ation and Martingales

ize of a population
1dependent of what
. generation n inde-
> 0. The offspring
neration n + 1. Let
ation m. Assuming
ng of an individual,
n > 0, is a martin-
srollary implies that
plies, when m < 1,
for all n sufficiently
seneration size either
ntial rate. ]

3.7 Exercises . 109

3.7 Exercises

1.

2.

CIFERX] <oo,i=1,...

. Let XI,XQ,...,

I E[Xng1|X1, .., X

For F = {¢, 1}, show that E[X|F] = E{X].

Give the proof of Proposition 3.2 when X and Y are jointly
continuous.

, 7, show that

ED X7 = Z EIX;|F]

i=1
Prove that if f is a convex function, then
E{H(X)|F] =z fE[X|F])
provided the expectations exist.

be independent random variables with mean
1. Show that Z, = [[}_; Xi, n > 1, is a martingale.

n] = anXn+by for constants an, by, n 2 0,
find constants Ay, B so that Z, = A, X,, + B,,n > 0, is a
martingale with respect to the filtration ¢{Xy, ..., Xz).

Consider a population of individuals as it evolves over time,
and suppose that, independent of what occurred in prior gen-
erations, each individual in generation n independently has j
offspring with probability p;, i > 0. The offspring of individuals
of generation n then make up generation n + 1. Assume that
m = 3 :jp; < co. Let Xp, denote the number of individuals
in generatlon n, and define a martingale related to Xpn,n > 0.
The process X,,,n > 0 is called a branching process.

. Suppose X1, X, ..., are independent and identically distributed

random variables with mean zero and finite variance o?. If T
is a stopping time with finite mean, show that

T
Var(z X;) = o*E(T).
i=1
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then the sum } 7", ¢f figuring in Proposition 10.5.1 can be bounded by

L3

n—1
1
2 < 22442y — < 1).
> o < (2v2) 4 ?:In_i 8+ 16(lnn + 1)

i=1

"This in turn translates into the Azuma-Hoeffding bound

Pr{|D, —E(Dy)| 2] < 2e”wwhamn,

10.6 Problems

. Define the random variables Y,, inductively taking by ¥, = 1 and

Ynt1 to be uniformly distributed on the interval (0,Y},). Show that
the sequence X,, = 2"Y,, is a martingale.

. An urn contains b black balls and w white balls. Each time we ran-

domly withdraw a ball, we replace it by ¢+ 1 balls of the same color.
Let X, be the fraction of white balls after n draws. Demonstrate that
X, is a martingale.

. Let ¥7,Y5,... be a sequence of independent random variables with

zero means and common variance o2, If X, = Y] +--- + Y., then
show that X2 — no? is a martingale.

. Let ¥1,¥5,... be a sequence of i.i.d. random variables with common

moment generating function M (¢) = E(et¥). Prove that
X, = M(t)—net(lererYn)

is a martingale whenever M (t) < co.

. Let ¥, be a finite-state, discrete-time Markov chain with transition

matrix P = (py;). If v is a column eigenvector for P with nonzero
eigenvalue A, then verify that X, = A ™wvy, is a martingale, where
vy, 15 coordinate Y, of v.

: Suppose Y;, is the number of particles at the nth generation of a

branching process. If s, is the extinction probability, prove that
X, = sk7 is a martingale. (Hint: If Q(s) is the progeny generating
function, then Q{se0) = 50c.)

. In Example 10.3.2, show that Var(X,) = . by differentiating

plu—1)
equation (10.12) twice. This result is consistent with the mean square

convergence displayed in equation (10.9).




