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Visualizing Uncertainty
About the Future
David Spiegelhalter,1* Mike Pearson,1 Ian Short2

We are all faced with uncertainty about the future, but we can get the measure of some
uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate
effectively to lay audiences, and in this review we examine current practice for communicating
uncertainties visually, using examples drawn from sport, weather, climate, health, economics,
and politics. Despite the burgeoning interest in infographics, there is limited experimental
evidence on how different types of visualizations are processed and understood, although the
effectiveness of some graphics clearly depends on the relative numeracy of an audience.
Fortunately, it is increasingly easy to present data in the form of interactive visualizations and
in multiple types of representation that can be adjusted to user needs and capabilities.
Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed
knowledge—or from essential indeterminacy about the future—remains a challenge.

Faced with uncertainty about the future,
people largely rely on their gut feelings
to make decisions (1) influenced by past

experiences, affect and emotion, the views of ac-
quaintances, and cultural beliefs (2). For mil-

lennia, these intuitive responses have served us
well, but there are situations in which a more
analytic approach is likely to offer greater preci-
sion and deeper insight. For example, an indi-
vidual may be faced with a financial decision

with uncertain returns, or may need to choose
between alternative medical treatments, or even
appraise the odds being offered when gambling.
An organization may need to decide whether
to take precautions against bad weather ruin-
ing an event. Policy-makers may wish to assess

the benefits of a public health intervention or
the potential impact of a hazard on the natural
environment.

In a more analytic approach to such situa-
tions, a general feeling of uncertainty about the
future is replaced by two components: a list of
possible outcomes and an assessment of their
probabilities. Such assessments can be made on
the basis of judgments or assumptions embodied
in statistical models, which inevitably introduces
a subjective element. Some argue that “proba-
bility does not exist” (3); our view is that prob-
abilities are best treated as reasonable betting
odds constructed from available knowledge and
information.

Explanation of uncertainty presents a serious
challenge, particularly to an audience with a wide
range of scientific and mathematical expertise.
In this article we examine the success of graphic
visualizations for communicating probabilities
to a wider public, and we draw inspiration from
the strong tradition of using graphics to repre-
sent the frequency of events. For example, after
the Crimean War, Florence Nightingale created
diagrams resembling roses (4) (Fig. 1) to illus-
trate that far more soldiers died from prevent-
able diseases than directly from wounds. These

powerful images had a major impact
in Nightingale’s campaign to improve
sanitary conditions in army hospitals.
Seventy years later, the Austrian phi-
losopher and economist Otto Neurath
developed a picture “language” he
called Isotype (5) as an educational
tool in prewar socialist Vienna, which
was used, for example, to describe
the employment of women (Fig. 2).
In contrast to the subjective influences
acting in probability assessments,
these compelling graphics depicted
objective facts about the world.

We recognize three key concepts in
evaluating techniques for displaying
probabilistic predictions: (i) heuris-
tics (“common sense”) and accom-
panying biases applied in the face
of uncertainty (6); (ii) risk percep-
tion and the role of factors such as
personality and numeracy (7, 8); and
(iii) the type of graphic presentation
of data being used—whether static
images or interactive software (9).
We focus on broad forms of visual-
ization using a selection of exam-
ples, passing over details of graphic
design and acknowledging that we
only cover a small part of the whole
communication process. Previous re-

views (8–15) indicate there are few reproducible
experimental findings for assessing best prac-
tice in visualizing uncertainty. Instead, reviewers
have emphasized how graphics can be adapted
to the aims of the communicator, stressing the
importance of the context of the communica-
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Fig. 1. Florence Nightingale’s two rose-like graphs (4), each consisting of three overlaid polar area charts, representing
deaths from sickness (blue), deaths from wounds (red), and deaths from other causes (black). Each sector corresponds to
a month, and the area of a sector is proportional to the number of deaths per 1000 soldiers during that month. The
drop in deaths from sickness followed the introduction of sanitary measures in early 1855.
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tion exercise and the needs and capabilities of
the audiences.

The main objective of a visualization may sim-
ply be to grab an audience’s attention—a goal
achieved by Nightingale with her flamboyant rose
diagrams. Once we have the audience’s atten-
tion, we may wish not only to inform audience
members, but also to alter their feelings, change
their behavior, or encourage them to weigh the
possible benefits or harms of dif-
ferent actions (13). It may be im-
portant to communicate detailed
numerical information or just con-
vey the essence of a message. There
may also be an ethical imperative
to provide transparent informa-
tion (9). When designing a com-
munication, the desired outcome
must be considered from the start;
as Ancker et al. argue, “graphical
features that improve accuracy of
quantitative reasoning appear to
be different from features that in-
duce behavior change, and fea-
tures that viewers like may not
support either of the two goals”
(11). Here, we assume that the
mission is to inform rather than
persuade (9).

We begin by briefly discussing
the use of words and numbers in
conveying probabilities, and then
move on to consider visualiza-
tion of uncertainty for subjects
ranging from the fairly innocu-
ous (results of football matches)
to the personal (consequences of
medical interventions) and then
to the strongly disputed (future
climate change). We consider stat-
ic graphics of both discrete and
continuous outcomes, as well as
interactive web animations. Final-
ly, we present a vision of future
possibilities, illustrated with some
of our own preliminary work, in-
cluding techniques for portraying
uncertainty about the probabilities
themselves.

Communicating Uncertainty
with Words and Numbers
Probabilities can be described
fluidly with words, using language that appeals
to people’s intuition and emotions (13). But the
attractive ambiguity of language becomes a fail-
ing when we wish to convey precise information,
because words such as “doubtful,” “probable,”
and “likely” are inconsistently interpreted (16).
Further ambiguities in verbally communicating
uncertainty can arise from language difficulties
and literacy (10), although there have been at-
tempts to impose consistency in the use of lan-
guage. For example, the Intergovernmental Panel
on Climate Change (IPCC) defined “very likely”

in sentences such as “Most of the observed in-
crease in global average temperatures since the
mid-20th century is very likely due to the ob-
served increase in anthropogenic greenhouse
gas concentrations” to mean a 90 to 99% prob-
ability (17).

If we require precision, then numerical prob-
abilities convey information succinctly and ac-
curately, and are easily compared (13). A major

difficulty in offering numerical probabilities,
however, is that target audiences may have low
numeracy. For example, in a recent population-
based survey (18), the question “Which of the
following numbers represents the biggest risk of
getting a disease? 1 in 100, 1 in 1000, or 1 in
10?” was answered incorrectly by 25% of U.S.
participants and 28% of German participants.
Using odds or decimals as formats for numerical
probability compounds such difficulties and
adds to the problem of distinguishing absolute
risks from relative risks. There are additional

challenges in interpreting conditional proba-
bilities, as highlighted, for example, in studies
on the perception of biomedical screening test
results (19).

Another crucial issue is the choice of per-
spective in presenting information, known as
framing. For example, a recent poster campaign
in the London Underground proclaimed that
“99% of young people do not commit crimes”

to create a deliberate positive fo-
cus on 99% of youth being law-
abiding rather than the criminal
1%. Positive framing is also used
for product promotion—for in-
stance, when food is advertised
“95% fat free”—to shift perception
to belief that the food is healthy.
Another example is provided by
statistics for outcomes of cardiac
surgery: In the United States, mor-
tality rates are published, whereas
the United Kingdom publishes
survival rates, which provide a
more favorable impression of out-
comes (20). One tactic to avoid
biases from framing is to use fre-
quencies of the form “Out of 100
operations on people like you, we
expect 95 to be successful and
5 to be unsuccessful,” which at-
tempts to avoid framing bias by
describing both positive and neg-
ative outcomes. It also explicitly
includes the reference class “100
operations on people like you”
(19). In weather forecasts, inclusion
of the reference class and fram-
ing are important issues. Consid-
er the assertion “There is a 60%
probability of precipitation tomor-
row.” The correct interpretation is
that there will be rain in the spec-
ified place and time on 60% of
days like tomorrow, based, for ex-
ample, on rain predicted in 60% of
computer simulations of weather
forecasts. However, the statement
is often misinterpreted to mean the
percentage of time it will rain to-
morrow, or the percentage of area
on which it will rain (21). Such
misperceptions result from confu-
sion between probability and var-

iability, and providing the reference class “days
like tomorrow” can help understanding (22).

To convey uncertainty in simple terms, prob-
abilities are often presented as fractions (such as
1/10) or natural frequencies (such as 1 in 10),
but both these formats may lead to ratio bias or
denominator neglect (23). Ratio bias is the tend-
ency of probability perception to be influenced
by the specific frequencies depicted (24), and in
particular by the numerator, so that 1 in 20 may
be perceived as being a smaller probability than
5 in 100 or 50 in 1000. In denominator neglect,

Fig. 2. Image from the Isotype Institute illustrating the proportions of women
employed in different countries in 1930 and their occupations. [From (63)]
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attention is fixated on the number of events, with-
out taking any account of the size of the popu-
lation (25). If ratios are used, then it is important
to use consistent denominators, and powers of
10 (such as “1 in 10”or “1 in 100”) are easier to
understand (13). Because of mixed experimental
findings, the merits of using frequencies instead
of percentages are contested (7, 10, 26, 27).

Representing Probabilities with Graphics
A suitably chosen graphic can summarize data
concisely, illuminate hidden patterns (12, 28),
gain and hold attention (29), enliven informa-
tion, and inspire the viewer. Graphics can be

tailored for the audience (12) and this can help
people with low numeracy (7). On the other hand,
graphics can arouse emotion (2), and overem-
phasis of negative consequences can lead to risk
aversion (15) and higher perception of risks. In
this section we focus on probabilities for dis-
crete events that can be represented using stan-
dard graphical tools for conveying magnitude,
such as pie charts, bar charts, and icon arrays
(Fig. 3).

Pie charts are particularly useful for exhibit-
ing single proportions (9) and are usually famil-
iar and acceptable to a general public audience.
They also provide a part-to-whole comparison

because they represent all possible
outcomes explicitly. Pie charts use
area to represent probability, which
can make comparisons between mul-
tiple charts difficult, although this
can be aided by adding tick marks
around the circumference (12). A
novel display of the probabilities for
different results of a U.K. football
match is shown in Fig. 3A. Although
we find this attractive, its complex-
ity may cause confusion, and it has
a potentially misleading feature (Fig.
3A, legend).

Bar charts are valuable for con-
veying magnitude and making com-
parisons (13). The chart in Fig. 3B,
intended for a general audience, is
simple and makes effective use of
color but omits numeric values of
risks (30). There is some reassurance
in learning that your risk of prostate
cancer is below average for your
age, but there is no communication
of the absolute risk. Furthermore,
Fig. 3B exhibits negative framing,
in that risks of cancer, rather than
probabilities of not getting cancer,
are displayed (11). In contrast, Fig.
3C compares alternative treatments
numerically and gives complete part-
to-whole information in describing
all possible outcomes.

Bar charts (fig. S1) were also
used by NASA’s recent retrospective
assessment of the risks of the Space
Shuttle (31), which concluded that
the risks had been substantially greater
than assessed at the time—there was
only a 6% probability of reaching the
25th launch (Challenger) without los-
ing a craft. Their bar chart has mixed
and rather confusing labeling of prob-
abilities, including decimals, percent-
ages, and odds.

Some studies suggest that a sim-
ple icon array can provide better un-
derstanding of disease risk than a
bar chart (32). Icon arrays vividly dis-
play part-to-whole relationships and
can counter denominator neglect, par-

ticularly in low-numeracy groups (25, 33), as
well as producing an affective response (2). Two
sets of 100 equally sized human icons are shown
in Fig. 3D, and those with diabetes are distin-
guished by color and grouped together. Icons
representing a specific outcome can be scattered
among the other icons (fig. S2). Although scat-
tering better communicates unpredictability, it
can be difficult to assess magnitudes and make
comparisons, particularly for people with low
numeracy (34).

Line graphs are generally well understood
(12) and can be used to portray the way in which
probabilities given to events can change over

Fig. 3. Visualizations of probabilities for discrete events. (A) Pie chart displaying possible results of a U.K. football match (64)
between Leicester and Crystal Palace, with Leicester the home team. The size of each slice, determinedby its angle at the center,
represents the probability of a particular final goal score; for example, the probability of Leicester scoring 1, Crystal Palace 0, is
14%: this is assessed to be the most likely outcome and so the outer white band is colored. This probability is also represented
by the radius of the inner strongly colored “wedge” in each slice, whichmay give amisleading impressionbecause, for instance,
the wedge representing 14% (2-0) is substantially larger than the wedge representing 10% (2-1). In contrast, Florence
Nightingale used area rather than radius to represent her data in creating the rose diagram in Fig. 1. (The score in the actual
football match was 1-1.) (B) The right vertical bar chart represents David Spiegelhalter’s risk of being diagnosed with prostate
cancer, based on lifestyle information and the Harvard School of Public Health’s disease risk web site, www.yourdiseaserisk.
wustl.edu; the left vertical bar provides a qualitative scale (65). (C) A stacked horizontal bar chart from Adjuvant! Online (66)
representing the benefits from adjuvant (labeled “additional”) chemotherapy for a fictitious woman with colon cancer. A text
description of the expected outcomes for 100 women with and without chemotherapy is also supplied. [© 2008 American
Society of Clinical Oncology (72)] (D) Icon plot provided by 23andMe (67) for David Spiegelhalter’s probability of developing
type 2 diabetes between age 20 and age 79 based solely on specific genetic markers, relative to a standard population. In fact
the subject has reached 58 without getting the disease. [Image © 2008–2011 23andMe, Inc. (72)]
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time. For example, fig. S3 shows the
odds for Barack Obama winning the
2008 U.S. presidential election given
in a betting exchange each day dur-
ing the year preceding the election.

Natural frequencies appear to be
superior to percentages in improving
understanding of biomedical screen-
ing tests (19, 22), owing to the cog-
nitive effort required for interpreting
conditional probabilities. Data from
the U.K. Breast Cancer Screening
Programme (35) are used in Fig. 4 to
illustrate the outcomes of a mammog-
raphy test on a population with a 1%
prevalence of breast cancer. The test
is positive for around 90% of women
with cancer, but it is also positive for
around 10% of women without can-
cer. The issue (36) is to communicate
the probability that a woman who
tests positive actually has breast can-
cer: The fact that this probability is
only 8% is generally unintuitive. This
is a notoriously tricky problem, but
understanding can be greatly im-
proved (19, 22) by supplementing
the icon array with a tree diagram.
Audiences respond well to multiple
types of display of the same informa-
tion, and the composite diagram in
Fig. 4 not only allows part-to-whole
comparisons, but also shows how
the probabilities are worked out.

Contrasting risks over different or-
ders of magnitude presents a partic-
ular challenge to the choice of scale
used in a diagram. A common solution
is to use a logarithmic scale, ranging
from, say, 1 in 10,000,000 to certainty,
presented as a risk ladder (fig. S4A),
or alternatively as a linear scale with
a magnified portion for small risks
(fig. S4B). Perception is strongly in-
fluenced by design of the scale (11),
and perceived risk is often asso-
ciated with position on the scale
rather than the underlying magni-
tude. Hence, providing comparative
information within a risk ladder can
help understanding in low-numeracy
groups (37).

Representing Uncertainty About
Continuous Quantities
Uncertainty about a future continuous
quantity, such as future temperature
change or economic growth, is gen-
erally expressed as a full probability
distribution derived from a mathe-
matical model. This might be tabu-
lated using summary statistics, such
as its mean, median, variance, inter-
quartile range, and so on, but greater
impact in communicating uncertainty

Fig. 4. Visualizations of the predictive accuracy of a screening test. (A) Tree diagram showing the consequences for
1000 women attending mammography screening from a population with 1% prevalence of the disease, when the
screening test correctly classifies 90% of women with cancer and 90% of women without cancer. Although nearly
all the women with cancer are detected, they are greatly outnumbered by false-positive tests arising from those
without cancer. (B) Icon array of the same information, which shows explicitly that out of 108 positive tests, only 9
(8%) would be expected to reveal breast cancer.
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to a general audience can be achieved
by a visualization.

The roulette wheel in Fig. 3A is
a static representation of a model
created by researchers at MIT. This
device was used in public presenta-
tions to illustrate the gamble we take
on the environment if we fail to im-
plement sufficient policies to tackle
climate change (38). The image cap-
tures attention with an attractive
layout and bright colors, although
some effort is required to interpret
the graphic, and the uncertainty as-
sociated with the probabilities is not
shown.

Short-term weather predictions
often come with quantifiable uncer-
tainty. In Fig. 5B, predictions of max-
imum temperatures are displayed for
five consecutive days. The best esti-
mate is shown for each day, as well as
high and low values, representing a
90% prediction interval. A potential
problem is that these intervals may
be wrongly interpreted as representing
variability in temperature through-
out the day. An additional disadvan-
tage of this approach is that values
within the interval appear equally
likely, encouraging users to focus on
the extremes of the interval, which
are substantially less likely to occur
than the best estimate. A similar is-
sue arises with the use of error bars
on graphs (39), but this can be coun-
tered. For example, Fig. 5C shows a
“forest plot” of the type used exten-
sively in the synthesis of medical evi-
dence obtained from multiple clinical
trials or epidemiological studies. The
left side of a forest plot comprises
a list of the studies included in the
analysis, and the right side is a graph-
ical depiction of the results together
with a confidence measure (denoted
by the length of the line) and a mea-
sure of the strength of the study
(shown by the area of the squares).
The total, or summarized, measure
of the effect is represented by a dia-
mond; the width of the diamond in-
dicates the confidence interval, so if
the wing of the diamond crosses the
vertical line, which represents no ef-
fect, then the data are not statistical-
ly significant.

Uncertainty about where certain
events might occur, such as the trajec-
tory of a hurricane, can be represented
on a map as a “cone of uncertainty”
(Fig. 5D). Here the most likely path
of a hurricane is indicated by a black
line, and there is a two-thirds chance
that the path will lie somewhere in

Fig. 5. Visualizations of probability distributions for continuous quantities. (A) “Roulette wheels” showing possible
global temperature rises by 2100 under different policy scenarios (68). (B) 95% prediction intervals produced by
the U.K. Meteorological Office for the maximum temperature expected for 5 days in Peterborough, U.K.; the central
figure represents the most likely maximum temperature (69). (C) 95% uncertainty intervals obtained from the
Cochrane Collaboration for the effect of adjuvant radiotherapy, after surgery for cancer of the cervix, on the incidence
of hematological adverse events. There are two studies that together resulted in 7 of 188 adverse events in patients
given radiation therapy, compared with 3 of 200 adverse events in control patients not given the treatment. The
composite estimated risk ratio was 2.4, but with considerable uncertainty (56). The top right shows 95% uncertainty
intervals represented by a horizontal line, with a square, whose size is proportional to the numbers of patients studied,
drawing the eye to the more important central values of larger studies. In the row labeled Total, a diamond shape
again deemphasizes the extremes values. Strictly speaking, this is not a visualization of future uncertainty. [Image ©
Cochrane Collaboration (72)] (D) “Cone of uncertainty” for hurricane path warnings in Florida. The central black line is
the “most likely” path, and there is a two-thirds chance of the path being somewhere in the white region (70). (E) Fan
chart for future economic growth in the U.K. as recorded in November 2007 by the Bank of England (43). The black
line shows actual economic growth (according to current Office for National Statistics assessments) up to November
2007. Because these are provisional figures, there is still uncertainty as to the magnitude of past growth. (F) Probability
distribution (top panel) and cumulative distribution (bottom panel) for change in maximum temperature between 2010
and 2020 under a medium-emission scenario for a 25-km2 area in the U.K. containing the University of Cambridge (71).
The probability distribution expresses considerable uncertainty around a “most likely” estimate of around 1°C, while the
cumulative distribution makes it easier to read off, for example, a central 90% interval. [© 2009 Crown Copyright (72)]
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the white cone. The figure does not communicate
relative risks, and some commentators and mem-
bers of the public tended to over focus on the
most likely path, which is said to have unduly
influenced evacuation decisions (40). Uncertain-
ty on maps can also be represented using hue
and saturation of color, blurring, symbols, and
other techniques (41).

There is some empirical evidence (42) for
the effectiveness of color in conveying informa-

tion about variation in probability across a re-
gion. For example, fig. S5 displays the probability
contours for strong winds over Northern Europe
42 hours ahead. Colored probability contours
can be translated into other applications. The
Bank of England’s Monetary Policy Committee
communicates probabilistic projections of infla-
tion and output as fan charts; Fig. 5E shows an
example of projections from November 2007
onward for changes in gross domestic product,

with different shades indicating probability in-
tervals. The central interval represents 10% prob-
ability, and the largest interval 90% probability,
using a frequency interpretation assuming “eco-
nomic circumstances identical to today’s were
to prevail on 100 occasions” (43). Despite criti-
cism by journalists, the bank has always refused
to include a numerical central estimate when
first releasing the graphic each quarter-year,
and this seems appropriate given the concerns

Fig. 6. Visualizations of potential benefits and harms of radiotherapy. (A)
Expected outcomes for 100 women treated with adjuvant radiotherapy com-
pared to 100 not treated. The three yellow dots indicate the evidence is of
“moderate quality” using the GRADE scale. (B) Expected benefits and harms
of treating 100 women with adjuvant radiotherapy; for example, we would
expect 3 fewer deaths, 9 fewer women with disease progression, but extra

adverse events. Whether the treatment is acceptable to a woman can depend
on how she balances these benefits and harms. (C) Uncertainty about ben-
efits and harms of treating 100 women, based on evidence from a Cochrane
Collaboration review (56), using increased saturation of color to indicate
greater certainty. The great uncertainty about the mortality benefit of ad-
juvant radiotherapy is clear.
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described above about the “cone of uncertain-
ty.” Incidentally, the true series subsequently
plummeted out of the 90% interval and off the
bottom of the chart.

Using shading to represent probability is un-
suitable for fine quantitative comparisons (44).
Instead, the U.K. Climate Projections graphic
(Fig. 5F) displays a full probability density func-
tion placed contiguous to a cumulative probabil-
ity distribution, following recommended practice
for well-educated audiences (45). Although inter-
pretation of survival curves (the inverse of cumu-
lative distribution functions) by nonprofessionals
is feasible, it has been found to be strongly de-
pendent on instruction (13). In this figure, as with
all the figures discussed in this section, there
is limited empirical evidence of the effective-
ness of the various display formats for improv-
ing understanding.

Infographics
Increasing availability of online data and public
interest in quantitative information has led to a
golden age of infographics (i.e., graphical repre-
sentations of data intended for a nontechnical
audience), as championed by such American and
British newspapers as The New York Times and
The Guardian and by web sites such as IBM’s
Many Eyes (46), which allows visitors to create
their own visualizations. The infographics move-
ment has been greatly influenced by the mini-
malist design approach of Tufte (28), who
emphasizes a lack of clutter, clean lines, and close
attention to composition and color. The work of
designers such as Fry (47) and McCandless (48)
is as much art as science, with a strong creative
element (based on a personal viewpoint) but a
lack of empirical evaluation.

Recent innovations in infographics can be
adapted to communicate uncertainty; for exam-
ple, events can be represented in a word cloud,
with font size proportional to probability. This
technique is used in fig. S6, which shows those
contestants who are most likely to win the
Wimbledon 2011 men’s singles tournament. The
same information is communicated by a “tree
map” in fig. S7, in which a large rectangle repre-
senting 100% is subdivided into small labeled
rectangles whose areas represent the probabil-
ities of the labeled events.

There is huge potential for infographics
with interactive features. A striking example is
Rosling’s Gapminder (49), which has influenced
the development of animation of large and com-
plex data sets in which interactivity is encour-
aged, and controlled movement is generally used
to represent changes over time. There are several
benefits claimed for interactive over static visual-
izations (14, 50). Understanding and retention are
promoted by interactive graphics because the
user is encouraged to engage with the content ac-
tively rather than passively, which can also help
to counteract differences in numeracy (51). Com-
ponents such as tool-tip hints and hyperlinks
allow optional explanation and multiple repre-

sentations. Interactive graphics can adapt to the
user’s abilities and preferences (50) and can of-
fer feedback and assessment. For instance, zoom-
ing facilities, used in applications such as the
U.S. Riskometer (52), focus attention on low-
probability events. We have developed an inter-
active animated version of Nightingale’s roses
(movie S1), as well as animations for comparing
multiple formats of representing risks (movie S2)
and the type of screening test discussed previ-
ously in Fig. 4 (movie S3).

General use of interactive graphics may,
however, be limited through lack of user skills
and software incompatibility. Tellingly, Bostrom
and Lofstedt remarked (53) that modern infor-
mation technologies and the internet “provide
unprecedented opportunities, both for support-
ing risk decision making and for manipulating
unsuspecting users.”

What If We’re Uncertain About the Probabilities?
Uncertainty about probabilities can arise from
statistical error, ambiguous or limited data, over-
simplification of complex risk information, sci-
entific disagreement, and ignorance (54). There
is no consensus on either the benefit or optimum
means of communicating such uncertainty. More-
over, research indicates that although some peo-
ple may welcome additional acknowledgement
of ambiguity, others—particularly those with low
numeracy or low optimism—may become con-
fused, suspicious, and more risk-averse (54, 55).

Statistical sampling error can be communi-
cated using the techniques on visualizing contin-
uous probability distributions outlined earlier.
One method for communicating to patients the
potential benefits and harms of a treatment is
illustrated in Fig. 6. The information used in this

figure is taken from a review by the Cochrane
Collaboration on adjuvant radiotherapy after
surgery for cancer of the cervix (56) (see also
Fig. 5C). The probabilities of different outcomes
are represented by stacked icons, heavily influ-
enced by Neurath’s Isotypes.

Because the outcomes in Fig. 6A are not
mutually exclusive, 100 women are displayed in
each bar, allowing part-to-whole comparisons.
The data from Fig. 6A are filtered in Fig. 6B to
leave only the positive and negative aspects of
the health care intervention. Finally, Fig. 6C is
an optional representation, which includes a mea-
sure of uncertainty by fading the intensity of
shading of the icons. The yellow dots in Fig. 6
indicate GRADE assessments, which are stan-
dard practice in the Cochrane Collaboration and
other organizations to express a judgment as
to the quality of the underlying evidence (57).
GRADE is based on the extent to which the
authors of the review expect the estimates of the
benefits and harms of a treatment to change
when more evidence is received. This feature is
arguably more important than representations of
statistical sampling error.

What Further Research Is Needed?
In 2003, Bostrom and Lofstedt (53) concluded
that risk communication was “still more art than
science, relying as it often does in practice on
good intuition rather than well-researched prin-
ciples.” There has been limited progress since
then, and existing reviews lament the poor re-
search base in this area, with many small studies
carried out on students (15) or self-selected sam-
ples, little exploration of cumulative risk informa-
tion, and contradictory findings. Larger and more
sophisticated randomized experiments would

Box 1. What is the best way to visualize probabilistic uncertainty?
The most suitable choice of visualization to illustrate uncertainty depends closely on the objectives

of the presenter, the context of the communication, and the audience. Visschers et al. (15) concluded
that the “task at hand may determine which graph is most appropriate to present probability infor-
mation” and it is “not possible to formulate recommendations about graph types and layouts.” None-
theless, if we aim to encourage understanding rather than to just persuade, certain broad conclusions
can be drawn, which hold regardless of the audience.

• Use multiple formats, because no single representation suits all members of an audience.
• Illuminate graphics with words and numbers.
• Design graphics to allow part-to-whole comparisons, and choose an appropriate scale, possibly
with magnification for small probabilities.

• To avoid framing bias, provide percentages or frequencies both with and without the outcome,
using frequencies with a clearly defined denominator of constant size.

• Helpful narrative labels are important. Compare magnitudes through tick marks, and clearly
label comparators and differences.

• Use narratives, images, and metaphors that are sufficiently vivid to gain and retain attention,
but which do not arouse undue emotion. It is important to be aware of affective responses.

• Assume low numeracy of a general public audience and adopt a less-is-more approach by reducing
the need for inferences, making clear and explicit comparisons, and providing optional additional detail.

• Interactivity and animations provide opportunities for adapting graphics to user needs and
capabilities.

• Acknowledge the limitations of the information conveyed in its quality and relevance. The visualization
may communicate only a restricted part of a whole picture.

• Avoid chart junk, such as three-dimensional bar charts, and obvious manipulation through misleading
use of area to represent magnitude.

• Most important, assess the needs of the audience, experiment, and test and iterate toward a final
design.
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help assess preferences and understanding of ap-
propriate choices of formats for different audiences,
and could also indicate the extent to which the
claimed biases concerning quantitative informa-
tion (6) are due to inappropriate presentations (22).

Given the importance of the public under-
standing of health, economic, and environmental
risk, it may appear remarkable that so little firm
guidance can be given about how best to com-
municate uncertainty. But this is perhaps un-
surprising given the complexity of influences
operating in any particular context, and suggests
that, even more than experimentation, we need
careful case studies describing the development
and evaluation of specific examples in a range
of contexts (Box 1).

What About Deeper Uncertainties?
Many hazards facing society are subject to deeper
uncertainties than are reflected in probabilities
and measures of statistical error. Counterterrorism,
climate change, pesticides, deep-sea drilling, and
nuclear waste disposal are often characterized
by fundamental disagreements, and even igno-
rance, about the likelihood and values of different
consequences, as well as by essential indetermi-
nacy about a future governed by human behav-
ior. People’s understanding of these hazards
depends on their beliefs about how the world
works (58) and how society should be ordered
(59). Here a language of caution and humility is
appropriate, and decisions are sought that are
robust, resilient, and can adapt to possible future
surprises (60, 61).

Guidance for handling uncertainty in the
next IPCC review formalizes how the precision
with which uncertainties are expressed should
depend on the quality of evidence and scientific
agreement (62). But such deeper uncertainties
do not readily translate into visualizations. In
fact, the more attractive a depiction is made, the
more people may believe it represents the whole
truth rather than being a construction of limited
knowledge and judgment. So perhaps the great-
est challenge is to make a visualization that is
attractive and informative, and yet conveys its
own contingency and limitations.

References and Notes
1. G. F. Gigerenzer, The Intelligence of the Unconscious

(Viking, New York, 2007).
2. P. Slovic, E. Peters, M. L. Finucane, D. G. Macgregor,

Health Psychol. 24 (suppl.), S35 (2005).
3. B. de Finetti, Theory of Probability (Wiley, London, 1974).
4. F. Nightingale, Notes on Matters Affecting the Health,

Efficiency and Hospital Administration of the British
Army, Founded Chiefly on the Experience of the Late War
(Harrison, London, 1858).

5. Works of O. Neurath and M. Neurath, Isotype Institute
(available at www.fulltable.com/iso/).

6. D. Kahneman, P. Slovic, A. Tversky, Judgment Under
Uncertainty: Heuristics and Biases (Cambridge Univ.
Press, Cambridge, 2006).

7. E. Peters, J. Hibbard, P. Slovic, N. Dieckmann, Health Aff.
26, 741 (2007).

8. A. Fagerlin, P. A. Ubel, D. M. Smith, B. J. Zikmund-Fisher,
Am. J. Health Behav. 31 (suppl. 1), S47 (2007).

9. D. E. Nelson, B. W. Hesse, R. T. Croyle, Making Data Talk:
Communicating Public Health Data to the Public,

Policy Makers, and the Press (Oxford Univ. Press,
New York, ed. 1, 2009).

10. C. Skubisz, T. Reimer, U. Hoffrage, in Communication
Yearbook 33 (Routledge, London, 2009), pp. 177–211.

11. J. S. Ancker, Y. Senathirajah, R. Kukafka, J. B. Starren,
J. Am. Med. Inform. Assoc. 13, 608 (2006).

12. I. M. Lipkus, J. G. Hollands, J. Natl. Cancer Inst. Monogr.
1999, 149 (1999).

13. I. M. Lipkus, Med. Decis. Making 27, 696 (2007).
14. A. Bostrom, L. Anselin, J. Farris, Ann. N.Y. Acad. Sci.

1128, 29 (2008).
15. V. H. M. Visschers, R. M. Meertens, W. W. F. Passchier,

N. N. K. de Vries, Risk Anal. 29, 267 (2009).
16. T. S. Wallsten, D. V. Budescu, A. Rapoport, R. Zwick,

B. Forsyth, J. Exp. Psychol. Gen. 155, 348 (1986).
17. Intergovernmental Panel on Climate Change Working Group

1, IPCC Fourth Assessment Report: The Physical Science Basis
(IPCC, 2007; www.ipcc.ch/ipccreports/ar4-wg1.htm).

18. M. Galesic, R. Garcia-Retamero, Arch. Intern. Med. 170,
462 (2010).

19. G. Gigerenzer, W. Gaissmaier, E. Kurz-Milcke, L. M. Schwartz,
S. Woloshin, Psychol. Sci. Public Interest 8, 53 (2007).

20. B. J. McNeil, S. G. Pauker, H. C. Sox Jr., A. Tversky,
N. Engl. J. Med. 306, 1259 (1982).

21. R. Morss, J. Demuth, J. Lazo, Weather Forecast. 23, 974
(2008).

22. E. Kurz-Milcke, G. Gigerenzer, L. Martignon, Ann. N.Y.
Acad. Sci. 1128, 18 (2008).

23. V. F. Reyna, C. J. Brainerd, Learn. Individ. Differ. 18, 89 (2008).
24. V. Denes-Raj, S. Epstein, J. Pers. Soc. Psychol. 66, 819 (1994).
25. R. Garcia-Retamero, M. Galesic, G. Gigerenzer,

Med. Decis. Making 30, 672 (2010).
26. W. P. Neace, S. Michaud, L. Bolling, K. Deer, L. Zecevic,

Judgm. Decis. Mak. 3, 140 (2008).
27. S. L. Joslyn, R. M. Nichols, Meteorol. Appl. 16, 309 (2009).
28. E. Tufte, The Visual Display of Quantitative Information

(Graphics Press, Cheshire, CT, 2001).
29. C. M. R. Smerecnik et al., Risk Anal. 30, 1387 (2010).
30. S. Woloshin, L. M. Schwartz, A. Ellner, BMJ 327, 695 (2003).
31. NASA Space Shuttle Safety and Mission Assurance Office,

NASA Review of Shuttle Risks (available at http://hw.
libsyn.com/p/3/0/a/30aafb8c2337eb80/
NASAShuttleRiskReview-excerpt.pdf).

32. B. J. Zikmund-Fisher, A. Fagerlin, P. A. Ubel, Cancer 113,
3382 (2008).

33. M. Galesic, R. Garcia-Retamero, G. Gigerenzer, Health
Psychol. 28, 210 (2009).

34. J. S. Ancker, E. U. Weber, R. Kukafka, Med. Decis. Making
31, 143 (2011).

35. Breast Screening—Performance of Mammography:
Cancer Research UK (available at http://info.
cancerresearchuk.org/cancerstats/types/breast/screening/
mammography/).

36. J. G. Dolan, S. Iadarola, BMC Med. Inform. Decis. Mak. 8,
14 (2008).

37. C. Keller, M. Siegrist, V. Visschers, Risk Anal. 29, 1255 (2009).
38. A. P. Sokolov et al., J. Clim. 22, 5175 (2009).
39. J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn,

R. J. Moorhead, IEEE Trans. Vis. Comput. Graph. 15,
1209 (2009).

40. K. Broad et al., Misinterpretations of the “Cone of
Uncertainty” in Florida During the 2004 Hurricane
Season (2010) (available at http://journals.ametsoc.org/
doi/abs/10.1175/BAMS-88-5-651).

41. A. M. MacEachren et al., Cartogr. Geogr. Inform. Sci. 32,
139 (2005).

42. M. Leitner, B. P. Buttenfield, Cartogr. Geogr. Inform. Sci.
27, 3 (2000).

43. Bank of England, Bank of England Inflation Report 2007
(available at www.bankofengland.co.uk/publications/
inflationreport/2007.htm).

44. W. S. Cleveland, R. McGill, Science 229, 828 (1985).
45. H. Ibrekk, M. G. Morgan, Risk Anal. 7, 519 (1987).
46. Many Eyes (available at www-958.ibm.com/software/data/

cognos/manyeyes/).
47. B. Fry, Writing (available at http://benfry.com/writing/).
48. D. McCandless, Information is Beautiful (Collins,

London, 2010).
49. H. Rosling, Gapminder: Unveiling the beauty of statistics for

a fact based world view (available at www.gapminder.org/).

50. V. J. Strecher, T. Greenwood, C. Wang, D. Dumont,
J. Natl. Cancer Inst. Monogr. 1999, 134 (1999).

51. J. S. Ancker, E. U. Weber, R. Kukafka, Med. Decis. Making
31, 130 (2011).

52. American Council on Science and Health, Riskometer and
RiskRings (available at http://riskometer.org/).

53. A. Bostrom, R. E. Löfstedt, Risk Anal. 23, 241 (2003).
54. M. C. Politi, P. K. J. Han, N. F. Col, Med. Decis. Making

27, 681 (2007).
55. P. K. J. Han et al., Med. Decis. Making 31, 354 (2011).
56. L. Rogers, S. S. N. Siu, D. Luesley, A. Bryant, H. O. Dickinson,

in Cochrane Database of Systematic Reviews, The Cochrane
Collaboration, L. Rogers, Eds. (Wiley, Chichester, UK, 2009).

57. G. H. Guyatt et al.; GRADEWorking Group, BMJ 336, 924 (2008).
58. M. G. Morgan, B. Fischhoff, A. Bostrom, C. J. Atman,

Risk Communication: A Mental Models Approach
(Cambridge Univ. Press, Cambridge, ed. 1, 2001).

59. D. Kahan, Nature 463, 296 (2010).
60. A. Stirling, Nature 468, 1029 (2010).
61. G. Morgan et al., Best Practice Approaches for

Characterizing, Communicating, and Incorporating
Scientific Uncertainty in Decisionmaking (U.S. Climate
Change Science Program, 2009; www.climatescience.gov/
Library/sap/sap5-2/final-report/default.htm).

62. IPCC, Cross-Working Group Meeting on Consistent
Treatment of Uncertainties, Guidance Note for Lead
Authors of the IPCC Fifth Assessment Report on
Consistent Treatment of Uncertainties (2010) (available
at www.ipcc-wg2.gov/meetings/CGCs/Uncertainties-
GN_IPCCbrochure_lo.pdf).

63. G. Williams, Women and Work (Nicholson & Watson,
London, 1945).

64. Kick Off—Football Stats—Match Previews (available at
www.kickoff.co.uk/).

65. Harvard School of Public Health Disease Risk Index
(available at www.diseaseriskindex.harvard.edu/update/).

66. Adjuvant! Online (available at http://adjuvantonline.com/
index.jsp).

67. Genetic Testing for Carrier Status, Disease Risk and Drug
Response—23andMe (available at www.23andme.com/
health/risks/).

68. MIT Global Change Program | Greenhouse Gamble (available
at http://globalchange.mit.edu/resources/gamble/).

69. Met Office, Invent—Weather: Text view—Location:
Peterborough (available at www.metoffice.gov.uk/public/
pws/invent/weathertext/index.html?310120).

70. Definition of the NHC Track Forecast Cone (available at
www.nhc.noaa.gov/aboutcone.shtml).

71. UK Climate Projections—What is UKCP09: Probability
(available at http://ukclimateprojections.defra.gov.uk/
content/view/1205/618/).

72. Full permission statement for Fig. 3C: Reprinted with
permission. © 2008 American Society of Clinical Oncology.
Full permission statement for Fig. 3D: © 23andMe, Inc.
2008-2011. All rights reserved; distributed pursuant to a
Limited License from 23andMe. Full permission statement
for Fig. 5C: Copyright Cochrane Collaboration, reproduced
with permission. Full permission statement for Fig. 5F:
© Crown Copyright 2009. The UK Climate Projections
(UKCP09) have been made available by the Department for
Environment, Food and Rural Affairs (Defra) and the
Department of Climate Change (DECC) under licence from
the Met Office, UK Climate Impacts Programme, British
Atmospheric Data Centre, Newcastle University, University of
East Anglia, Environment Agency, Tyndall Centre and
Proudman Oceanographic Laboratory. These organizations
give no warranties, express or implied, as to the accuracy of
the UKCP09 and do not accept any liability for loss or damage
that may arise from reliance upon the UKCP09; any use of the
UKCP09 is undertaken entirely at the users risk.

Acknowledgments: Supported by an endowment from the
Winton Charitable Foundation (D.S., M.P.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/333/6048/1393/DC1
Figs. S1 to S7
Movies S1 to S3
References (73, 74)

10.1126/science.1191181

9 SEPTEMBER 2011 VOL 333 SCIENCE www.sciencemag.org1400

REVIEW


