

prove that Pr(St = b) = a/(a + b) by considering the martingale Sy
and that E(T") = ab by considering the martingale SZ — n. (Hints:
Apply Proposition 10.4.1 and Problem 3.)

. In the Wright-Fisher model of Example 10.2.6, show that
Xn(1-X,

is a martingale with values on [0,1]. In view of Proposition 10.3.2,
k23

liMa—yoo Zn = Zoo exists. Thus, Xp(1 — X)) ~ (1 - ﬁ) Zoo for n

large. In other words, X, approaches either 0 or 1 at rate 1 —

. In Proposition 10.4.1 suppose we can write either

= Bn+In

Xn

for n < T, where |Bp} € cand 0 < I,y < In whenn < T. In
ather words for all times up to 7, the B process is bounded and
the I process is increasing. Show that E(X7) = u holds without
making assumptions (b) and (c) of the proposition. (Hints: Show that
E(Xran)=pfor TAn = min{T,n}. Apply the bounded convergence
theorem to Bra, and the monotone convergence theorem to Irpan)

and = %- Also verify

with probability X,
with probability 1 — X, .

min{n : S, = —a or S, = b},

14. Let Y3,...,Yn be

cess probability p
(10.22) to Chebys

P

when p=1/2. W
than the other, d
favor Chebyshev’

. Suppose that v,

¥;,..., Y, beindt
the two-point set
that




