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Abstract. Are there general principles governing the process by which certain
products or ideas become popular relative to other (often qualitatively similar)
competitors? To investigate this question in detail, we have focused on the
popularity of movies as measured by their box-office income. We observe that
the log-normal distribution describes well the tail (corresponding to the most
successful movies) of the empirical distributions for the total income, the income
on the opening week, as well as the weekly income per theater. This observation
suggests that popularity may be the outcome of a linear multiplicative stochastic
process. In addition, the distributions of the total income and the opening income
show a bimodal form, with the majority of movies either performing very well
or very poorly in theaters. We also observe that the gross income per theater for a
movie at any point during its lifetime is, on average, inversely proportional to the
period that has elapsed after its release. We argue that (i) the log-normal nature
of the tail, (ii) the bimodal form of the overall gross income distribution and
(iii) the decay of gross income per theater with time as a power law, constitute
the fundamental set of stylized facts (i.e. empirical ‘laws’) that can be used to
explain other observations about movie popularity. We show that, in conjunction
with an assumption of a fixed lower cut-off for income per theater below which
a movie is withdrawn from a cinema, these laws can be used to derive a Weibull
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distribution for the survival probability of movies that agrees with empirical data.
The connection to extreme-value distributions suggests that popularity can be
viewed as a process where a product becomes popular by avoiding ‘failure’ (i.e.
being pulled out from circulation) for many successive time periods. We suggest
that these results may apply beyond the particular case of movies to popularity
in general.
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‘Now that the human mind has grasped celestial and terrestrial physics, -
mechanical and chemical, organic physics, both vegetable and animal, - there remains
one science, to fill up the series of sciences of observation, - Social physics. This is
what men have now most need of. . . ’—Auguste Comte 1855 The Positive Philosophy
of Auguste Comte transe. H Martineau (New York: Calvin Blanchard) p 30.

1. Introduction

As indicated by the above quotation from August Comte, a 19th century French philosopher
and the founder of the discipline of sociology, the idea of using the principles of physics
to analyze and understand social phenomena is not new. Indeed, as Philip Ball has recently
pointed out [1], one can trace connections between physics and the study of socio-political
phenomena back to the 16th century with the English philosopher Thomas Hobbes. Hobbes,
who had contributed, among other topics, to the physics of gases as well as to the theory of
political science, believed that the deterministic principles of Galilean physics could be used to
frame the laws governing not only the behavior of particles of matter but also that of particles of
society, i.e. human beings. At about the same time, an associate of Hobbes, William Petty,
had appealed for an empirical study of society in the manner of physics, by measurement
of quantifiable demographic and economic variables. This anticipated the use of statistical
techniques to study society, which was eventually developed by the 19th century Belgian
mathematician Adolphe Quetelet. Quetelet’s book Essai de physique sociale (1835) outlined
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the concept of identifying the statistical characteristics of the ‘average man’ by collecting data
on a large number of measurable variables [2]. In fact, it is here that the term ‘social physics’
was used, possibly for the first time, to indicate the quantitative study of empirical data collected
from a population. Its goal was to elucidate the statistical laws underlying social phenomena,
such as the incidence of crime or the rates of marriage. Quetelet used the Gaussian distribution,
which had previously been introduced in the context of analysis of astronomical observations,
to characterize many aspects of human behavior. Not surprisingly, this gave rise to great
controversy among his contemporaries. There was an intense debate as to whether this meant
that the freedom of choice for an individual was illusory. However, Quetelet was quite clear that
this only implied an overall average tendency towards a certain behavior, rather than predicting
how a specific individual will behave under a given set of circumstances. It is instructive that
even today much of the opposition to the application of physics to study society is based
on an erroneous impression that such an approach implies exact predictability of individual
behavior.

Given the long historical connection between physics and the study of society, it is therefore
surprising why more than a century passed after the development of statistical physics before it
was applied in a serious and sustained manner to analyze various social, economic and political
phenomena. There have, of course, been several individual attempts in this direction earlier
(see e.g. [3]). The appealing parallels between the collective behavior of a large assembly of
individuals, each of whose actions in isolation are almost impossible to predict, and that of a
large volume of gas, where the dynamics of individual molecules are difficult to specify, have
been noted even by non-physicists. For example, the science fiction writer Isaac Asimov has
used this analogy as the basis for the fictional discipline of ‘psycho-history’ in his Foundation
series of novels where statistical laws describing the behavior of entire populations are used to
predict the general historical outcome of events. It is of interest to note in this context that
the framework of kinetic theory of gases has been used to explain certain universal socio-
economic distributions, most notably, the distribution of affluence, measured in terms of either
individual income or wealth [4, 5]. However, it is only recently that there has been a large and
concerted initiative by statistical physicists to explain social phenomena using the tools of their
trade [6]. This may be partly due to lack of sufficient quantities of high-quality data related to
society. Indeed, the advances made in econophysics, i.e. the study of economic phenomena using
the principles of physics, especially of properties pertaining to financial markets, have been
attributed to the availability of large volumes of data. This has made it possible to quantitatively
substantiate the existence of universal properties in the behavior of such systems, e.g. the inverse
cubic law of the distribution of price fluctuations [7]–[9]. These statistical laws, often referred
to as ‘stylized facts’ in the economic literature, are seen to be invariant with respect to different
realizations of the system being studied.

More importantly, the existence of statistically universal behavior in socio-economic
phenomena suggests that it may indeed be possible to explain them using the approach of
physics, where the general properties at the systems level need not depend sensitively on
the microscopic details of its constituent elements. Indeed, it was the empirical observation
that critical exponents of different physical systems are independent of the specific physical
properties of their elementary components that gave rise to the modern theory of critical
phenomena in statistical physics. The expectation that a similar path will be followed by
the physics of socio-economic phenomena has driven the quest for empirical statistical laws
governing such behavior, over the past decade and half [10].
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One of the areas of social studies where the search for statistical universal properties can
be most fruitful is the emergence of collective decisions from the individual choice behavior
of the agents comprising a group. Many such decisions have a binary nature, e.g. whether to
cooperate or defect, to drop out of school, to have children out-of-wedlock, to use drugs, etc,
which are reminiscent of the framework of spin models used to study cooperative phenomena in
statistical physics [11]. The traditional economic approach to understanding how such choices
are made has been that every individual arrives at a decision based on the maximization of
a utility function specific to him/herself and relatively independent of how other agents are
behaving. However, it has been clear for quite some time, e.g. through the work of Schelling
on housing segregation [12], that in many if not most such choice processes, an individual’s
decision is influenced by those of his/her peers or members of his/her social network [13, 14].
This interactions-based approach, where the social context is an important determinant of
one’s choice, provides an alternative to utility maximization by individual rational agents in
understanding several social phenomena. In particular, such an approach may be necessary
for explaining the sudden emergence of a widely popular product or idea that is otherwise
indistinguishable from its competitors in terms of any of its observable qualities. While
traditional economic theory would hold that this suggests that there is a term in the utility
function that corresponds to an unobservable property differentiating the popular entity from
its competitors, there is no way of testing its scientific validity as such an hypothesis cannot be
subjected to empirical verification. The alternative interactions-based viewpoint would be that,
despite the absence of any intrinsic advantage initially, the chance accumulation of a relatively
larger number of adherents early on would produce a slight relative bias in favor of adoption of
a specific idea or product. Eventually, through a process of self-reinforcing or positive feedback
via interactions, an inexorable momentum is created in favor of the entity that builds into an
enormous advantage in comparison to its competitors (see e.g. [15]).

While most such decisions do not have life-altering repercussions, the empirical study
of collective choice dynamics can nevertheless result in the formulation of statistical laws
that may provide us with a better understanding of, for instance, how financial manias sweep
through apparently rational and highly intelligent traders or what leads to publicly sanctioned
genocides in civilized societies. A relatively innocuous example of such choice behavior is
seen in the emergence of movies that become extremely popular, often colloquially referred
to as ‘superhits’, and its flip-side, the ignoble departure of intensely promoted movies which
nevertheless fail miserably at the box-office. Frequently, it is not easy to see what quality
differences (if any) are responsible for the runaway success of one movie and the mediocre
performance of others4. It is thus a fecund area to search for signatures of statistical laws of
popularity that can give us some indications of the essential dynamics underlying the emergence
of collective decisions from individual choice.

In this paper, we have presented the results of our detailed analysis of the box-office
performance of motion pictures released in theaters across the USA over the past few years,
which are corroborated by data from India and Japan. The key finding reported here is that
such choice dynamics have three prominent universal features that are invariant with respect to
different periods of observations (and hence, different ensembles of movies). Firstly, the gross
income of a movie in its opening week, normalized by the number of theaters in which it is

4 The relative absence of correlation between quality and popularity has also been observed experimentally in
an artificial ‘music market’ where participants downloaded previously unknown songs either with or without
knowledge of the choices made by other participants [16].
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being shown, follows a log-normal distribution. Secondly, the number of theaters a movie is
released in has a bimodal distribution. Together, these two properties account for the bimodal
log-normal nature of the opening gross distribution for all movies released in a particular year.
Further, we note that the total gross income of a movie over its entire theatrical run also follows
a distribution that can be understood as a superposition of two log-normal distributions. The
similarity between the opening and total gross distributions is related to the third universal
feature of movie popularity, namely, the average gross weekly income per theater of a movie
decreases as an inverse linear function of the time that has elapsed after its release. Together,
these three properties determine all observable characteristics of the movie ensemble, including
the distribution of their lifetimes. In section 2, we introduce the terminology used in the rest of
the paper, discussing specific features of movie popularity and its quantifiable measures. This is
followed by a short description of the datasets that we have used for our analysis in section 3. In
section 4, which describes our main results, first the properties of the distributions of the gross
income, both for the opening week and over the total duration that a movie is shown in theaters,
are discussed. We follow this up with results on the distribution of the number of theaters in
which a movie is released, and try to see if any correlation exists between the opening and the
overall performance of the motion picture at the box office. The time evolution of a movie’s
box-office performance is analyzed next. Our results show scaling in the decay of the income of
a movie per theater as a function of time. In section 5, we discuss the distribution of persistence
time (i.e. the duration up to which a movie is shown at theaters), which exhibits the properties of
an extreme value distribution. This observation leads us to suggest that popularity can be viewed
as a sequential survival process over many successive time periods, where a successful product
or idea is one that survives being withdrawn from circulation for far longer than its competitors.
We conclude with a conjecture that the invariant properties observed for movie popularity may
also be relevant for other instances of popularity.

2. Measuring movie popularity

For movies, as for most other products competing for attention by potential consumers/adopters,
it is an empirically observed fact that only a very few end up dominating the market. As Watts
points out ‘. . . for every Harry Potter and Blair Witch Project that explodes out of nowhere to
capture the public’s attention, there are thousands of books, movies, authors and actors who
live their entire inconspicuous lives beneath the featureless sea of noise that is modern popular
culture’ [17]. In fact, it is an oft-quoted fact about the motion picture industry that the majority
of movies released every year do not attract enough viewers. The following comment made
about Bollywood, the principal Indian film production and distribution system, applies also to
motion picture industries worldwide: ‘fewer than 8 out of the more than 800 films made each
year [in Bollywood] will make serious money’ [18].

It may be worth mentioning here that popularity can arise through different processes.
For example, a product can become a runaway success immediately upon release, its popular
appeal presumably being driven by a saturation advertising campaign across different media
that precedes the release. This has been the dominant marketing strategy for successful big
budget movies, which are collectively referred to as ‘blockbusters’. In contrast, products that
are unsuccessful, referred to as ‘bombs’ or ‘flops’ in the context of movies, get a relatively
poor reception on being released in the market. For such movies, a bad opening week is usually
followed by ever-declining ticket sales, resulting in a quick demise at the box office. However, an
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alternative scenario is also possible where, after a modest opening week performance, a movie
actually shows an increase in its popularity over subsequent periods. This process is thought to
be driven by word-of-mouth promotion of the product through the social network of consumers
who influence the choice of their friends and acquaintances. As more people adopt or consume
the product, its popular appeal increases further in a self-reinforcing process. These kinds of
popular products, often termed ‘sleeper hits’ in the context of movies, are much less frequent
compared to the blockbusters and the bombs.

As in any quantitative study of the emergence of collective decision concerning the
adoption of a product or an idea, the first question we need to resolve is how to measure
popularity. While in some cases it may be rather obvious, as, for example, the number of people
driving a particular brand of car or practising a particular religion, in other cases it may be
difficult to identify a unique measurable property that will capture all aspects of popularity.
In particular, the popularity of movies can be measured in a number of ways. For example,
we can look at the average ratings given by critics in reviews published in various media,
web-based voting in different movie-related online forums, the cumulative number of DVDs
rented (or bought) or the income from the initial theatrical run of a movie in its domestic
market.

Let us consider in particular the case of movie popularity as judged by votes given by
registered users of one of the largest online movie-related forums, the Internet Movie Database
(IMDb) (http://www.imdb.com). Voters can rate a movie with a number between 1 and 10, with
1 corresponding to ‘awful’ and ‘10’ to excellent. The cumulative distribution of the total votes
for a movie approximately fits a log-normal distribution towards the tail, with the maximum
likelihood estimates of the distribution parameters being µ = 8.60 and σ = 1.09 [19]. However,
the use of such scores as an accurate measure of movie popularity has obvious limitations.
For instance, the different scores may be just a result of voters having differing amounts of
information about the movies, with older, so-called classic movies clearly distinguished from
newly released movies in terms of the voters’ knowledge about them. More importantly, as it
does not cost anything to vote for a particular movie in such online forums, the vital element
of competition for viewers that governs which product/idea will eventually become popular is
missing from this measure. Therefore, we will focus on the box-office gross earnings of movies
after they are newly released in theaters as a measure of their relative popularity. As we are
considering only movies in their initial theatrical runs, the potential viewers have a roughly
similar kind of information available about the competing items. Moreover, such ‘voting with
one’s wallet’ is possibly a more honest indicator of individual preference for movies. The
availability of large, publicly accessible datasets of the daily or weekly earnings of movies
in different countries in several movie-related websites has now made this kind of analysis a
practical exercise.

3. Data description

For our study, we have concentrated on data from the three most prolific feature-film-producing
nations in the world: India, the USA and Japan [20]. For example, of the 4603 feature films
produced around the world in 2005, India produced 1041, USA 699 and Japan 356 [21]. While
the US film industry, centered at Hollywood, has led the rest of the world for many decades
both in terms of financial investment and the revenues generated by the films they make, India
has been for a long time the largest producer of movies with a correspondingly high cinema

New Journal of Physics 12 (2010) 115004 (http://www.njp.org/)

http://www.imdb.com
http://www.njp.org/


7

admission. In fact, India accounts for almost a quarter of the total number of feature films made
annually worldwide. Both India and the USA have large domestic markets for their films, with
locally produced movies having more than 90% of the market share in each country. In addition,
the US film industry also dominates the international market, with most cinemas around the
world showing movies made in Hollywood.

For detailed information on the gross box-office receipts for movies released across theaters
in the USA during the period 1999–2008, we have used the data available from the websites
of The Movie Times (http://www.the-movie-times.com) and The Numbers (http://www.the-
numbers.com). The opening and total gross incomes of 5222 movies released over this period
have been considered in our analysis, as well as the maximum number of theaters in which they
were shown. This roughly corresponds to including the 500–600 top-earning movies for each
year. We have used these data to obtain the overall distributions of movie popularity measured
in terms of income. To compare the performance of a movie with its production budget, the
latter information was obtained for 1420 movies released over the period 2000–2008. We have
also looked at the time evolution of popularity, focusing on the top approximately 300 movies
each year for the period 2000–2004. This corresponds to a total of 1497 movies over the five-
year period, where the total gross receipt at the box office for each movie being considered is
greater than 105 USD. For these movies, we collected information about gross income each
week during the time the film ran in theaters, as well as the number of theaters in which a movie
was shown on a particular week.

To verify the universal nature of the distributions obtained from the US data, we also
considered the gross income data of a total of 500 movies released across theaters in India during
the period 1999–2008 (corresponding to the top 50 movies each year in terms of their box-office
income), which were obtained from the IbosNetwork website (http://www.ibosnetwork.com).
We also collected income data on 1095 movies released in Japan over the period 2002–2008
from the BoxOfficeMojo website (http://www.boxofficemojo.com/intl/japan/), which roughly
corresponds to the 150 top-earning films each year.

4. Results

4.1. Distribution of opening and total gross

As mentioned earlier, we will consider the gross income of a movie after it is released in theaters
as a measure of its popularity, as this is directly related to the number of people who have
been to a cinema to watch it. Thus, the total gross of a movie (GT), i.e., the entire revenue
earned from screenings over the entire period that it was shown in theaters, is a reasonable
indicator of the overall viewership. An important property to note about the distribution of
popularity of movies, measured in terms of their income, is that it deviates significantly from a
Gaussian form in having a much more extended tail. In other words, there are many more highly
popular movies than one would expect from a normal distribution. This immediately suggests
that the process of emergence of popularity may not be explained simply as the outcome of many
agents independently making binary (namely yes or no) decisions to adopt a particular choice,
such as going to see a particular movie. As this process can be mapped to a random walk, we
expect it to result in a Gaussian distribution that, however, is not observed empirically. To go
beyond this simple conclusion and identify the possible processes involved in the emergence
of popularity, one needs to ascertain accurately the true nature of the distribution of gross
income.
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The total gross is, of course, an aggregate measure of the box-office performance of a
movie. Over the theatrical lifetime of a movie, i.e. the period between the time a movie is
released and the time it is withdrawn from the last theater it is being shown at, its viewership can
show remarkable up- and down-swings. For example, two movies that have the same total gross
can take very different routes to this overall performance. One movie may have opened at a large
number of theaters and generated a large gross in its opening week followed by rapidly declining
box-office receipts before being withdrawn. The other movie could have been initially released
at a smaller number of theaters but, as a result of increasing popularity among viewers, was then
subsequently released at more theaters and ran for a longer period, eventually garnering the same
total gross. Thus, considering the opening gross of a movie (GO), i.e. the box-office revenue on
the opening week, can provide us with information about its popularity, which complements
what we have from its total gross. Indeed, the opening week is considered to be the most critical
event in the commercial life of a movie, as is evident from the pre-release publicity efforts of
major Hollywood studios to promote movies in an effort to guarantee large initial viewership.
This is because the opening gross is widely thought to signal the success of a particular movie.
The observation that about 65–70% of all movies earn their maximum box-office revenue in the
first week of release [22] appears to support this line of thinking. In the following analysis, we
will look at both the total and the opening gross.

Previous studies of movie income distribution [22]–[24] have looked at limited datasets
and found some evidence for a power-law fit. A more rigorous analysis using data on a much
larger number of movies released across theaters in the USA was performed in [25]. While the
tail of the distribution for both the opening gross and the total gross for movies may appear to
follow an approximate power law P(I ) ∼ I −α with an exponent α ' 3 [25, 26], an even better
fit is achieved with a log-normal form (as shown in figure 1),

P(x) =
1

xσ
√

2π
e−(lnx−µ)2/2σ 2

, (1)

where µ and σ are parameters of the distribution, being the mean and standard deviation of the
variable’s natural logarithm. The maximum likelihood estimates of the log-normal distribution
parameters for the aggregated US gross income data are µ = 16.607 and σ = 1.471. The log-
normal form has also been verified by us for the income distribution of movies released in India
and Japan (figure 2). It is of interest to note that a strikingly similar feature has been observed for
the popularity of scientific papers, as measured by the number of their citations, where initially
a power law was reported for the probability distribution with exponent ' 3 but was later found
to be better described by a log-normal form [27, 28].

To further establish that the log-normal curve indeed describes the tail of the income
distribution better than a power law, we have also tested for the significance of the fits using
Kolmogorov–Smirnov (KS) statistics [29] (table 1). After calculating the KS statistic for the
empirical distribution and the best-fit curve obtained by maximum likelihood estimation (for
both log-normal and power-law distributions), we have generated an ensemble of random
samples having the same size as the empirical data from the best-fit distributions and the KS
statistic is calculated for each such sample. The p value is obtained by measuring the fraction
of samples whose KS statistic is greater than that obtained from the empirical data and a higher
p value indicates greater confidence in the fit with the theoretical distribution. We note from
table 1 that the tails of the distributions of total gross earned by movies released in the USA for
each year during 1999–2008 are well described by a log-normal distribution, as indicated by the
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Figure 1. Probability distribution of the total gross income, GT, for movies
released across theaters in the USA for each year during the period 1999–2008.
The best fit for the aggregated data by a log-normal distribution (broken
curve) with maximum likelihood estimated parameters µ = 16.607 ± 0.062 and
σ = 1.471 ± 0.042 is shown for comparison. The estimates of the log-normal
distribution parameters for each individual year lie within the error bars of the
aggregate distribution parameters.

relatively high p values, as are the tails of the aggregate distributions for India and Japan (the
tails correspond to movies earning in excess of 8 million USD for the USA, 10 million INR for
India and 5 million USD for Japan). By contrast, we have to reject the hypothesis that the Indian
and Japanese distributions can be described by a power-law tail as the corresponding p 6 10−3.
For the USA, the annual distributions for most years between 1999 and 2008 appear to have
high p values when a power law is fitted to the tail (corresponding approximately to movies
earning in excess of 50 million USD). However, a power-law fit to the tail of the aggregate
distribution of the entire US data (comprising movies that earned more than 1.10 billion USD)
with the maximum likelihood estimated exponent α ' 3.26 gives a p values of only about 0.024.
Thus, as the power-law form agrees with data from only one of the three countries considered
and, moreover, fits a smaller region of the tail of the empirical distributions compared to the
log-normal curve, we consider the latter to be a more suitable choice for describing the income
distribution of movies than the former.

Instead of focusing only on the tail (which corresponds to the top grossing movies), if we
now look at the entire income distribution, we notice another important property: a bimodal
nature. There are two clearly delineated peaks, which correspond to a large number of movies
having either a very low income or a very high income, with relatively few movies that perform
moderately at the box office (figure 3). The existence of this bimodality can often mask the
nature of the distribution, especially when one is working with a small dataset. For example,
De Vany and Walls, based on their analysis of the gross for only about 300 movies, stated that
log-normality could be rejected for their sample [30]. However, this assumed that the underlying
distribution can be fitted by a single unimodal form—an assumption that was quite clearly
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Figure 2. Probability distribution of the total gross income, GT, scaled by
the average total gross 〈GT〉 of all movies released across theaters in (a) the
USA during the period 1999–2008, (b) India during the period 1999–2008 and
(c) Japan during the period 2002–2008, each fitted by a log-normal distribution
(broken curves). The maximum likelihood estimates of the parameters for the
log-normal fits to the scaled total gross are (a) µ = −0.901 ± 0.062 and σ =

1.471 ± 0.042 for the USA, (b) µ = −0.436 ± 0.084 and σ = 0.922 ± 0.056
for India and (c) µ = −0.644 ± 0.076 and σ = 1.097 ± 0.051 for Japan. For
the unscaled data (i.e. GT), the corresponding MLE parameters are (i) µ =

18.264 ± 0.084 and σ = 0.922 ± 0.056 for India and (ii) µ = 15.725 ± 0.076
and σ = 1.097 ± 0.051 for Japan.

incorrect as evident from the histogram of their data. Our more detailed and comprehensive
analysis with a much larger dataset shows that the distribution of the total gross is in fact a
superposition of two different log-normal distributions,

P(x) = pP(x, µ1, σ1) + (1 − p)P(x, µ2, σ2), (2)

where P() represents the log-normal distribution, while p and (1 − p) are the relative weights
of the two-component distributions about the lower and higher income peaks, respectively. We
observe in figure 3 that the best fit for the total income data occurs when p ' 0.7.

Turning our focus now to the opening gross, we notice that its distribution also has a
bimodal form that can be similarly represented as a superposition of two log-normal distrib-
utions with the relative weights of the two components being p = 0.55 and (1 − p) = 0.45.
The more equal contributions of the distributions about the lower and higher income peaks
in the opening week, as compared to that for the total or aggregated income over the en-
tire lifetime seen earlier, is possibly because many movies that open with high viewership
rapidly decay in terms of popularity and exit from the cinemas within a few weeks. Thus,
their short lifetime translates into poor performance in terms of the overall income and they
do not contribute to the higher income peak for the bimodal total gross distribution. However,
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Table 1. Comparison between KS statistics for the fitting of the tails of total gross
(GT) distribution with (a) log-normal and (b) power-law forms. The parameters
for the best-fit log-normal distribution (µ and σ ) and power-law distribution
(α) are obtained from maximum likelihood estimation. The value of Gmin

T (in
currency units: INR for India and USD for the USA and Japan) indicates the
minimum total gross beyond which log-normal or power-law fitting is applied to
the tail of the empirical distribution. The value of Gmin

T is chosen such that the
empirical and best-fit distributions are as similar as possible in terms of minimum
KS statistics.

Log-normal distribution Power-law distribution

Country Year(s) µ σ Gmin
T p value α Gmin

T p value

USA 1999 16.446 1.427 0.786 3.953 12.69 × 107 0.956
2000 16.574 1.484 0.452 2.554 4.88 × 107 0.001
2001 16.615 1.486 0.517 2.553 5.02 × 107 0.192
2002 16.569 1.468 0.779 3.465 11.67 × 107 0.784
2003 16.708 1.480 8 × 106 0.248 3.519 9.56 × 107 0.336
2004 16.659 1.511 0.542 2.751 5.71 × 107 0.666
2005 16.702 1.434 0.333 2.628 4.56 × 107 0.489
2006 16.577 1.469 0.115 2.848 5.23 × 107 0.285
2007 16.567 1.477 0.670 2.093 2.85 × 107 0.012
2008 16.657 1.488 0.242 3.833 12.75 × 107 0.800

India 1999–2008 18.264 0.922 1 × 107 0.395 2.296 7.75 × 107 0.001

Japan 2002–2008 15.725 1.097 5 × 106 0.074 2.232 9.56 × 106 0.000

the total and opening gross distributions are qualitatively similar, suggesting that the nature
of the popularity distribution of movies is decided at the opening week itself 5. In this con-
text, it is interesting to note the recent finding that the long-term popularity of online con-
tent in web portals such as YouTube can be predicted to a certain extent by observing the
access statistics of an item (e.g. a video) in the initial period after it has been posted by a
user [31].

4.2. Distribution of gross per theater

We now focus on understanding what is responsible for the bimodal log-normal distribution of
the gross income for movies. It is, of course, possible that this is directly related to the intrinsic
quality of a movie or some other attribute that is intimately connected to a specific movie (such
as how intensely a film is promoted in the media prior to its release). Lacking any other objective
measure of the quality of a movie, we have used its production budget as an indirect indicator.
This is because movies with higher budget would tend to have more well-known actors, better
visual effects and, in general, higher production standards. As mentioned earlier, we have

5 Note that this is a statement about the distribution that pertains to the entire ensemble rather than about an
individual movie. The result does not imply that the gross income of a particular movie on the opening week
completely determines its total income.
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Figure 3. The logarithmically binned probability distributions for (a) the total
gross, GT, and (b) the opening gross, GO, for movies released across theaters
in the USA during the period 1999–2008. Both distributions exhibit a bimodal
nature and have been fitted using a superposition of two log-normal distributions
P(x, µ1, σ1) and P(x, µ2, σ2), having relative weights p and (1 − p),
respectively. For the total gross, the best fit is obtained using p = 0.699, µ1 =

11.499, µ2 = 17.239, σ1 = 2.305 and σ2 = 1.089, while for the opening gross,
the best fit parameters are p = 0.549, µ1 = 11.199, µ2 = 16.126, σ1 = 1.058
and σ2 = 1.008. Note that the dataset used to generate the distribution in (a) is
larger than that used for (b), as there are some movies with low total gross whose
opening week income is not available.

considered movies for which publicly available information about the production budget is
available. This may not be the exact total cost incurred in making the movie, but nevertheless
gives an overall idea about the expenses involved. Figure 4(a) shows a scatter plot of the total
gross as a function of the production budget for movies released between 1999 and 2008 whose
budget exceeded 1 million USD. As is clear from the figure, although in general, movies with
higher production budget do tend to earn more, the correlation is not very high (the correlation
coefficient r is only 0.63). Thus, production budget by itself is not enough to guarantee high
popularity.6

Another possibility is that the immediate success of a movie after its release is dependent on
how well the movie-going public have been made aware of the film by pre-release advertising
through various public media. Ideally, an objective measure for this could be the advertising
budget of the movie. However, as this information is mostly unavailable, we have used as
a surrogate the data about the number of theaters that a movie is initially released at. As
opening a movie at each theater requires organizing publicity for it among the neighboring
population and wider release also implies more intense mass-media campaigns, we expect the
advertising cost to roughly scale with the number of opening theaters. As is obvious from
figure 4(b), the correlation between the opening gross per theater and the total number of theaters
in which a movie opens is essentially non-existent (the correlation coefficient r ' −0.15),

6 Information about the production budget of movies having low income is often not available. We have thus not
been able to investigate whether the distribution of production budgets itself has a bimodal nature.
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Figure 4. (a) Total gross (GT) of a movie shown as a function of its production
budget. The correlation coefficient is r = 0.633 and the measure of significance
is p < 0.001. (b) The opening gross per theater (gO = GO/NO) as a function
of the number of theaters in which a movie is released on the opening week.
The correlation coefficient r = −0.151, with the corresponding measure of
significance p < 0.001.

suggesting that advertising may not be a decisive factor in the success of a movie at the box
office. In this context, one may note that De Vany and Walls have looked at the distribution
of movie earnings and profit as a function of a variety of variables, such as genre, ratings,
presence of stars, etc, and have not found any of these to be significant determinants in movie
performance [24].

Instead of focusing on factors inherent to specific movies that can be used to explain the
gross distribution, we will now examine whether the bimodal log-normal nature appears as a
result of two independent factors, one responsible for the log-normal form of the component
distributions and the other for the bimodal nature of the overall distribution. First, turning to
the log-normal form, we observe that it may arise from the nature of the distribution of gross
income of a movie normalized by the number of theaters in which it is being shown. The income
per theater gives us a more detailed view of the popularity of a movie, compared to its gross
aggregated over all theaters. It allows us to distinguish between the performance of two movies
that draw similar numbers of viewers, even though one may be shown at a much smaller number
of theaters than the other. This implies that the former is actually attracting relatively larger
audiences compared to the other at each theater and hence is more popular locally. Thus, the
less popular movie is generating the same income simply on account of it being shown in many
more theaters, even though fewer people in each locality served by the cinemas may be going
to see it.

Figure 5 shows that the distribution of the gross income per theater over any given week,
gW = GW/NW, has a log-normal nature. Here, GW represents the total gross income of a movie
over a week W when it is being shown at NW theaters. Note that this is quite different from the
earlier distributions because we are now considering together movies that are at very different
stages in their lifetime. In a particular week, a few movies might have just opened, others are
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Figure 5. The probability distribution of gW (= GW/NW), the gross income in
a given week per theater for a movie released in the USA during the period
2000–2004 fitted by a log-normal distribution (broken curve). The parameters of
the best-fit distribution are µ = 7.208 ± 0.011 and σ = 1.035 ± 0.008. The data
are averaged over all of the weeks in the period mentioned.

about to be withdrawn from exhibition, while still others are somewhere in the middle of their
theatrical run. On the other hand, figure 6 shows the distribution of the income per theater of
a movie on its opening week, i.e. gO = GO/NO, where NO is the number of theaters in which
the movie is released. Calculating the KS statistics for the log-normal fitting of the opening
gross per theater gives a p value of 0.678, indicating the fit to be statistically significant. Thus,
both the distribution of gW and that of gO show a log-normal form despite the fact that they are
quite different quantities, thereby underlining the robustness of the nature of the distribution.
The appearance of the log-normal distribution may not be surprising in itself, as it is expected
to occur in any linear multiplicative stochastic process [32, 33]. The decision to see a movie
(or not) can be considered to be the result of a sequence of independent choices, each of which
have certain probabilities. Thus, the final probability that an individual will go to the theater to
watch a movie is a product of each of these constituent probabilities, which implies that it will
follow a log-normal distribution. It is worth noting here that the log-normal distribution also
appears in other areas where the popularity of different entities arises as a result of collective
decisions, e.g. in the context of proportional elections [34], citations of scientific papers [28, 35]
and visibility of news stories posted by users on an online website [36].

4.3. Distribution of the number of theaters in which a movie is released

While the log-normal nature of the popularity distribution for movies (as measured by their
gross income per theater) can be explained as the consequence of an underlying process where
sequential stochastic choices are made by each individual to decide whether to watch the movie,
its overall bimodal character is yet to be explained. Figure 7 suggests a possible answer: the two
peaks of the distribution of income may be reflecting the bimodality of the distribution of NO,
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Figure 6. The probability distribution of gO (=GO/NO), the opening week gross
income per theater of a movie released in theaters across the USA during the
period 2000–2004 fitted by a log-normal distribution (broken curve). The best-fit
distribution parameters are µ = 8.672 ± 0.044 and σ = 0.877 ± 0.030.
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Figure 7. The probability distribution of the logarithm of (a) the number of
theaters in which a movie is shown in its opening week, NO, and (b) the
largest number of theaters, NM, in which a movie is simultaneously shown in
a given week in its entire lifetime. The data are for movies released across the
USA during 2000–2004. A fit using two Gaussian distributions is shown for
comparison. The parameters of the best-fit distribution for the number of theaters
in the opening week are p = 0.583, µ1 = 2.442, µ2 = 7.796, σ1 = 1.714 and
σ2 = 0.281, while those for the largest number of theaters in a week over its
lifetime are p = 0.590, µ1 = 4.066, µ2 = 7.821, σ1 = 1.651 and σ2 = 0.285.
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i.e. the number of theaters in which a motion picture is released, or of NM, the largest number of
cinemas that it plays simultaneously at any point during its entire lifetime. Thus, most movies
are shown either at a handful of theaters, typically a hundred or less (these are usually the
independent or foreign movies), or at a very large number of cinema halls, numbering a few
thousand (as is the case with the products of major Hollywood studios). Unsurprisingly, this
also decides the overall popularity of the movies to an extent, as the potential audience of a film
running in less than 100 theaters is always going to be much smaller than what we expect for
blockbuster films. In most cases, the former will be much smaller than the critical size required
for generating a positive word-of-mouth effect spreading through mutual acquaintances, which
will gradually cause more and more people to become interested in seeing the film. There are
occasional instances where such a movie does manage to make the transition successfully, when
a major distribution house, noticing an opportunity, steps in to market the film nationwide to a
much larger audience and a ‘sleeper hit’ is created. An example is the movie My Big Fat Greek
Wedding, which opened in only 108 theaters in 2002 but went on to become the fifth highest
grossing movie for that year, running for 47 weeks and at its peak being shown in more than
2000 theaters simultaneously.

Bimodality has also been observed in other popularity-related contexts, such as in the
electoral dynamics of US Congressional elections, where over time the margin between the
victorious and defeated candidates has been growing larger [37]. For instance, the proportion of
votes won by the Democratic Party candidate in the federal elections has changed from about
50% to one of two possibilities: either about 35–40% (in which case the candidate lost) or
about 60–65% (when the candidate won). We have earlier proposed a theoretical framework for
explaining how bimodality can arise in such collective decisions arising from individual binary
choice behavior [19, 38, 39]. Individual agents took ‘yes’ or ‘no’ decisions on issues based
on information about the decisions taken by their neighbors and were also influenced by their
own previous decisions (adaptation) as well as how accurately their neighborhood had reflected
the majority choice of the overall society in the past (learning). Introducing these effects in the
evolution of preferences for the agents led to the emergence of two-phase behavior marked by
transition from a unimodal behavior to a bimodal distribution of the fraction of agents favoring
a particular choice, as the parameter controlling the learning or global feedback is increased.
In the context of the movie income data, we can identify these choice dynamics as a model
for the decision process by which theater owners and movie distributors agree to release a
particular movie in a specific theater. The procedure is likely to be significantly influenced by the
previous experience of the theater and the distributor, as both learn from previous successes and
failures of movies released/exhibited by them in the past, in accordance with the assumptions
of the model. Once released in a theater, its success will be decided by the linear multiplicative
stochastic process outlined earlier and will follow a log-normal distribution. Therefore, the total
or opening gross distribution for movies may be considered to be a combination of the log-
normal distribution of income per theater and the bimodal distribution of the number of theaters
in which a movie is shown.

4.4. Time evolution of movie popularity

The distribution of gross income analyzed so far represents a temporally aggregated view of
the popularity of movies. As already mentioned, information about how the number of viewers
changes over time can reveal other aspects of the popularity dynamics and, in particular, can
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Figure 8. The total gross (GT) earned by a movie as a function of its lifetime, i.e.
the duration of its run at theaters. The correlation coefficient is r = 0.224 with
the corresponding measure of significance p < 0.001.

distinguish between movies in terms of how they have achieved their success at the box office,
namely, blockbusters and sleepers. This can be seen by looking at a plot of the total income
of movies against their income in the opening week, with blockbusters having high values for
both while sleepers would be characterized by a low opening but high total gross. One can also
observe distinct classes of movies from the scatter plot shown in figure 8, which indicates the
correlation between the total gross income of a movie, representing its overall popularity, and
its lifetime at the theaters, which is a measure for how long it manages to attract a sufficient
number of viewers. We immediately notice that although many movies with high total gross
also tend to have long lifetimes, there are also several movies that lie outside this general trend.
Films that tend to have a very long run at the theaters despite not having as high a total income
as major studio blockbusters may belong to a special class, e.g. effects movies that are made to
be shown only at theaters having giant screens [25].

To go beyond the simple blockbuster–sleeper distinction and have a more detailed view
of the time evolution of movie popularity, one has to consider the trend followed by the daily
or weekly income of a movie over time. Figure 9 (top) shows that the daily gross income of a
classic blockbuster movie, Spiderman (released in 2002), decays with time after release, having
regularly spaced peaks corresponding to large audiences on weekends. To remove the intra-
week fluctuations and observe the overall trend, we focus on the time series of weekly gross,
GW (figure 9, bottom). This shows an exponential decay with a characteristic rate γ , a feature
seen not only for almost all other blockbusters, but for bombs as well. The only difference
between blockbusters and bombs is in their initial, or opening, gross. However, sleepers may
behave differently, showing an initial increase in their weekly gross and reaching the peak in
the gross income several weeks after release. For example, in the case of the movie My Big Fat
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Figure 9. The time evolution of (top) the daily gross income GDaily (in dollars)
and (bottom) the weekly gross income GW (in dollars) for the film Spiderman
(released in 2002) aggregated over all theaters across the USA. The gross income
is seen to decay with time approximately exponentially, i.e. ∼ exp(−γ t), where
γ ' 0.072 day−1, giving a characteristic decay time of 14 days (i.e. 2 weeks).

Greek Wedding, the peak occurred 20 weeks after its initial opening. It was then followed by
exponential decay of the weekly gross until the movie was withdrawn from circulation. Note
that the exponential decay rate (γ ) is different for different movies7.

Instead of looking at the income aggregated over all theaters, if we consider the weekly
gross income per theater, a surprising universality is observed. As previously mentioned, the
income per theater gives us additional information about the movie’s popularity because a movie
that is being shown in a large number of theaters may have a bigger income simply on account of
higher accessibility for the potential audience. Unlike the overall gross that decays exponentially
with time, the gross per theater of a movie shows a power-law decay in time measured in terms
of the number of weeks from its release, W : gW ∼ W −β , with exponent β ' 1 [26] (see the
inset of figure 10). This shares a striking similarity with the time evolution of popularity for
scientific papers in terms of citations. It has been reported that the citation probability to a paper
published t years ago decays approximately as 1/t [28]. Note that de solla Price [41] noted a
similar behavior for the decay of citations to papers listed in the Science Citation Index. In a
very different context, namely, the decay over time in the popularity of a website (as measured
by the rate of download of papers from the site) and that of individual web pages in an online
news and entertainment portal (as measured by the number of visits to the page), power laws
have also been reported but with different exponents [42, 43]. More recently, the relaxation
dynamics of popularity with a power-law decay have been observed for other products, such as

7 In general, it is also possible for popularity dynamics to exhibit bursts or avalanches, as has indeed been observed
in the context of the popularity of online documents (measured both in terms of the number of hyperlinks pointing
to a web page and the number of visits made to the page) [40]. However, we have not observed any significant
burst-like pattern in the dynamics of movie popularity.
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Figure 10. The distribution of exponents β describing the power-law decay of
the weekly gross income per theater, gW (= GW /NW ), for all movies released
in the USA during 2000–2004 that ran in theaters for more than 5 weeks. The
exponents were obtained by least-square linear fitting of the weekly gross income
per theater of a movie as a function of time (measured in weeks, W ) on a doubly
logarithmic scale. The inset shows the decay for two specific movies: Mission
Impossible (1996) and Shrek (2001).

book sales from Amazon.com [44] and the daily views of videos posted on YouTube [45], where
the exponents appear to cluster around multiple distinct classes.

Figure 10 shows the distribution of the power-law scaling exponents for all movies that
ran for more than 5 weeks in theaters in the USA during the period 2000–2004. Most of the
movies have negative exponents, the mean and median being −0.990 and −1.002, respectively,
indicating a monotonic decay of the income per theater as a reciprocal function of the time
elapsed from the initial release date. Note that only nine movies over the entire period analyzed
by us had positive exponents and these had been shown at a very small number of theaters (about
five or fewer). For these movies, the income per theater showed a slight increase towards the end
of their lifetime before they were completely pulled out from theaters. On the whole, therefore,
the local popularity of a movie at a certain point in time appears to be inversely proportional to
the duration that has elapsed from its initial release.

5. Discussion

In the preceding section, we summarized the principal results from our analysis of the data on
movie popularity as reflected in their gross income at the box office. One can now ask whether
the three main features observed, namely, (i) log-normal distribution of gross per theater, (ii)
bimodal distribution of the number of theaters in which a movie is shown and (iii) the decay in
gross per theater of a movie as an inverse function of the duration from its initial release, are
sufficient to explain all other observable properties of movie popularity. To illustrate this, we
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Figure 11. The cumulative persistence probability of a movie remaining in a
theater for a period exceeding W weeks shown as a function of time (W , in
weeks) for movies released in the USA during 2000–2004. The broken line
shows a fit with the stretched exponential distribution (see text).

now consider an important quantifier not considered earlier: the persistence time of a movie,
τ , i.e. the duration for which it is shown at theaters. As seen from figure 11, only about half
of all of the movies considered survive for more than 14 weeks in theaters and only about
10% persist beyond 25 weeks. The cumulative distribution fits a stretched exponential form
(∼ exp[−(t/a)b), indicating that the persistence time probability distribution can be described
by the Weibull distribution [46],

P(t) =
b

a

(
t

a

)(b−1)

exp

[
−

(
t

a

)b
]

, (3)

where a, b > 0 are the shape and scale parameters of the distribution, respectively. The best fit
to the data shown in figure 11 is achieved for a = 16.485 ± 0.547 and b = 1.581 ± 0.060. The
Weibull distribution is well known in the study of failure processes and is often used to describe
extreme events or large deviations. In particular, it has been applied to describe the failure rate
of components, with the parameter b > 1 indicating that the rate increases with time because of
an aging process.

We can derive this empirical property of movie popularity from our earlier stated
observations, with only an added assumption: that a movie is withdrawn from circulation when
its gross income per theater falls below a critical value, gc. An interpretation of this number is
that it is related to the minimum number of tickets a theater has to sell per week in order to
make the exhibition of the movie an economically viable proposition. Once the popularity of
the movie has gone below this level, the theater is presumably no longer making a profit by
showing this film and is better off showing a different movie. Therefore, the probability that the
persistence time of a movie is τ is essentially given by the probability that the gross income per
theater at time τ falls below gc. To evaluate this probability, we use the observation that the gross

New Journal of Physics 12 (2010) 115004 (http://www.njp.org/)

http://www.njp.org/


21

per theater of a movie i at any time t , gi
t , has decayed by a factor 1/t (on average) from its initial

value, gi
O, i.e. the opening gross per theater. As the decay of gross income is not a completely

deterministic process, we can express gi
t = (gi

O/t)η, where η has a log-normal distribution with
parameters µ (=0) and σ , which guarantees that the stochastic variation can never result in a
negative value for the gross. If time is expressed in units of weeks ( j = 1, 2, . . .), the cumulative
probability distribution of the persistence time τi is given by

P(τi > T |gi
O) =

T∏
j=1

P(gi
j > gc|g

i
O), (4)

which is a product of the probabilities that the gross income per theater earned by the movie in
all of the T successive weeks starting from its initial release is greater than the critical value gc.
We note that the right-hand side expression of equation (4) is equal to

∏T
j=1 P(η > gc j/gi

O|gi
O),

which is the product of cumulative distribution functions for the log-normal random variable η.
Therefore, the cumulative distribution of the persistence time can be written as

P(τi > T ) =

∫
∞

0
P(gi

O)

T∏
j=1

1

2

(
1 − erf

[
ln(gc j/gi

O)
√

2σ 2

])
dgi

O, (5)

where P(gi
O) is the log-normal distribution of the opening gross per theater and erf(x) is the

error function. Numerical solution of the above expression shows that it reproduces a stretched
exponential curve, having reasonable agreement with the empirical data.

The fact that at least certain aspects of popularity dynamics can be described by the
mathematical framework for understanding failure events is probably not a coincidence.
A common observation across different areas in which popularity dynamics are operational is
that most entities are pushed out of the market within a short time of their introduction. In many
areas, this high rate of early extinction is balanced by new entrants into the market, so that at any
given time, the number of competing entities is maintained more or less constant. Therefore, the
key question in understanding popularity is: Why do most products or ideas fail to survive the
brutal competition for being the most popular choice? We see instances of the general rule that
‘most things fail’ in almost all types of economic phenomena [47]. As Ormerod has pointed
out, of the top 100 business enterprises in 1912, 48 had ceased to exist as independent entities
by 2005, while only 28 companies were larger (in real terms) than they were back in 1912.
Similarly, out of the large number of computer software companies that had been in operation
in the 1980s, only a handful have survived to the present. This is not just true for the present
age but also for historical times. In 1469, 12 publishing houses had emerged in Venice in the (at
that time) pioneering activity of printing books, but by the end of three years, only three of them
had survived. Thus, a successful product is marked by its ability to survive in its early stages to
build a consumer base. This may be a product of chance, as often there is little to distinguish
between competitors in terms of their intrinsic qualities. However, once a product or idea has
had a certain number of adherents, it is able to survive by the process of positive feedback,
thereby generating more adherents. In the case of movies, the process reaches a natural limit
when the potential audience is exhausted as everybody likely to view the movie has seen the
film. In other cases, e.g. for religious or political ideas, the process can continue indefinitely as
more and more converts are added to the fold. Thus, a general view of popularity dynamics can
be expressed as follows. Each competing product or idea, upon initial introduction to the market,
has a certain probability of failing to attract a sufficient number of adherents. This means that at
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every successive time step, the entity has to survive the possibility of early demise. A popular
object, according to this view, is one that has repeatedly managed, by a combination of chance
and design, to avoid failure (and subsequent exit from the marketplace) for far longer than its
competitors.

6. Conclusions: the stylized facts of popularity

In this paper, we have analyzed the empirical data for movie popularity, measured in terms of
its box-office income. We observe that the complex process of popularity can be understood,
at least for movies, in terms of three robust features that (using the terminology of economics)
we can term as stylized facts of popularity: (i) log-normal distribution of the gross income per
theater, (ii) the bimodal distribution of the number of theaters in which a movie is shown and
(iii) power-law decay with time of the gross income per theater. Some of these features have
been seen in other instances in which popularity dynamics play a role, such as citations of
scientific papers or political elections. This suggests that it is possible that the above three
properties apply more generally to the processes by which a few entities emerge to become
a popular product or idea. A unifying framework may be provided by the understanding of
popular objects as those which have repeatedly survived a sequential failure process.
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