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2.7

Chapter 2 Stein's Method and Central Limit Theorems

Exercises

. If X ~ Poisson{a) and ¥ ~ Poisson(b), with b > a, use coupling

to show that Y- >4 X.

Suppose a particle starts at position 5 on a pumber line and at
each time period the particle moves one position to the right
with probability p and, if the particle is above position 0, moves
one position to left with probability 1 — p. Let Xn{p) be the
position of the particle at time n for the given value of p. Use
coupling to show that Xn(a) Zst Xn(b) for any n ifa = b.

Let X,Y be indicator variables with E [X} = a and E[Y] = b
{a) Show how to construct a rllaximal coupling X,Y for X and
Y, and then compute P (X = Y) as a function of a, . (b) Show
how to construct a minimal coupling to minimize P(X =Y.

In a room full of n people, let X be the number of people who
share a birthday with at least one other person in the room.
Then let Y be the number of pairs of people in the room having
the same birthday. (a) Compute E[X ] and Var(X) and ElY]
and Var(Y). (b) Which of the two variables X or ¥ do you
believe will more closely follow a Poisson distribution? Why?
(c) In a room of 51 people, it turns out there are 3 pairs with
the same birthday and also a triplet (3 people) with the same
birthday. This is a total of 9 people and also 6 pairs. Use a
Poisson approximation to estimate P(X > 9) and P(Y > 6).
Which of these two approximations do you think will be better?
Have we observed a rare event here?

. Compute a bound on the accuracy of the better approximation

in the previous exercise part (c) using the Stein-Chen method.

For discrete X,Y provedrv(X,Y) = I IPX = z)-PY =
)|

For discrete X, Y show that P(X # Y) > drv(X,Y) and show
also that there exists a coupling that yields equality.

Compute a bound on the accuracy of a normal approximation
for a Poisson random variable with mean 100.
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owing to the inequality \*/k! > M /[(k — 1)ls] for k=1,...,s. For s > j
again the difference g;(s 4+ 1) — g;(s) < 0 because
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owing to the opposite inequality A¥/k! < X*/{(k—1)!s] for k > s+ 1. Only
the difference g;(7 +1) — ¢;(4) > 0, and this difference is bounded above
by
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This upper-bound inequality carries over to

gs+ ) —gls) = D lgi(s+1)~g;(s)]

jeA

since only one difference on its right-hand sum is nonnegative for any given
s. Finally, inspection of the solution {12.7) makes it evident that the func-
tion k(s) = —g{s) solves the difference equation (12.6) with the complement
A° replacing A. It follows that

1—e >
A b
and this completes the proof that g(s) satisfies the Lipschitz condition.

g(s)—g(s+1) = h(s+1)-h(s) <

12.5 Problems

1. For a random permutation a1,...,0q of {1,...,n}, let Xo = 1{5, —a}
be the indicator of a match at position . Show that the total number
of matches S =37 _, X,, satisfies the coupling bound

2(1—e?!
s — mzl|lry < M-e) ne ),

where Z follows a Poisson distribution with mean 1.
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2. In the ménage problem, prove that Var(S) =2 —2/(n —1).

3. In certain situations the hypergeometric distribution can be approx-

imated by a Poisson distribution. Suppose that w white balls and b
black balls occupy a box. If you extract n < w + & balls at random,
then the number of white halls S extracted follows a hypergeometric
distribution. Note that if we label the white balls 1,...,w, and let
X, be the random variable indicating whether white ball « is chosen,
then § = 3., X. One can construct a coupling between S and V,,
by the following device. If white ball o does not show up, then ran-
domly take one of the balls extracted and exchange it for white ball
a. Calculate an explicit Chen-Stein bound, and give conditions under
which the Poisson approximation to .5 will be good.

. In the context of Example 12.3.1 on the law of rare events, prove the

less stringent bound

lns - wzllrv < > Pk

a=1

by invoking Problems 14 and 15 of Chapter 7.

. Consider the n-dimensional unit cube [0,1]". Suppose that each of

its n2"~! edges is independently assigned one of two equally likely
orientations. Let S be the number of vertices at which all neighboring
edges point toward the vertex. The Chen-Stein method implies that
S has an approximate Poisson distribution Z with mean 1. Use the
neighborhood method to verify the estimate

s —mzllry < (n+1)27"(1 — ey

(Hints: Let I be the set of ali 2 vertices, X, the indicator that vertex
a has all of its edges directed toward ¢, and N, = {3 : || —«f < 1}.
Note that X, is independent of those Xz with ||G — af > 1. Also,
Pog =0 for [ —all =1}

. A graph with n nodes is created by randomly connecting some pairs

of nodes by edges. If the connection probability per pair is p, then all
pairs from a triple of nodes are connected with probability p?. For p
small and A = (§)p® moderate in size, the number of such triangles
in the random graph is approximately Poisson with mean A. Use the
neighborhood method to estimate the total variation error in this
approximation.

. Suppose n balls (people) are uniformly and independently distributed
into m boxes (days of the year). The birthday problem involves find-
ing the approximate distribution of the number of boxes that receive




