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A Brownian Motion Model for the

Hal S. STERN*

Progress of Sports Scores

The difference between the home and visiting teams’ scores in a sports contest is modeled as a Brownian motion process defined on
t € (0, 1), with drift 4 points in favor of the home team and variance ¢2. The model obtains a simple relationship between the home
team’s lead (or deficit) £ at time ¢ and the probability of victory for the home team. The model provides a good fit to the results of
493 professional basketball games from the 1991-1992 National Basketball Association (NBA) season. The model is applied to the
progress of baseball scores, a process that would appear to be too discrete to be adequately modeled by the Brownian motion process.
Surprisingly, the Brownian motion model matches previous calculations for baseball reasonably well.

KEY WORDS: Baseball; Basketball; Probit regression

1. INTRODUCTION

Sports fans are accustomed to hearing that “team A rarely
loses if ahead at halftime” or that “team B had just accom-
plished a miracle comeback.” These statements are rarely
supported with quantitative data. In fact the first of the two
statements is not terribly surprising; it is easy to argue that
approximately 75% of games are won by the team that leads
at halftime. Suppose that the outcome of a half-game is sym-
metrically distributed around O so that each team is equally
likely to “win” the half-game (i.e., assume that two evenly
matched teams are playing). In addition, suppose that the
outcomes of the two halves of a game are independent and
identically distributed. With probability .5 the same team
will win both half-games, and in that case the team ahead
at halftime certainly wins the game. Of the remaining prob-
ability, it seems plausible that the first half winner will defeat
the second half winner roughly half the time. This elementary
argument suggests that in contests among fairly even teams,
the team ahead at halftime should win roughly 75% of the
time. Evaluating claims of ““miraculous” comebacks is more
difficult. Cooper, DeNeve, and Mosteller (1992) estimated
the probability that the team ahead after three quarters of
the game eventually wins the contest for each of the four
major sports (basketball, baseball, football, hockey). They
found that the leading team won more than 90% of the time
in baseball and about 80% of the time in the other sports.
They also found that the probability of holding a lead is
different for home and visiting teams. Neither the Cooper,
et al. result nor the halftime result described here considers
the size of the lead, an important factor in determining the
probability of a win.

The goal here is to estimate the probability that the home
team in a sports contest wins the game given that they lead
by £ points after a fraction ¢ € (0, 1) of the contest has been
completed. Of course, the probability for the visiting team
is just the complement. The main focus is the game of bas-
ketball.

Among the major sports, basketball has scores that can
most reasonably be approximated by a continuous distri-
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bution. A formula relating £ and ¢ to the probability of win-
ning allows for more accurate assessment of the propriety
of certain strategies or substitutions. For example, should a
star player rest at the start of the fourth quarter when his
team trails by 8 points or is the probability of victory from
this position too low to risk such a move? In Section 2 a
Brownian motion model for the progress of a basketball score
is proposed, thereby obtaining a formula for the probability
of winning conditional on £ and ¢. The model is applied to
the results of 493 professional basketball games in Section
3. In Section 4 the result is extended to situations in which
it is known only that £ > 0. Finally, in Section 5 the Brownian
motion model is applied to a data set consisting of the results
of 962 baseball games. Despite the discrete nature of baseball
scores and baseball “time” (measured in innings), the
Brownian motion model produces results quite similar to
those of Lindsey (1977).

2. THE BROWNIAN MOTION MODEL

To begin, we transform the time scale of all sports contests
to the unit interval. A time ¢ € (0, 1) refers to the point in
a sports contest at which a fraction ¢ of the contest has been
completed. Let X (¢) represent the lead of the home team at
time ¢. The process X (¢) measures the difference between
the home team’s score and the visiting team’s score at time
t; this may be positive, negative, or 0. Westfall (1990) pro-
posed a graphical display of X (¢) as a means of representing
the results of a basketball game. Naturally, in most sports
(including the sport of most interest here, basketball), X (¢)
is integer valued. To develop the model, we ignore this fact,
although we return to it shortly. We assume that X (¢) can
be modeled as a Brownian motion process with drift u per
unit time (u > 0 indicates a u point per game advantage for
the home team) and variance ¢2 per unit time. Under the
Brownian motion model,

X(t) ~ N(ut, ¢*t)
and X (s) — X(t), s > t, is independent of X (¢) with
X(s)—X(t) ~ N(u(s — 1), 6*(s — 1)).
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The probability that the home team wins a game is Pr(X (1)
> 0) = ®(u/0), and thus the ratio u/ ¢ indicates the mag-
nitude of the home field advantage. In most sports, the home
team wins approximately 55-65% of the games, correspond-
ing to values of /¢ in the range .12-.39. The drift parameter
u measures the home field advantage in points (typically
thought to be 3 points in football and 5-6 points in basket-
ball).

Under the random walk model, the probability that the
home team wins [i.e., X (1) > 0] given that they have an ¢
point advantage (or deficit) at time ¢ [i.e., X (¢) = £] is

P, (£, 1) =Pr(X(1)>0]|X(t) = £)
= Pr(X(1) — X(1) > —£)

_ q)(f +(1 - t)u)
Va —ne? )

where ® is the cdf of the standard normal distribution. Of
course, as ¢t = 1 for fixed £ # 0, the probability tends to
either O or 1, indicating that any lead is critically important
very late in a game. For fixed ¢, the lead £ must be relatively
large compared to the remaining variability in the contest
for the probability of winning to be substantial.

The preceding calculation treats X (¢) as a continuous
random variable, although it is in fact discrete. A continuity
correction is obtained by assuming that the observed score
difference is the value of X (¢) rounded to the nearest integer.
If we further assume that contests tied at ¢t = 1 [i.e., X (1)
= (0] are decided in favor of the home team with probability
.5, then it turns out that

f—.5+(1—t)u)

P, (2,1) =05 @(

Va1 - 1)
+ 5+ —0p
59
" ( V(1 = t)o? )

In practice, the continuity correction seems to offer little
improvement in the fit of the model and causes only minor
changes in the estimates of u and o. It is possible to obtain
a more accurate continuity correction that accounts for the
drift in favor of the home team in deciding tied contests. In
this case .5 is replaced by a function of u, o, and the length
of the overtime used to decide the contest.

The Brownian motion model motivates a relatively simple
formula for P, (¢, t), the probability of winning given the
lead ¢ and elapsed time ¢. A limitation of this formula is
that it does not take into account several potentially impor-
tant factors. First, the probability that a home team wins,
conditional on an ¢ point lead at time ¢, is assumed to be
the same for any basketball team against any opponent. Of
course, this is not true; Chicago (the best professional bas-
ketball team during the period for which data has been col-
lected here) has a fairly good chance of making up a 5-point
halftime deficit (£ = =5, ¢t = .50) against Sacramento (one
of the worst teams), whereas Sacramento would have much
less chance of coming from behind against Chicago. One
method for taking account of team identities would be to
replace u with an estimate of the difference in ability between
the two teams in a game, perhaps the Las Vegas point spread.
A second factor not accounted for is whether the home team
is in possession of the ball at time ¢ and thus has the next
opportunity to score. This is crucial information in the last
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few minutes of a game (¢ > .96 in a 48-minute basketball
game). Despite the omission of these factors, the formula
appears to be quite useful in general, as demonstrated in the
remainder of the article.

3. APPLICATION TO PROFESSIONAL BASKETBALL

Data from professional basketball games in the United
States are used to estimate the model parameters and to assess
the fit of the formula for P, (¢, t). The results of 493 Na-
tional Basketball Association (NBA) games from January to
April 1992 were obtained from the newspaper. This sample
size represents the total number of games available during
the period of data collection and represents roughly 45% of
the complete schedule. We assume that these games are rep-
resentative of modern NBA basketball games (the mean score
and variance of the scores were lower years ago). The dif-
ferences between the home team’s score and the visiting
team’s score at the end of each quarter are recorded as
X (.25), X(.50), X(.75), and X (1.00) for each game. For
the ith game in the sample, we also represent these values
as X;;,j =1, ..., 4. The fourth and final measurement,
X (1.00) = X; 4, is the eventual outcome of the game, possibly
after one or more overtime periods have been played to re-
solve a tie score at the end of four quarters. The overtime
periods are counted as part of the fourth quarter for purposes
of defining X. This should not be a problem, because X (1.00)
is not used in obtaining estimates of the model parameters.
In a typical game, on January 24, 1992, Portland, playing
Atlanta at home, led by 6 points after one quarter and by 9
points after two quarters, trailed by 1 point after three quar-
ters, and won the game by 8 points. Thus X;; = 6, X;, = 9,
X,"3 = _1, and Xi,4 = 8.

Are the data consistent with the Brownian motion model?
Table 1 gives the mean and standard deviation for the results
of each quarter and for the final outcome. In Table 1 the
outcome of quarter j refers to the difference X; , — X; ;-; and
the final outcome refers to X; 4 = X (1.00). The first three
quarters are remarkably similar; the home team outscores
the visiting team by approximately 1.5 points per quarter,
and the standard deviation is approximately 7.5 points. The
fourth quarter seems to be different; there is only a slight
advantage to the home team. This may be explained by the
fact that if a team has a comfortable lead, then it is apt to
ease up or use less skillful players. The data suggests that the
home team is much more likely to have a large lead after
three quarters; this may explain the fourth quarter results in
Table 1. The normal distribution appears to be a satisfactory
approximation to the distribution of score differences in each
quarter, as indicated by the QQ plots in Figure 1. The cor-

Table 1. Resuits by Quarter of 493 NBA Games

Quarter Variable Mean Standard deviation
1 X (.25) 1.4 7.58
2 X (.50) — X (.25) 1.57 7.40
3 X (.75) — X (.50) 1.51 7.30
4 X (1.00) — X (.75) 22 6.99
Total X (1.00) 4.63 13.18




1130

relations between the results of different quarters are negative
and reasonably small (r;, = —.13, r;3 = —.04, r;, = —.01,
ry3 = —.06, ryy = —.05, and r34 = —.11). The standard error
for each correlation is approximately .045, suggesting that
only the correlation between the two quarters in each half
of the game, ry; and r34, are significantly different from 0.
The fact that teams with large leads tend to ease up may
explain these negative correlations, a single successful quarter
may be sufficient to create a large lead. The correlation of
each individual quarter’s result with the final outcome is
approximately .45. Although the fourth quarter results pro-
vide some reason to doubt the Brownian motion model, it
seems that the model may be adequate for the present
purposes. We proceed to examine the fit of the formula
P, (¢, t) derived under the model.

The formula P, (¢, t) can be interpreted as a probit
regression model relatm the game outcome to the trans-
formed variables £/V1 — ¢t and V1 — ¢) with coefficients 1/
cand u/o. Let Y; = 1 if the home team wins the ith game
[i.e., X (1) > 0)] and 0 otherwise. For now, we assume that
the three observations generated for each game, correspond-
ing to the first, second, and third quarters, are independent.
Next we investigate the effect of this independence assump-
tion. The probit regression likelihood L can be expressed as

. Y;
J i

Y,

(1-1)
X I—Qa\/—+ﬁ\/
1__

where « = 1 /¢ and 8 = u/ 0. Maximum likelihood estimates
of @ and B (and hence u and o) are obtained using a Fortran
program to carry out a Newton-Raphson procedure. Con-
vergence is quite fast (six iterations), with & = .0632 and 3
=.3077 implying

p=487 and &= 15.82.

An alternative method for estimating the model parameters
directly from the Brownian motion model, rather than
through the implied probit regression, is discussed later in
this section. Approximate standard errors of i and & are
obtained via the delta method from the asymptotic variance
and covariance of & and :

se(p) =90 and s.e.(o)=.89.
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Figure 1. Q-Q Plots of Professional Basketball Score Differences by
Quarter. These are consistent with the normality assumption of the
Brownian motion model.

These standard errors are probably somewhat optimistic,
because they are obtained under the assumption that indi-
vidual quarters contribute independently to the likelihood,
ignoring the fact that groups of three quarters come from
the same game and have the same outcome Y;. We inves-
tigate the effect of the independence assumption by simu-
lation using two different types of data. “Nonindependent”
data, which resemble the NBA data, are obtained by simu-
lating 500 Brownian motion basketball games with fixed u,
o and then using the three observations from each game (the
first, second, and third quarter results) to produce data sets
consisting of 1,500 observations. Independent data sets con-
sisting of 1,500 independent observations are obtained by
simulating 1,500 Brownian motion basketball games with
fixed u, ¢ and using only one randomly chosen quarter from
each game. Simulation results using ‘“‘nonindependent” data
suggest that parameter estimates are approximately unbiased
but the standard errors are 30-50% higher than under the
independence condition. The standard errors above are
computed under the assumption of independence and are
therefore too low. Repeated simulations, using “noninde-
pendent” data with parameters equal to the maximum like-
lihood estimates, yield improved standard error estimates,
s.e.(i) = 1.3 and s.e.(6) = 1.2.

The adequacy of the probit regression fit can be measured
relative to the saturated model that fits each of the 158 dif-
ferent (£, t) pairs occurring in the sample with its empirical
probability. Twice the difference between the log-likelihoods
is 134.07, which indicates an adequate fit when compared
to the asymptotic chi-squared reference distribution with 156
degrees of freedom. As is usually the case, there is little dif-
ference between the probit regression results and logistic
regression results using the same predictor variables. We use
probit regression to retain the easy interpretation of the
regression coefficients in terms of u, ¢. The principal con-
tribution of the Brownian motion model is that regressions
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based on the transformations of Z t) su ested by the
Brownian motion model, (£/ — 1), appear to
provide a better fit than models based on the untransformed
variables. As mentioned in Section 2, it is possible to fit the
Brownian motion model with a continuity correction. In
this case the estimates for u and o are 4.87 and 15.80, almost
identical to the previous estimates. For simplicity, we do not
use the continuity correction in the remainder of the article.

Under the Brownian motion model, it is possible to obtain
estimates of u, ¢ without performing the probit regression.
The game statistics in Table 1 provide direct estimates of
the mean and standard deviation of the assumed Brownian
process. The mean estimate, 4.63, and the standard deviation
estimate, 13.18, obtained from Table 1 are somewhat smaller
than the estimates obtained by the probit model. The dif-
ferences can be attributed in part to the failure of the Brown-
ian motion model to account for the results of the fourth
quarter. The probit model appears to produce estimates that
are more appropriate for explaining the feature of the games
in which we are most interested—the probability of winning.

Table 2 gives the probability of winning for several values
of £, t. Due to the home court advantage, the home team
has a better than 50% chance of winning even if it is behind
by two points at halftime (z = .50). Under the Brownian
motion model, it is not possible to obtain a tie at t = 1 so
this cell is blank; we might think of the value there as being
approximately .50. In professional basketball ¢ = .9 corre-
sponds roughly to 5 minutes remaining in the game. Notice
that home team comebacks from 5 points in the final 5 min-
utes are not terribly unusual. Figure 2 shows the probability
of winning given a particular lead; three curves are plotted
corresponding to ¢ = .25, .50, .75. In each case the empirical
probabilities are displayed as circles with error bars (+ two
binomial standard errors). To obtain reasonably large sample
sizes for the empirical estimates, the data were divided into
bins containing approximately the same number of games
(the number varies from 34 to 59). Each circle is plotted at
the median lead of the observations in the bin. The model
appears consistent with the pattern in the observed data.

Figure 3 shows the probability of winning as a function
of time for a fixed lead ¢. The shape of the curves is as
expected. Leads become more indicative of the final outcome
as time passes and, of course, larger leads appear above
smaller leads. The £ = 0 line is above .5, due to the drift in
favor of the home team. A symmetric graph about the hor-
izontal line at .5 is obtained if we fix u = 0. Although the
probit regression finds p is significantly different than 0, the
no drift model Py (£, 1) = ®(£/V(1 — t)¢*) also provides a
reasonable fit to the data with estimated standard deviation
15.18.

Figure 4 is a contour plot of the function P; (£, t) with
time on the horizontal axis and lead on the vertical axis.
Lines on the contour plot indicate game situations with equal
probability of the home team winning. As long as the game
is close, the home team has a 50-75% chance of winning.

4. CONDITIONING ONLY ON THE
SIGN OF THE LEAD

Informal discussion of this subject, including the intro-
duction to this article, often concerns the probability of win-
ning given only that a team is ahead at time ¢ (£ > 0) with
the exact value of the lead unspecified. This type of partial
information may be all that is available in some circum-
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Table 2. P;; (¢, t) for Basketball Data
Lead
Timet ¢£=-10 £=-5 ¢=-2 ¢=0 ¢=2 ¢=5 ¢=10
.00 .62
.25 .32 .46 .55 .61 .66 74 .84
.50 .25 A1 52 .59 .65 .75 .87
.75 13 .32 .46 .56 .66 .78 .92
.90 .03 .18 .38 .54 .69 .86 .98

1.00 .00 .00 .00 1.00 1.00 1.00

stances. Integrating P, (¢, t) over the distribution of the
lead ¢ at time ¢ yields (after some transformation)

P, (t)=Pr(X(1)>0]|X(¢) > 0)

o5
X exp(—(y— \ﬁg)z 2) dy,

which depends only on the parameters u and ¢ through the
ratio u/o. The integral is evaluated at the maximum likeli-
hood estimates of u and o using a Fortran program to im-
plement Simpson’s rule. The probability that the home team
wins given that it is ahead at ¢ = .25 is .762, the probability
at ¢t = .50 is .823, and the probability at ¢ = .75 is .881. The
corresponding empirical values, obtained by considering only
those games in which the home team led at the appropriate
time point, (263 games for ¢t = .25, 296 games for ¢ = .50,
301 games for ¢z = .75) are .783, .811, and .874, each within
a single standard error of the model predictions.

Ifit is assumed that u = 0, then we obtain the simplification

_r
1—1t)

with Po(.25) = 2/3, Py(.50) = 3/4, and Py(.75) = 5/6. Be-
cause there is no home advantage when u = 0 is assumed,
we combine home and visiting teams together to obtain em-
pirical results. We find that the empirical probabilities (based
on 471, 473, and 476 games) respectively are .667, .748, and
.821. Once again, the empirical results are in close agreement
with the results from the probit model.

5. OTHER SPORTS

Of the major sports, basketball is best suited to the Brown-
ian motion model because of the nearly continuous nature
of the game and the score. In this section we report the results
of applying the Brownian motion model to the results of the
1986 National League baseball season. In baseball, the teams
play nine innings; each inning consists of two half-innings,
with each team on offense in one of the half-innings. The
half-inning thus represents one team’s opportunity to score.
The average score for one team in a single half-inning is
approximately .5. More than 70% of the half-innings produce
0 runs. The data consist of 962 games (some of the National
League games were removed due to data entry errors or be-
cause fewer than nine innings were played).

1 1
Py(t) = E + ;tan*‘ (
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Figure 2. Smooth Curves Showing Estimates of the Probability of Winning a Professional Basketball Game, P, ;(¢, t), as a Function of the Lead ¢
under the Brownian Motion Model. The top plot is t = .25, the middle plot is t = .50, and the bottom plot is t = .75. Circles + two binomial standard
errors are plotted indicating the empirical probability. The horizontal coordinate of each circle is the median of the leads for the games included in
the calculations for the circle.
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Figure 3. Estimated Probability of Winning a Professional Basketball
Game, P;;(¢, t), as a Function of Time t for Leads of Different Sizes.

Clearly, the Brownian motion model is not tailored to
baseball as an application, although one might still consider
whether it yields realistic predictions of the probability of
winning given the lead and the inning. Lindsey (1961, 1963,
1977) reported a number of summary statistics, not repeated
here, concerning the distribution of runs in each inning. The
innings do not appear to be identically distributed due to
the variation in the ability of the players who tend to bat in
a particular inning. Nevertheless, we fit the Brownian motion
model to estimate the probability that the home team wins
given a lead £ at time ¢ (here t € {1/9, ..., 8/9}). The
probit regression obtains the point estimates ¢ = .34 and ¢

30

10
1

lead

-10

-30

time

Figure 4. Contour Plot Showing Combinations of Home Team Lead and
Fraction of the Game Completed for Which the Probability of the Home
Team Winning is Constant for Professional Basketball Data.
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Figure 5. Estimated Probability of Winning a Baseball Game, P;;(¢, t),
as a Function of Time t for Leads of Different Sizes.

= 4.04. This mean and standard deviation are in good agree-
ment with the mean and standard deviation of the margin
of victory for the home team in the data. The asymptotic
standard errors for 4 and o obtained via the delta method
are .09 and .10. As in the basketball example, these standard
errors are optimistic, because each game is assumed to con-
tribute eight independent observations to the probit regres-
sion likelihood, when the eight observations from a single
game share the same outcome. Simulations suggest that the
standard error of g is approximately .21 and the standard
error of ¢ is approximately .18. The likelihood ratio test sta-
tistic, comparing the probit model likelihood to the saturated
model, is 123.7 with 170 degrees of freedom. The continuity
correction again has only a small effect.

Figure 5 shows the probability of winning in baseball as
a function of time for leads of different sizes; circles are plot-
ted at the time points corresponding to the end of each inning,

Table 3. P;; (¢, t) for Baseball Compared to Lindsey’s Resuits

p=.34 g=.0
t ¢ ¢ =4.04 ¢ =4.02 Lindsey
3/9 0 .53 .50 .50
3/9 1 .65 .62 .63
3/9 2 75 73 74
3/9 3 .84 .82 .83
3/9 4 .90 .89 .89
5/9 0 .52 .50 .50
5/9 1 .67 .65 .67
5/9 2 .79 77 79
5/9 3 .88 .87 .88
5/9 4 .94 .93 .93
7/9 0 52 .50 .50
7/9 1 71 .70 .76
7/9 2 .86 .85 .88
7/9 3 .95 .94 .94
7/9 4 .98 .98 .97
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t€{1/9,...,8/9}. Despite the continuous curves in Figure
5, it is not possible to speak of the probability that the home
team wins at times other than those indicated by the circles,
because of the discrete nature of baseball time. We can com-
pare the Brownian motion model results with those of Lind-
sey (1977). Lindsey’s calculations were based on a Markov
model of baseball with transition probabilities estimated from
a large pool of data collected during the late 1950s. He es-
sentially assumed that u = 0. Table 3 gives a sample of Lind-
sey’s results along with the probabilities obtained under the
Brownian motion model with 4 = 0 (¢ = 4.02 in this case)
and the probabilities obtained under the Brownian motion
model with ¢ unconstrained. The agreement is fairly good.
The inadequacy of the Brownian motion model is most ap-
parent in late game situations with small leads. The Brownian
motion model does not address the difficulty of scoring runs
in baseball, because it assumes that scores are continuous.
Surprisingly, the continuity correction does not help. We

Journal of the American Statistical Association, September 1994

should note that any possible model failure is confounded
with changes in the nature of baseball scores between the
late 1950s (when Lindsey’s data were collected) and today.
The results in Table 3 are somewhat encouraging for more
widespread use of the Brownian motion model.

[Received May 1993. Revised July 1993.]
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