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Abstract
There are serious statistical differences between predictions, bets, and exposures that have a yes/no type of payoff, the
“binaries”, and those that have varying payoffs, which we call the “variable”. Real world exposures tend to belong to the
variable category, and are poorly captured by binaries. Yet much of the economics and decision making literature confuses
the two. variable exposures are sensitive to Black Swan effects, model errors, and prediction problems, while the binaries are
largely immune to them. The binaries are mathematically tractable, while the variable are much less so. Hedging variable
exposures with binary bets can be disastrous–and because of the human tendency to engage in attribute substitution when
confronted by difficult questions,decision-makers and researchers often confuse the variable for the binary.
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1. Binary vs variable Predictions and
Exposures

Binary: Binary predictions and exposures are about well
defined discrete events, with yes/no types of answers, such as
whether a person will win the election, a single individual will
die, or a team will win a contest. We call them binary because
the outcome is either 0 (the event does not take place) or 1
(the event took place), that is the set {0,1} or the set {aL, aH},
with aL ¡ aH any two discrete and exhaustive values for the

outcomes. For instance, we cannot have five hundred people
winning a presidential election. Or a single candidate running
for an election has two exhaustive outcomes: win or lose.

Standard: “variable” predictions and exposures, also known
as natural random variables, correspond to situations in which
the payoff is continuous and can take several values. 1 ; it is
fitting outside option trading because the exposures they desig-
nate are naturally occurring continuous variables, as opposed
to the binary that which tend to involve abrupt institution-
mandated discontinuities. The variable add a layer of com-
plication: profits for companies or deaths due to terrorism or
war can take many, many potential values. You can predict
the company will be “profitable”, but the profit could be $1 or
$10 billion.

There is a variety of exposures closer to the variable,
namely bounded exposures that we can subsume mathemati-
cally into the binary category.

The main errors are as follows.

• Binaries always belong to the class of thin-tailed distri-
butions, because of boundedness, while the variables
don’t. This means the law of large numbers operates
very rapidly there. Extreme events wane rapidly in im-
portance: for instance, as we will see further down in
the discussion of the Chernoff bound, the probability
of a series of 1000 bets to diverge more than 50% from
the expected average is less than 1 in 1018, while the

1The designation “vanilla” is used in definitions of payoffs in financial
contracts. The “vanilla” applies to option exposures that are open-ended as
opposed to the binary ones that are called “exotic”, (Taleb, 1997).
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variable can experience wilder fluctuations with a high
probability, particularly in fat-tailed domains. Compar-
ing one to another can be a lunacy.

• The research literature documents a certain class of
biases, such as ”dread risk” or ”long shot bias”, which
is the overestimation of some classes of rare events, but
derived from binary variables, then extends the result
to variable exposures (Barberis, 2013). Such extension
is mathematically incorrect, and leads to risk-bearing
policies that do not match the research. If ecological
exposures in the real world tends to have variable, not
binary properties, then many results are invalid; this
paper will provide a framework to compare the two.

Let us return to the point that the variations of variable are
not bounded, or have a remote boundary. The consequence is
that the prediction of the variable is marred by Black Swan
effects and need to be considered from such a viewpoint. For
instance, a few prescient observers saw the potential for war
among the Great Power of Europe in the early 20th century
but virtually everyone missed the second dimension: that the
war would wind up killing an unprecedented twenty million
persons, setting the stage for both Soviet communism and
German fascism and a war that would claim an additional 60
million, followed by a nuclear arms race from 1945 to the
present, which might some day claim 600 million lives.

Remark: More technically, for a heavy tailed distribution
(defined as part of the subexponential family, see Taleb 2013),
with at least one unbounded side to the random variable,
the variable prediction record over a long series will be of
the same order as the best or worst prediction, whichever in
largest in absolute value, while no single outcome can change
the record of the binary.

We will put some mathematical structure around the state-
ment, but for now let us consider the effect on psychological
biases.

(a) all research on judgmental biases and errors–and all
research on debiasing (e.g., via tournaments and prediction
markets)–rests on tacit assumptions about the structure of the
real world in which human judges and decision makers must
operate;

(b) certain biases and debiasing efforts are (i) very depen-
dent on assumptions about the normality/non-normality of
distributions of possible outcomes (opportunities and risks)
and (ii) rest on unrealistic assumptions about tail risks;

c) when we replace unealistic assumptions about the world
with more realistic ones, we discover that a number of ”bi-
ases” are quite defensible and a number of efforts to debias
judgments are difficult to defend, perhaps indefensible.

Table 1. True and False Biases in the Psychology Literature

Alleged Bias Misspecified do-
main

Justified domain

Dread Risk Comparing Ter-
rorism to fall
from ladders

Comparing risks
of driving vs fly-
ing

Overestimation
of small prob-
abilities

Open-ended pay-
offs in fat-tailed
domains

Bounded bets in
laboratory setting

Long shot bias Convex financial
payoffs

Lotteries

Table 2. Adequate and inadequade decision domains

Application Erroneous
domain

Justified domain

Prediction
markets

Revolutions Elections

Prediction
markets

”Crashes” in Nat-
ural Markets (Fi-
nance)

Sports

Forecasting Judging by fre-
quency in venture
capital and other
winner take all do-
mains;

Judging by fre-
quency in finite
bets

2. The Applicability of Some
Psychological Biases

Without going through specific identifying biases, Table 1
shows the effect of the error across domains. We are not
saying that the bias does not exist; rather that, if the error is
derived in a binary environment, or one with a capped payoff,
it does not port outside the domain in which it was derived.
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Figure 1. Comparing digital payoff (above) to the variable
(below). The vertical payoff shows xi (x1,x2, ...) and the
horizontal shows the index i= (1,2,...), as i can be time, or
any other form of classification. We assume in the first case
payoffs of {-1,1}, and open-ended (or with a very remote
and unknown bounds) in the second.

2.1 The Variable is Not About Probability But Payoff
In short, the variable has another dimension, the payoff, in
addition to the probability, while the binary is limited to the
probability. In fat tailed domains, the probability matters less
and less. Ignoring this additional dimension is equivalent
to living in a 3-D world but discussing it as if it were 2-D,
promoting the illusion to all who will listen that such an
analysis captures all worth capturing.

The problem of fat tails is usually misunderstood. It does
not mean more volatility, but that a larger share of the proper-
ties comes from a small number of events; their “impact” gets
larger and larger and more and more unpredictable.

So there are two points here.

2.1.1 Binary predictions are more tractable than standard
ones

First, binary predictions tend to work; we can learn to be pretty
good at making them (at least on short timescales and with
rapid accuracy feedback that teaches us how to distinguish
signals from noise —all possible in forecasting tournaments as
well as in electoral forecasting — see Silver, 2012). Further,
these are mathematically tractable: your worst mistake is
bounded, since probability is defined on the interval between

0 and 1. But the applications of these binaries tend to be
restricted to manmade things, such as the world of games (the
“ludic” domain).

It is important to note that, ironically, not only do Black
Swan effects (i.e., highly unpredictable events of large magni-
tude) not impact the binaries, but they even make them more
mathematically tractable, as will see further down.

2.1.2 Binary predictions are often taken as a substitute
for standard ones

Second, most non-decision makers tend to confuse the binary
and the variable. And well-intentioned efforts to improve per-
formance in binary prediction tasks can have the unintended
consequence of rendering us oblivious to catastrophic variable
exposure.

The confusion can be traced to attribute substitution
and the widespread tendency to replace difficult-to-answer
questions with much-easier-to-answer ones. For instance,
the extremely-difficult-to-answer question might be whether
China and the USA are on an historical trajectory toward
a rising-power/hegemon confrontation with the potential to
claim far more lives than the most violent war thus far waged
(say 10 X more than the 60M who died in World War II).
The much-easier-binary-replacement questions —the sorts
of questions likely to pop up in forecasting tournaments or
prediction markets — might be whether the Chinese military
kills more than 10 Vietnamese in the South China Sea or
10 Japanese in the East China Sea in the next 12 months
or whether China publicly announces that it is restricting
North Korean banking access to foreign currency in the next
6 months.

The nub of the conceptual confusion is that although pre-
dictions and payoffs are completely separate mathematically,
both the general public and researchers are under constant
attribute-substitution temptation of using answers to binary
questions as substitutes for exposure to standard risks.

We often observe such attribute substitution in financial
hedging strategies. For instance, Morgan Stanley correctly
predicted the onset of a subprime crisis, but they had a binary
hedge and ended up losing billions as the crisis ended up
much deeper than predicted ( Bloomberg Magazine, March
27, 2008).

Or, consider the performance of the best forecasters in
geopolitical forecasting tournaments over the last 25 years
(Tetlock, 2005; Tetlock & Mellers, 2011; Mellers et al, 2013).
These forecasters may will be right when they say that the
risk of a lethal confrontation claiming 10 or more lives in
the East China Sea by the end of 2013 is only 0.04. They
may be very “well calibrated” in the narrow technical sense
that when they attach a 4% likelihood to events, those events
occur only about 4% of the time. But framing a ”variable”
question as a binary question is dangerous because it masks
exponentially escalating tail risks: the risks of a confrontation
claiming not just 10 lives of 1000 or 1 million. No one has yet
figured out how to design a forecasting tournament to assess
the accuracy of probability judgments that range between
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.00000001% and 1% —and if someone ever did, it is unlikely
that anyone would have the patience —or lifespan —to run
the forecasting tournament for the necessary stretches of time
(requiring us to think not just in terms of decades, centuries
and millennia).

The deep ambiguity of objective probabilities at the
extremes—and the inevitable instability in subjective proba-
bility estimates—can also create patterns of systematic mis-
pricing of options. An option or option like payoff is not to
be confused with a lottery, and the “lottery effect” or “long
shot bias” often discussed in the economics literature that
documents that agents overpay for these bets should not apply
to the properties of actual options.

In Fooled by Randomness, the narrator is asked “do
you predict that the market is going up or down?” “Up”, he
said, with confidence. Then the questioner got angry when
he discovered that the narrator was short the market, i.e.,
would benefit from the market going down. The trader had
a difficulty conveying the idea that someone could hold the
belief that the market had a higher probability of going up,
but that, should it go down, it would go down a lot. So the
rational response was to be short.

This divorce between the binary (up is more likely) and
the variable is very prevalent in real-world variables. Indeed
we often see reports on how a certain financial institution “did
not have a losing day in the entire quarter”, only to see it
going near-bust from a monstrously large trading loss. Like-
wise some predictors have an excellent record, except that
following their advice would result in large losses, as they are
rarely wrong, but when they miss their forecasts, the results
can be devastating.

Another way to put the point: to achieve the reputation of
“Savior of Western civilization,”a politician such as Winston
Churchill needed to be right on only one super-big question
(such as the geopolitical intentions of the Nazis)– and it mat-
ters not how many smaller errors that politician made (e.g.
Gallipoli, gold standard, autonomy for India). Churchill could
have a terrible Brier score (binary accuracy) and a wonderful
reputation (albeit one that still pivots on historical counterfac-
tuals).

3. The Mathematical Differences

3.1 Tight Bounds
The binary is subjected to very tight bounds. Let (Xi)1<i≤n be
a sequence of independent Bernouilli trials taking values in
the set {0,1}, with P(X = 1]) = p and P(X = 0) = 1− p, Take
the sum Sn = ∑1<i≤n Xi. with expectation E(Sn)= np = µ .
Taking δ as a “distance from the mean”, the Chernoff bounds
gives:
For any δ > 0,

P(S≥ (1+δ )µ)≤

(
eδ

(1+δ )1+δ

)µ
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Figure 2. Fatter and fatter tails: different values for a. Note
that higher peak implies a lower probability of leaving the ±1
σ tunnel, making the probability of extreme events drop, but
their contribution paradoxically increases.

and for 0 < δ ≤ 1,

P(S≥ (1+δ )µ)≤ 2e−
µδ2

3

Let us compute the probability of coin flips n of hav-
ing 50% higher than the true mean, with p= 1

2 and µ = n
2 :

P
(
S≥

( 3
2

) n
2

)
≤ 2e−

µδ2
3 = e−n/24

which for n = 1000 happens every 1 in 1.24×1018.

3.2 Fatter tails lower the probability of remote events
(the binary) and raise the value of the variable.

The following intuitive exercise will illustrate what happens
when one conserves the variance of a distribution, but “fattens
the tails” by increasing the kurtosis. The probability of a
certain type of intermediate and large deviation drops, but
their impact increases. Counterintuitively, the possibility of
staying within a band increases.

Let x be a standard Gaussian random variable with mean
0 (with no loss of generality) and standard deviation σ . Let
P>1σ be the probability of exceeding one standard deviation.
P>1σ = 1− 1

2 erfc
(
− 1√

2

)
, where erfc is the complementary

error function, so P>1σ = P<1σ '15.86% and the probability
of staying within the “stability tunnel” between ± 1 σ is 1−
P>1σ− P<1σ ' 68.3%.

Let us fatten the tail in a variance-preserving manner,
using the “barbell” standard method of linear combination
of two Gaussians with two standard deviations separated by
σ
√

1+a and σ
√

1−a , a ∈(0,1), where a is the coefficient of
volatility of volatility, ”Vvol”, (which is variance preserving,
technically of no big effect here, as a standard deviation-
preserving spreading gives the same qualitative result). Such
a method leads to the immediate raising of the standard Kur-

tosis by
(
1+a2

)
sincec

E(x4)
E(x2)

2 = 3
(
a2 +1

)
, where E is the

expectation operator.
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P>1σ = P<1σ

= 1− 1
2

erfc
(
− 1√

2
√

1−a

)
− 1

2
erfc

(
− 1√

2
√

a+1

)
(1)

So then, for different values of a in Eq. 1 as we can see in
Figure 2, the probability of staying inside 1 sigma rises, “rare”
events become less frequent.

Note that this example was simplified for ease of argument.
In fact the “tunnel” inside of which fat tailedness increases
probabilities is between−

√
1
2

(
5−
√

17
)
σ and

√
1
2

(
5−
√

17
)
σ

(even narrower than 1 σ in the example, as it numerically cor-
responds to the area between -.66 and .66), and the outer one

is ±
√

1
2

(
5+
√

17
)
σ , that is the area beyond ±2.13 σ .

3.3 The law of large numbers works better with the
binary than the variable

Getting a bit more technical, the law of large numbers works
much faster for the binary than the variable (for which it may
never work, see Taleb, 2013). The more convex the payoff,
the more observations one needs to make a reliable inference.
The idea is as follows, as can be illustrated by an extreme
example of very tractable binary and intractable variable.

Let xt be the realization of the random variable X ∈ (-∞,
∞) at period t, which follows a Cauchy distribution with p.d.f.
f (xt)≡ 1

π((x0−1)2+1)
. Let us set x0 = 0 to simplify and make

the exposure symmetric around 0. The variable exposure maps
to the variable xt and has an expectation E(xt)=

∫
∞

−∞
xt f (x)dx,

which is undefined (i.e., will never converge to a fixed value).
A bet at x0 has a payoff mapped by a Heaviside Theta Func-
tion θ>x0(xt) paying 1 if xt > x0and 0 otherwise. The expec-
tation of the payoff is simply E(θ(x)) =

∫
∞

−∞
θ>x0(x) f (x)dx=∫

∞

x0
f (x)dx, which is simply P(x > 0). So long as a distribu-

tion exists, the binary exists and is Bernouilli distributed with
probability of success and failure p and 1—p respectively .

The irony is that the payoff of a bet on a Cauchy, admit-
tedly the worst possible distribution to work with since it
lacks both mean and variance, can be mapped by a Bernouilli
distribution, about the most tractable of the distributions. In
this case the variable is the hardest thing to estimate, and the
binary is the easiest thing to estimate.

Set Sn = 1
n ∑

n
i=1 xti the average payoff of a variety of

variable bets xtiacross periods ti, and Sθ
n =

1
n ∑

n
i=1 θ>x0 (xti).

No matter how large n, limn→∞ Sθ
n has the same proper-

ties — the exact same probability distribution —as S1. On
the other hand limn→∞ Sθ

n=p; further the presaymptotics
of Sθ

n are tractable since it converges to 1
2 rather quickly,

and the standard deviations declines at speed
√

n , since√
V (Sθ n) =

√
V(Sθ 1)

n =
√

(1−p)p
n (given that the moment gen-

erating function for the average is M(z) =
(

pez/n− p+1
)n

).

Binary

Vanilla

Bet 

Level

x

fHxL

Figure 3. The different classes of payoff f(x) seen in
relation to an event x. (When considering options, the
variable can start at a given bet level, so the payoff would be
continuous on one side, not the other).

3.4 The binary has necessarily a thin-tailed distri-
bution, regardless of domain

More, generally, for the class of heavy tailed distributions, in a
long time series, the sum is of the same order as the maximum,
which cannot be the case for the binary:

lim
X→∞

P(X > ∑
n
i=1 xti)

P
(

X > max(xti)i≤2≤n

) = 1 (2)

Compare this to the binary for which

lim
X→∞

P
(

X > max(θ(xti))i≤2≤n

)
= 0 (3)

The binary has necessarily a thin-tailed distribution, regardless
of domain.
We can assert the following:

• The sum of binaries converges at a speed faster or equal
to that of the variable.

• The sum of binaries is never dominated by a single
event, while that of the variable can be.

3.5 How is the binary more robust to model error?
In the more general case, the expected payoff of the variable is
expressed as

∫
A xdF(x) (the unconditional shortfall) while that

of the binary=
∫̀

A dF(x), where A is the part of the support
of interest for the exposure, typically A≡[K,∞), or (−∞,K].
Consider model error as perturbations in the parameters that
determine the calculations of the probabilities. In the case
of the variable, the perturbation’s effect on the probability is
multiplied by a larger value of x.
As an example, define a slighly more complicated variable
than before, with option-like characteristics, V (α,K) ≡∫

∞

K x pα(x)dx and B(α,K) ≡
∫

∞

K pα(x)dx, where V is the
expected payoff of variable, B is that of the binary, K is
the “strike” equivalent for the bet level, and with x∈[1, ∞) let
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pα(x) be the density of the Pareto distribution with minimum
value 1 and tail exponent α , so pα(x) ≡ αx−α−1.
Set the binary at .02, that is, a 2% probability of exceeding a
certain number K, corresponds to an α=1.2275 and a K=24.2,
so the binary is expressed as B(1.2, 24.2). Let us perturbate
α , the tail exponent, to double the probability from .02 to .04.
The result is B(1.01,24.2)

B(1.2,24.2) = 2. The corresponding effect on the

variable is V (1.01,24.2)
V (1.2,24.2) = 37.4. In this case the variable was

∼18 times more sensitive than the binary.
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