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9. Branching Processes

In a subcritical branching process with immigration, let Q(s) be the
progeny generating function and R(s) the generating function of the
number of new immigrants at each generation. If the equilibrium
distribution has generating function P (s), then show that

Po(s) = Puo(Q(s))R(s).

For the choices Q(s) = 1 —p+ ps and R(s) = e~21-3) find Po(s).
(Hint: Let Poo(s) be a Poisson generating function.)

Branching processes can be used to model the formation of polymers
[118]. Consider a large batch of identical subunits in solution. Each
subunit has m > 1 reactive sites that can attach to similar reac-
tive sites on other subunits. For the sake of simplicity, assume that a
polymer starts from a fixed ancestral subunit and forms a tree struc-
ture with no cross linking of existing subunits. Also assume that each
reactive site behaves independently and bonds to another site with
probability p. Subunits attached to the ancestral subunit form the
first generation of a branching process. Subunits attached to these
subunits form the second generation and so forth. In this problem we
investigate the possibility that polymers of infinite size form. In this
case the solution turns into a gel. Show that the progeny distribution
for the first generation is binomial with m trials and success proba-
bility p and that the progeny distribution for subsequent generations
is binomial with m — 1 trials and success probability p. Show that the
extinction probability oo satisfies

loe = (1—p—|—p800)m
S0 = (1= p+DPsec)™

where s, is the extinction probability for a line of descent emanating
from a first-generation subunit. Prove that polymers of infinite size
occur if and only if (m — 1)p > 1.

Yeast cells reproduce by budding. Suppose at each generation a yeast
cell either dies with probability p, survives without budding with
probability g, or survives with budding off a daughter cell with prob-
ability r. In the ordinary branching process paradigm, a surviving cell
is considered a new cell. If we refuse to take this view, then what is
the distribution of the number of daughter cells budded off by a single
yeast cell before its death? Show that the extinction probability of a
yeast cell line is 1 when p > r and B when p < r [54].

At an X-linked recessive disease locus, there are two alleles, the nor-
mal allele (denoted +) and the disease allele (denoted —). Construct
a two-type branching process for carrier females (genotype +/—) and
affected males (genotype —). Calculate the expected numbers f;; of
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offspring of cach tvpe assuming thae carrier females average 2 chil-
dren, affected males average 2f children, all mates are + /+ or +, and
children occur in a 1:1 sex ratio. Note that a branching process model
assumes that all children are born simultaneously with the death of a
parent. The sensible choice for the death rate \ in a continuous-time
model of either type parent is the reciprocal of the generation time,
say about 515 per year in humans.

In the HIV branching process model, it is of interest to calculate the
reproductive potential of a virion in plasma. Because virus reproduc-
tion takes place in CD4 cells, let r; be the expected number of new
virions that a particle of type i eventually generates. Show that these
numbers obey the following equations:

O6R_ . (1-6)R

T GYBR™ T oxpR ™
81

T2 = 0 T a?"3
)

r3 = mﬁ.

From these equations calculate

omBRo+ (1 — )]
(0 + BR)(u+ o) (p+6)

If the reproduction number r; < 1, then virus numbers keep drop-
ping until extinction. Conversely, virus numbers grow exponentially
when 1 > 1. The case r; = 1 is indeterminate, but a full stochastic
analysis of the branching process model demonstrates that extinction
is certain in this case as well [12].

T =

Consider a multitype branching process with immigration. Suppose
that each particle of type i has an exponential lifetime with death
intensity A; and produces on average fi; particles of type j at the
moment of its death. Independently of death and reproduction, im-
migrants of type ¢ enter the population according to a Poisson process
with intensity ;. If the Poisson immigration processes for different
types are independent, then show that the mean number m;(t) of
particles of type i satisfies the differential equation

mi(t) = o;+ ij(t))‘j(fji ~ Lyj=iy)-

J

Collecting the m;(t) and «; into row vectors m(t) and «, respectively,
and the A;(f;: — 1{;=;)) into a matrix Q, show that

m(t) = m(0)e? + a1t - 1),
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9. Branching Processes

assuming that {2 is invertible. If we replace the constant immigration
intensity g; by the exponentially decreasing immigration intensity
a;e P, then verify that

m(t) = m(0)e + a(Q + pl) (™ — ).

In a certain species, females die with intensity @ and males with in-
tensity v. All reproduction is through females at an intensity of X per
female. At each birth, the mother bears a daughter with probability
p and a son with probability 1 —p. Interpret this model as a two-type,
continuous-time branching process with X; representing the number
of females and Y; representing the number of males, and show that

E(X:) = E(Xq)elr mt
AML=p)  op-
— X)) F o(Ap—pu)t
E(Y}) E( O)Ap+ o= ¢

+ [E(yz,) - E(XO)%%]B—W.

In some applications of continuous-time branching processes, it is
awkward to model reproduction as occurring simultaneously with
death. Birth-death processes offer an attractive alternative. In a birth-
death process, a type 7 particle experiences death at rate y; and repro-
duction of daughter particles of type j at rate 3;;. Each reproduction
event generates one and only one daughter particle. Thus, in a birth-
death process each particle continually buds off daughter particles
until it dies. In contrast, each particle of a multitype continuous-time
branching process produces a burst of offspring at the moment of its
death. This problem considers how we can reconcile these two modes
of reproduction. There are two ways of doing this, one exact and one
approximate.

(a) Show that in a birth-death process, a particle of type ¢ produces
the count vector d = (dj,...,d,) of daughter particles with
probability

i
Pid = ([J: +6)|d|+1 (dl ) Hﬁzk:

where 8; = 37, B and |d| = di+- - - +d,. (Hint: Condition on
the time of death. The number of daughter particles of a given
type produced up to this time follows a Poisson distribution.)

(b) If we delay all offspring until the moment of death, then we get
a branching process approximation to the birth-death process.



