2.7 Exercises

- 1. If $X \sim \text{Poisson}(a)$ and $Y \sim \text{Poisson}(b)$, with b > a, use coupling to show that $Y \geq_{st} X$.
- 2. Suppose a particle starts at position 5 on a number line and at each time period the particle moves one position to the right with probability p and, if the particle is above position 0, moves one position to left with probability 1 p. Let $X_n(p)$ be the position of the particle at time n for the given value of p. Use coupling to show that $X_n(a) \ge_{st} X_n(b)$ for any n if $a \ge b$.
- 3. Let X, Y be indicator variables with E[X] = a and E[Y] = b. (a) Show how to construct a maximal coupling \widehat{X}, \widehat{Y} for X and Y, and then compute $P(\widehat{X} = \widehat{Y})$ as a function of a, b. (b) Show how to construct a minimal coupling to minimize $P(\widehat{X} = \widehat{Y})$.
- 4. In a room full of n people, let X be the number of people who share a birthday with at least one other person in the room. Then let Y be the number of pairs of people in the room having the same birthday. (a) Compute E[X] and Var(X) and E[Y] and Var(Y). (b) Which of the two variables X or Y do you believe will more closely follow a Poisson distribution? Why? (c) In a room of 51 people, it turns out there are 3 pairs with the same birthday and also a triplet (3 people) with the same birthday. This is a total of 9 people and also 6 pairs. Use a Poisson approximation to estimate P(X > 9) and P(Y > 6). Which of these two approximations do you think will be better? Have we observed a rare event here?
- 5. Compute a bound on the accuracy of the better approximation in the previous exercise part (c) using the Stein-Chen method.
- 6. For discrete X, Y prove $d_{TV}(X,Y) = \frac{1}{2} \sum_{x} |P(X=x) P(Y=x)|$
- 7. For discrete X, Y show that $P(X \neq Y) \geq d_{TV}(X, Y)$ and show also that there exists a coupling that yields equality.
- 8. Compute a bound on the accuracy of a normal approximation for a Poisson random variable with mean 100.

owing to the inequality $\lambda^k/k! \ge \lambda^k/[(k-1)!s]$ for $k=1,\ldots,s$. For s>j again the difference $g_j(s+1)-g_j(s)\le 0$ because

$$\frac{s}{\lambda} \sum_{k=s+1}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} \le \sum_{k=s}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!}$$

owing to the opposite inequality $\lambda^k/k! \leq \lambda^k/[(k-1)!s]$ for $k \geq s+1$. Only the difference $g_j(j+1)-g_j(j)\geq 0$, and this difference is bounded above by

$$g_{j}(j+1) - g_{j}(j) = \frac{1}{\lambda} \sum_{k=j+1}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!} + \frac{1}{j} \sum_{k=0}^{j-1} e^{-\lambda} \frac{\lambda^{k}}{k!}$$

$$= \frac{e^{-\lambda}}{\lambda} \left[\sum_{k=j+1}^{\infty} \frac{\lambda^{k}}{k!} + \sum_{k=1}^{j} \frac{\lambda^{k}}{k!} \frac{k}{j} \right]$$

$$\leq \frac{e^{-\lambda}}{\lambda} (e^{\lambda} - 1)$$

$$= \frac{1 - e^{-\lambda}}{\lambda}.$$

This upper-bound inequality carries over to

$$g(s+1) - g(s) = \sum_{j \in A} [g_j(s+1) - g_j(s)]$$

since only one difference on its right-hand sum is nonnegative for any given s. Finally, inspection of the solution (12.7) makes it evident that the function h(s) = -g(s) solves the difference equation (12.6) with the complement A^c replacing A. It follows that

$$g(s) - g(s+1) = h(s+1) - h(s) \le \frac{1 - e^{-\lambda}}{\lambda},$$

and this completes the proof that g(s) satisfies the Lipschitz condition.

12.5 Problems

1. For a random permutation $\sigma_1, \ldots, \sigma_n$ of $\{1, \ldots, n\}$, let $X_{\alpha} = 1_{\{\sigma_{\alpha} = \alpha\}}$ be the indicator of a match at position α . Show that the total number of matches $S = \sum_{\alpha=1}^{n} X_{\alpha}$ satisfies the coupling bound

$$\|\pi_S - \pi_Z\|_{TV} \le \frac{2(1 - e^{-1})}{n},$$

where Z follows a Poisson distribution with mean 1.

or $k = 1, \ldots, s$. For s > j e

$$\frac{\lambda^k}{k!}$$

-1)!s for $k \ge s+1$. Only flerence is bounded above

$$+\frac{1}{j}\sum_{k=0}^{j-1}e^{-\lambda}\frac{\lambda^k}{k!}$$

$$\left[+ \sum_{k=1}^{j} \frac{\lambda^k}{k!} \frac{k}{j} \right]$$

$$-1)-g_j(s)]$$

s nonnegative for any given ses it evident that the func-(12.6) with the complement

$$\leq \frac{1-e^{-\lambda}}{\lambda};$$

the Lipschitz condition.

 $\{1,\ldots,n\}$, let $X_{\alpha}=1_{\{\sigma_{\alpha}=\alpha\}}$ Show that the total number rupling bound

$$\frac{1-e^{-1})}{n},$$

ith mean 1.

- 2. In the ménage problem, prove that Var(S) = 2 2/(n-1).
- 3. In certain situations the hypergeometric distribution can be approximated by a Poisson distribution. Suppose that w white balls and b black balls occupy a box. If you extract n < w + b balls at random, then the number of white balls S extracted follows a hypergeometric distribution. Note that if we label the white balls $1, \ldots, w$, and let X_{α} be the random variable indicating whether white ball α is chosen, then $S = \sum_{\alpha=1}^{w} X_{\alpha}$. One can construct a coupling between S and V_{α} by the following device. If white ball α does not show up, then randomly take one of the balls extracted and exchange it for white ball α . Calculate an explicit Chen-Stein bound, and give conditions under which the Poisson approximation to S will be good.
- 4. In the context of Example 12.3.1 on the law of rare events, prove the less stringent bound

$$\|\pi_S - \pi_Z\|_{TV} \le \sum_{\alpha=1}^n p_\alpha^2$$

by invoking Problems 14 and 15 of Chapter 7.

5. Consider the n-dimensional unit cube $[0,1]^n$. Suppose that each of its $n2^{n-1}$ edges is independently assigned one of two equally likely orientations. Let S be the number of vertices at which all neighboring edges point toward the vertex. The Chen-Stein method implies that S has an approximate Poisson distribution Z with mean 1. Use the neighborhood method to verify the estimate

$$\|\pi_S - \pi_Z\|_{TV} \le (n+1)2^{-n}(1-e^{-1}).$$

(Hints: Let I be the set of all 2^n vertices, X_{α} the indicator that vertex α has all of its edges directed toward α , and $N_{\alpha} = \{\beta : \|\beta - \alpha\| \le 1\}$. Note that X_{α} is independent of those X_{β} with $\|\beta - \alpha\| > 1$. Also, $p_{\alpha\beta} = 0$ for $\|\beta - \alpha\| = 1$.)

- 6. A graph with n nodes is created by randomly connecting some pairs of nodes by edges. If the connection probability per pair is p, then all pairs from a triple of nodes are connected with probability p^3 . For p small and $\lambda = \binom{n}{3}p^3$ moderate in size, the number of such triangles in the random graph is approximately Poisson with mean λ . Use the neighborhood method to estimate the total variation error in this approximation.
- 7. Suppose n balls (people) are uniformly and independently distributed into m boxes (days of the year). The birthday problem involves finding the approximate distribution of the number of boxes that receive