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Abstract

We propose a bottom-up approach to the study of
possession and its outcomes for association football,
based on probabilistic finite state automata with tran-
sition probabilities described by a Markov process.
We show how even a very simple model yields faith-
ful approximations to the distribution of passing se-
quences and chances of taking shots for English Pre-
mier League teams, which we fit using a whole sea-
son of granular game data (380 games). We com-
pare the resulting model with classical top-down dis-
tributions traditionally used to describe possessions,
showing that the Markov models yield a more accu-
rate asymptotic behavior.

1 Introduction

In association football (football in the forthcoming)
key game events such as shots and goals are very
rare, in stark contrast to other team sports. By com-
parison, passes are two orders of magnitude more
abundant than goals. It stands to reason that in or-
der to get a comprehensive statistical summary of a
football game passes should be one of the main fo-
cal points. However, not much attention has been
paid to passing distributions, and the media attention
to passes is normally limited to the total number of
them, sometimes together with the passing accuracy.
A similar lack of attention is paid to the analysis of
possession, oftentimes limited to a single percentage
value.
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In [1] Reep and Benjamin analyze the distribu-
tion of length of passing sequences in association
football and compare it to Poisson and negative bi-
nomial distributions. More recent works suggest the
distribution of lengths of passing sequences in mod-
ern football is better explained by Bendford’s law
instead. However, all these works take a top-down
approach in which a model is arbitrarily chosen and
then fitted to the distribution, without any explana-
tion on why football games should be described by
that model.

In this work, we propose to take a bottom-up
approach instead, inspired by our previous work on
passing networks (cf. [2]) we model a team’s game
by a finite state automaton with states Recovery, Pos-
session, Ball lost, Shot taken, with evolution matrix
obtained from historical game data. The resulting
Markovian system provides a model for possession
after any given number of steps, as well as estimates
for the probabilities of likelihood of either keeping
possession or for it resulting in either of the two pos-
sible outcomes: lost ball or shot taken.

By choosing adequate fitting data, we compare
the possession models for different teams and show
how they vary across different leagues. We then com-
pare the resulting model with the ones previously
used in the literature (Poisson, NBD, Pareto) and with
the actual possessions data in order to find the best
fit. The obvious advantage of our model is that it ex-
plains the resulting distribution as the natural limit of
a Markov process.
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2 Determining possession lengths

Since football is such a fluid game, it is not always
immediately clear which sequences of events con-
stitute a possession. For our analysis, we consider
the simplest possible notion of possession as any se-
quence of consecutive game events in which the ball
stays in play and under control of the same team.
As such, we will consider that a possession starts
the first time a team makes a deliberate action on
the ball, and ends any time the ball gets out of the
pitch or there is a foul (regardless who gets to put
the ball in play afterwards), any time there is a de-
liberate on-ball action by the opposing team, such
as a pass interception tackle or a clearance (but not
counting unsuccessful ball touches which don’t in-
terrupt the game flow), or any time the team takes a
shot, regardless the outcome is a goal, out, hitting the
woodwork, or a goalkeeper save.

One could introduce a further level of sophistica-
tion by distinguishing between clear passes and ‘di-
vided balls’, such as passes to a general area where
player of both teams dispute the ball (for instance in
an aerial duel). For the sake of simplicity, we will
not take this into consideration.

It is also worth noting that when measuring pos-
session length we shall consider all in-ball actions,
and not just passes. In particular dribbles, won aerial
duels, and self-passes will all be considered as valid
actions when accounting for a single possession.
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Figure 1: Classical top-down models

In [1] it is suggested that length of passing se-
quences can be approximated by Poisson or Nega-
tive Binomial distributions. Our tests suggest this
is no longer the case for the average EPL team in
the 2012/2013 season: Figure 1 shows how the best
fitting Poisson and NBD grossly underestimate the
share of long possessions. For the sake of compar-
ison, we have also included the fitting of a Pareto
distribution, which displays the opposite effect (un-
derestimating short possessions and overestimating
longer ones). For our data, all three classic distri-
butions fail to meet the asymptotic behavior of the
observed data.

This can be partly explained by our different no-
tion for possession length, since Reep and Benjamin
only consider the total number of passes in a pos-
session, but the different definition does not tell us
the whole story. According to Reep and Benjamin
data, there are only 17 instances, measured over 54
games in 1957-58 and 1961-61, of sequences involv-
ing 9 passes or more (out of around 30000 posses-
sions). Even if we use their more restrictive notion
of possession there are many more instances of long
possession nowadays. A possible explanation might
be the generally admitted fact that football playing
style has evolved over the years, leaning towards a
more and more technical style which favors longer
possessions, with many teams consistently playing
possessions of 20 passes or even more.

In any case, it is quite evident that in order to ac-
curately describe possessions in current professional
football we need to find a different type of model
which allows for a longer tail. One possible such
candidate would be a power-law distribution, such
as Pareto’s (also plotted in Figure 1 for comparison).
As we plot longer parts of the tail, however, it will
become apparent that Pareto distribution does not dis-
play the correct type of asymptotic behavior in order
to describe our data.

3 Markovian possession models

A typical possession in a football game starts with a
ball recovery, which can be achieved in an active or
passive manner. Ball recovery is followed by a se-
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quence of ball movements that will eventually con-
clude with a loss of possession. Said lost of posses-
sion can be either intentional, due to an attempt to
score a goal, or unintentional, due to an error, an in-
terception/tackle, or an infringement of the rules.

The different possession stages can be modeled
using a nondeterministic finite state automaton, with
initial state indicating the start of a possession, fi-
nal states indicating the end of the possession, and
some number of other states to account for interme-
diate stages of the possession, as well as appropriate
probabilities for the state transitions.

The freedom in the choice of intermediate states
allows for a wealth of different Markov models with
varying degrees of complexity. One of the simplest
such possible schemes is to consider only one inter-
mediate state “Keep” to indicate continued posses-
sion, and two different final states “Loss” and “Shot”
indicating whether the possession ends in a volun-
tary manner (by taking an attempt to score a goal)
or in an involuntary manner. This simple model is
schematized by the following diagram:

Recovery Keep

Loss

Shot

pk

pl

ps

Figure 2: Simple Markov model

A slight variation allows to track for divided balls
(though using this model would require us to change
the definition of possession that we described above):

In an alternative model, one might be interested
on the interactions among players in different posi-
tions (loops have been removed from the graph to
avoid cluttering). This model is sketched in Figure
4.

Once we have chosen the set of states that config-
ure our Markov model, its behavior is then described
by the transition matrix A = (ai,j), where entry ai,j
represents the probability of transitioning from state
i to state j; similarly, given an initial state i, the prob-
ability of the game being at state j after r steps is
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Figure 3: Markov model with divided balls
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Figure 4: Positional Markov model

given by Arei, where ei = (0, . . . , 0, 1, 0, . . . , 0) is
the vector with coordinate 1 in position i and 0 ev-
erywhere else.

More complex Markov models allow for a richer
representation of game states, but since transition prob-
abilities must (in general) be determined heuristically,
they will be harder to fine-tune.

4 Model fitting

As a proof of concept, we will perform a detailed
fitting of the simplest Markov model described in
the previous section. This first approximation model
works under the very simplistic assumption that the
transition probabilities between two game states re-
main constant through the entire sequence of events.
Transition probabilities pk, pl, ps (which must satisfy
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pk+ps+pl = 1) are, respectively, the probability of
keeping possession, losing the ball, or taking a shot.

Since the transition matrix for this system is ex-
tremely simple, this model can be solved analyti-
cally, yielding the probability distribution given by

P ({X = x}) = (1− pk)px−1
k ' Ce−λx, (1)

(where λ = − log pk and C is a normalization con-
stant) suggesting that the distribution of lengths fol-
lows a pattern asymptotically equivalent to an expo-
nential distribution.
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Figure 5: Power law and Markov models

As Figure 5 shows, the simple Markov model
provides a good fitting model for the general trend,
with the correct asymptotic behavior, but it tends to
over-estimate occurrence of sequences of 3 to 8 ac-
tions, as well as severely underestimating the number
of sequences consisting on a single action. For indi-
vidual Premier League teams, Pearson’s goodness of
fit test yields a p–value higher than 0.99 in all cases.

The simple Markov model can be easily improved
by weakening the constraint on the transition proba-
bility being constant. A simple way of doing it is by
adding an accumulation factor b (with 0 < b < 1)
and modifying the probability distribution to

P ({X = x}) = C(e−λx + bx), (2)

since bx goes to 0 as x increases, the added factor
does not modify the asymptotic behavior of the re-
sulting probability distribution, but it allows to cor-

rect for the errors in the probabilities for short pos-
sessions. It is worth noting that whilst this adjusted
model (also shown in Figure 5) does not strictly come
from a Markov process (as the transition probability
is no longer constant), the additional factor b can be
interpreted as a (negative) self-affirmation feedback,
incorporated to the model in a similar way as the one
used in [3] for goal distributions. A possible inter-
pretation of this factor would be the added difficulty
of completing passes as a team proceeds to move the
ball closer to their opponents box. A higher value
of the b coefficient means that a team is more likely
to sustain their passing accuracy over the course of a
long possession.

Besides the distribution of length of possessions,
the Markov model allows us to study the probability
of any state of the model after a given number of
steps. In particular, one can look at the ‘Shot’ state,
obtaining a model for the probability that a shot will
have taken place within a given number of actions.
Once again, the system can be solved analytically,
yielding

P ({Shot|X ≤ x}) =
x−1∑
i=0

pikps = ps
1− pxk
1− pk

, (3)

where this probability should be understood as the
chance that a team will take a shot within x consecu-
tive ball touches. Figure 6 shows once again how the
model yields a good approximation to the observed
data fitting comfortably within the error bars. The
p–value for the Pearson’s goodness of fitting test is
again greater than 0.99.

The fitted coefficients for all the Premier League
teams in the 2012-2013 season are listed in table 1
(teams are sorted by final league position). There
is a remarkable correlation between higher values of
the ‘keep probability’ pk and what is generally con-
sidered ‘nice gameplay’, as well as between higher
values of the shot probability ps and teams consid-
ered to have a more aggressive football style.

Traditionally possession is considered a bad in-
dicator of performance, but our number suggest that
this does not need to be the case when it is ana-
lyzed in a more sophisticated manner. Apart from a
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Figure 6: Probability of shots for the Markov model

few outliers, such as under-performers Swansea and
Wigan Athletic, and over-performing Stoke, most teams
fitted probabilities correlate fairly well with their league
table positions.

5 Conclusions and future work

We have shown how Markov processes provide a
bottom-up approach to the problem of determining
the probability distribution of possession related game
states, as well as their outcomes. The bottom up ap-
proach has an obvious advantage of providing a con-
ceptual explanation for the resulting probability dis-
tribution, but besides that we have shown that even a
very simple Markov model yields better approxima-
tions than the classical top-down approaches.

It is worth noting that even if we focused in the
particular case of association football (and concretely
the English Premier League) the type of analysis we
have carried out is of a very general nature and can
easily be performed for many team sports which fol-
low similar possession patterns, such as basketball,
hockey, handball, or waterpolo, to name a few.

Besides the study of probability distributions, suf-
ficiently granular Markov processes can be used to
carry out game simulations. In theory one might
want to consider a full Markov model containing a
state for every single player, as in the passing net-
works described in [2], and use it as the base of an

Team pk ps b

1 Manchester United 0.794 0.017 0.685
2 Manchester City 0.794 0.016 0.683
3 Chelsea 0.785 0.018 0.663
4 Arsenal 0.797 0.015 0.690
5 Tottenham Hotspur 0.782 0.016 0.653
6 Everton 0.772 0.017 0.631
7 Liverpool 0.788 0.019 0.672
8 West Bromwich Albion 0.771 0.018 0.630
9 Swansea City 0.794 0.018 0.684

10 West Ham United 0.756 0.018 0.589
11 Norwich City 0.764 0.014 0.601
12 Fulham 0.783 0.018 0.657
13 Stoke City 0.752 0.015 0.575
14 Southampton 0.772 0.015 0.630
15 Aston Villa 0.771 0.016 0.619
16 Newcastle United 0.771 0.019 0.624
17 Sunderland 0.763 0.017 0.601
18 Wigan Athletic 0.783 0.017 0.660
19 Reading 0.749 0.016 0.558
20 Queens Park Rangers 0.767 0.016 0.618

Table 1: EPL Markov model fitting parameters

agent based model in order to forecast game out-
comes, although finding all the probability transi-
tions in that extreme situation would admittedly be
very hard.

6 Data and analysis implementation
details

Our analysis uses data for all the English Premier
League games in the 2012-2013 season (380 games).
Raw data for game events was provided by Opta.
Data munging, model fitting, analysis, and chart plot-
ting were performed using IPython [4] and the python
scientific stack [5, 6].
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