The power and weakness of randomness (when you are short on time)

Avi Wigderson Institute for Advanced Study

# Plan of the talk

- Computational complexity
  - efficient algorithms, hard and easy problems, P vs. NP
- The power of randomness
  - -- in saving time
- The weakness of randomness
  - -- what is randomness ?
  - -- the hardness vs. randomness paradigm
- The power of randomness
  - -- in saving space
  - -- to strengthen proofs

#### Easy and Hard Problems asymptotic complexity of functions

Multiplication mult(23,67) = 1541

grade school algorithm: n<sup>2</sup> steps on n digit inputs

#### EASY

P – Polynomial time algorithm Factoring factor(1541) = (23,67)

best known algorithm:  $exp(\sqrt{n})$  steps on n digits

HARD? -- we don't know! -- the whole world thinks so!

# Map Coloring and P vs. NPInput: planar map M<br/>(with n countries)

2-COL: is M 2-colorable? Easy

3-COL: is M 3-colorable? Hard?

4-COL: is M 4-colorable? Trivial

Thm: If 3-COL is Easy then Factoring is Easy



-Thm [Cook-Levin '71, Karp '72]: 3-COL is NP-complete -.... Numerous equally hard problems in all sciences

P vs. NP problem: Formal: Is 3-COL Easy? Informal: Can creativity be automated?

## Fundamental question #1

- Is  $NP \neq P$ ? Is any of these problems hard?
- Factoring integers
- Map coloring
- Satisfiability of Boolean formulae
- Traveling salesman problem
- Solving polynomial equations
- Computing optimal Chess/Go strategies

Best known algorithms: exponential time/size. Is exponential time/size necessary for some?

#### Conjecture 1 : YES

#### The Power of Randomness

Host of problems for which:

 We have probabilistic polynomial time algorithms

- We (still) have *no* deterministic algorithms of subexponential time.

#### Coin Flips and Errors Algorithms will make decisions using coin flips 0111011000010001110101010111... (flips are independent and unbiased) When using coin flips, we'll guarantee: "task will be achieved, with probability >99%"

#### Why tolerate errors?

- We tolerate uncertainty in life
- Here we can reduce error arbitrarily <exp(-n)</li>
- To compensate we can do much more...

#### Number Theory: Primes

Problem 1: Given  $x \in [2^n, 2^{n+1}]$ , is x prime?

1975 [Solovay-Strassen, Rabin] : Probabilistic 2002 [Agrawal-Kayal-Saxena]: Deterministic !!

Problem 2: Given n, find a prime in [2<sup>n</sup>, 2<sup>n+1</sup>]

Algorithm: Pick at random x<sub>1</sub>, x<sub>2</sub>,..., x<sub>1000n</sub> For each x<sub>i</sub> apply primality test. Prime Number Theorem ⇒ Pr [∃i x<sub>i</sub> prime] > .99

#### **Algebra:** Polynomial Identities

Is det(  

$$x_1 \quad x_2 \quad \cdots \quad x_n$$
  
 $x_1^2 \quad x_2^2 \quad \cdots \quad x_n^2$   
 $\vdots \quad \vdots \quad \ddots \quad \vdots$   
 $x_1^{n-1} \quad x_2^{n-1} \quad \cdots \quad x_n^{n-1}$ 

)- 
$$\Pi_{i < k}$$
 (x<sub>i</sub>-x<sub>k</sub>) = 0 ?

Theorem [Vandermonde]: YES

Given (implicitly, e.g. as a formula) a polynomial p of degree d. Is  $p(x_1, x_2, ..., x_n) \equiv 0$ ?

Algorithm [Schwartz-Zippel '80] : Pick  $r_i$  indep at random in {1,2,...,100d}  $p \equiv 0 \implies Pr[p(r_1, r_2, ..., r_n) = 0] = 1$   $p \neq 0 \implies Pr[p(r_1, r_2, ..., r_n) \neq 0] > .99$ Applications: Program testing, Polynomial factorization Analysis: Fourier coefficients Given (implicitely) a function  $f:(Z_2)^n \rightarrow \{-1,1\}$ (e.g. as a formula), and  $\varepsilon > 0$ , Find all characters  $\chi$  such that  $|\langle f, \chi \rangle| \ge \varepsilon$ Comment : At most  $1/\varepsilon^2$  such  $\chi$ 

Algorithm [Goldreich-Levin '89] : ...adaptive sampling... Pr[ success ] > .99

[AG5] : Extension to other Abelian groups. Applications: Coding Theory, Complexity Theory Learning Theory, Game Theory Geometry: Estimating Volumes Given (implicitly) a convex body K in R<sup>d</sup> (d large!) (e.g. by a set of linear inequalities) Estimate volume (K) Comment: Computing volume(K) exactly is #P-complete

Algorithm [Dyer-Frieze-Kannan '91]: Approx counting ≈ random sampling Random walk inside K. Rapidly mixing Markov chain. Analysis: Spectral gap ≈ isoperimetric inequality Applications: Statistical Mechanics, Group Theory Fundamental question #2 Does randomness help? Are there problems with probabilistic polytime algorithm but no deterministic one? Conjecture 2: YES

Fundamental question #1 Does NP require exponential time/size ? Conjecture 1: YE5

Theorem: One of these conjectures is false!

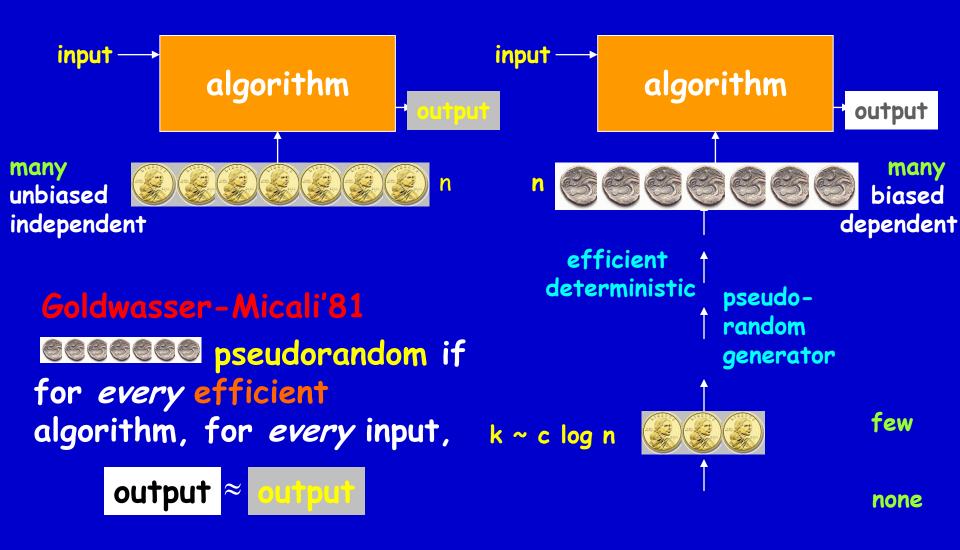
## Hardness vs. Randomness

- Theorems [Blum-Micali, Yao, Nisan-Wigderson, Impagliazzo-Wigderson...] :
- If there are natural hard problems, then randomness can be efficiently eliminated.

Theorem [Impagliazzo-Wigderson '98] NP requires exponential *size* circuits  $\Rightarrow$ every probabilistic polynomial-time algorithm has a deterministic counterpart

Theorem [Impagliazzo-Kabanets'04, IKW'03] Partial converse!

#### **Computational Pseudo-Randomness**

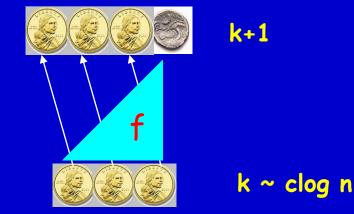


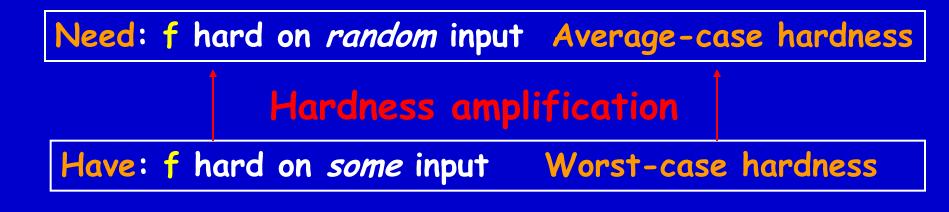
#### $Hardness \Rightarrow Pseudorandomness$

Need G: k bits  $\rightarrow$  n bits

NW generator

Show G: k bits 
$$\rightarrow$$
 k+1 bits



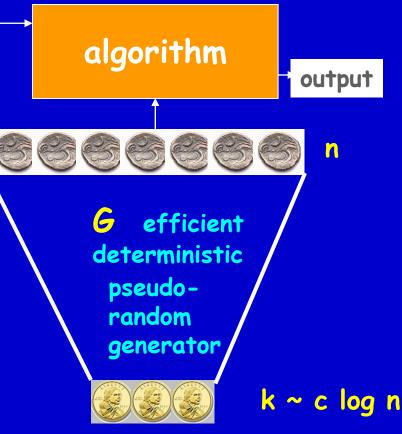


#### Derandomization

input

Deterministic algorithm:
Try all possible 2<sup>k</sup>=n<sup>c</sup> "seeds"
Take majority vote

Pseudorandomness paradigm: Can derandomize specific algorithms without assumptions! e.g. Primality Testing & Maze exploration



Randomness and space complexity

#### Getting out of mazes (when your memory is weak)





computables in logspage, will visit every vertex. Uses ZigZag expanders [Reingold-Vadhan-Wigderson '02]

#### The power of pandomness

in Proof Systems

Probabilistic Proof System [Goldwasser-Micali-Rackoff, Babai '85] Is a mathematical statement claim true? E.g. claim: "No integers x, y, z, n>2 satisfy x<sup>n</sup> +y<sup>n</sup> = z<sup>n</sup>" claim: "The Riemann Hypothesis has a 200 page proof"

#### probabilistic

An efficient Verifier V(claim, argument) satisfies:

\*) If claim is true then V(claim, argument) = TRUE for some argument always (in which case claim=theorem, argument=proof)

\*\*) If claim is false then V(claim, argument) = FALSE
for every argument with probability > 99%

## Remarkable properties of Probabilistic Proof Systems

- Probabilistically Checkable Proofs (PCPs)

- Zero-Knowledge (ZK) proofs

#### Probabilistically Checkable Proofs (PCPs)

- claim: The Riemann Hypothesis
- Prover: (argument)
- Verifier: (editor/referee/amateur)

Verifier's concern: Has no time... PCPs: Ver reads 100 (random) bits of argument.

Th[Arora-Lund-Motwani-Safra-Sudan-Szegedy'90] Every proof can be eff. transformed to a PCP Refereeing (even by amateurs) in seconds! Major application – approximation algorithms Zero-Knowledge (ZK) proofs [Goldwasser-Micali-Rackoff '85]

claim: The Riemann Hypothesis
Prover: (argument)
Verifier: (editor/referee/amateur)

Prover's concern: Will Verifier publish first? ZK proofs: argument reveals only correctness!

Theorem [Goldreich-Micali-Wigderson '86]: Every proof can be efficiently transformed to a ZK proof, assuming Factoring is HARD Major application - cryptography

## **Conclusions & Problems**

When resources are limited, basic notions get new meanings (randomness, learning, knowledge, proof, ...).

- Randomness is in the eye of the beholder.
- Hardness can generate (good enough) randomness.
- Probabilistic algs seem powerful but probably are not.
- Sometimes this can be proven! (Mazes, Primality)
- Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure? Is Theorem Proving Hard? Is P≠NP? Can creativity be automated?