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Abstract

We first discuss certain problems with the classical probabilistic
approach for assessing forensic evidence, in particular its inability to
distinguish between lack of belief and disbelief, and its inability to
model complete ignorance within a given population. We then discuss
Shafer belief functions, a generalization of probability distributions,
which can deal with both these objections. We develop a new calculus
of belief functions which does not use the much criticized Dempster rule
of combination, and which yields very natural notions of conditioning
and independence, consistent with their classical counterparts. We
then apply this calculus to some classical forensic problems like the
various island problems and the problem of parental identification. If
we impose no prior knowledge apart from assuming that the culprit
or parent belongs to a given population (something which is possible
in our setting), then our answers differ from the classical ones when
uniform or other priors are imposed. We can actually retrieve the
classical answers by imposing the relevant priors, so our setup can and
should be interpreted as a generalization of the classical methodology,
allowing more flexibility. We show how our calculus can be used to
develop an analogue of Bayes’ rule, with belief functions instead of
classical probabilities. We also discuss consequences of our theory for
legal practice.

Keywords: Belief Functions, Prior Ignorance, Lack of Additivity, Lack of
Belief versus Disbelief, Evidence, Island Problem, Parental Identification,
Bayes’ Rule, Legal Practice.

1 Introduction and motivation

It has been debated for several decades as to what extent theories of
probability, are useful and/or suitable for assessing the value of evidence
in legal and forensic settings, see e.g. [12], [8], [18], [1], [24]. The debate
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mainly concentrates on the question whether or not the classical theory of
probability, by which we mean the theory following Kolmogorov’s axioms,
is suitable in legal problems.

The current dominant view proposes that we should use the classical
probability axioms in court, in particular the axiom of additivity, i.e. P (A)+
P (B) = P (A∪B) whenever A and B are disjoint. We are typically interested
in an event, often denoted by G, that a given individual is the donor of a
DNA profile, is the criminal in a certain crime, is the father of a certain
child, or likewise. The main tool in this dominant view is Bayes’ formula

P (G|E)

P (Ḡ|E)
=

P (E|G)

P (E|Ḡ)
·
P (G)

P (Ḡ)
, (1.1)

where E denotes relevant evidence, and where Ḡ denotes the complement
of G (or another set such that G ∩ Ḡ = ∅).

Bayes’ formula transforms prior odds P (G)
P (Ḡ)

into posterior ones P (G|E)
P (Ḡ|E)

by multiplying the prior odds by the likelihood ratio P (E|G)
P (E|Ḡ)

. We will give

more detail on the legal practice and the use of Bayes’ rule in Section 7, but
note that the use of Bayes’ formula presupposes the idea that all quantities
of interest, including the prior, can indeed be expressed as probabilities
satisfying the usual Kolmogorov axioms.

The alternative view insists that classical probability theory, with the
axioms of Kolmogorov, is in many cases not suitable to be used in court or
in forensics, for various reasons. We adhere to this alternative view, since
we believe that there are situations in which the axioms of Kolmogorov are
too restrictive, and we start by giving a number reasons and examples to
support this claim.

First, it has been observed by many that the classical theory cannot
distinguish between lack of belief and disbelief. Here, disbelief is associated
with evidence indicating the negation of a proposition, whereas lack of belief
is associated with not having evidence at all. As Shafer [20] puts it, the
classical theory does not allow one to withhold belief from a proposition
without according that belief to the negation of the proposition. When we
want to apply a theory of probabilities to legal issues, this becomes a relevant
issue. Indeed, if certain exculpatory evidence in a case is dismissed, then
this may result in less belief in the innocence of the suspect, but it gives no
further indication for guilt.

The second shortcoming of the classical theory is its inability to model
complete ignorance within a given population. We first give two examples,
and then elaborate on this issue.

Example 1.1. In The Netherlands, a well known court case concerned a
traffic accident caused by a car with two passengers. Although it was not
disputed that the car caused the accident, it was unclear which of the two
passengers was driving. The classical solution to deal with this, is to impose
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a fifty-fifty prior on the two passengers, but this is in fact not corresponding
to reality. In reality we know that one of the two passengers drove, but we
are otherwise ignorant. This cannot be modeled with classical probability.

This example can be generalized into the well known and classical island
problem:

Example 1.2. In the classical version of the island problem (see e.g. [23]
and [3]) a crime has been committed on an island, making it a certainty
that an inhabitant of the island committed it. In the absence of any
further information, the classical point of view is to assign a uniform prior
probability over all inhabitants concerning the question who is the culprit.
The combination of assigning probability 1 to the collection of all inhabitants
and probability 0 to each individual is impossible under the classical axioms
of probability, although this may be exactly the prior one needs and wants
to impose.

The last two examples may need some elaboration since it may not be so
obvious why ignorance cannot be properly modeled by a uniform distribution
over all possibilities.

Firstly, when we look at the island problem in Example 1.2, it is simply
the case that we do not have information pointing to any individual. We
do have group information, but no individual information. With a uniform
distribution over the group, you nevertheless make a statement about each
individual. This is very relevant in legal cases since these are against
individuals, not against a whole population.

Secondly, it is simply not the case that a uniform distribution does
not convey any information. Even in a frequentistic context, a uniform
distribution tells us something when we repeat the experiment many times.
Or, to phrase the same point differently, having probability 1

2 for head to
come up in a coin flip, is information.

Finally, there is a certain amount of arbitrariness in taking a uniform
distribution as model for ignorance, since it depends on the possible
outcomes that one wishes to consider. If for whatever reason certain
outcomes are split into several ones, or lumped together, the new uniform
distribution is in general inconsistent with the original one. To give an
example, suppose that a nurse experiences the death of many of her patients,
to the extent that she becomes a suspect for murder. Labeling the nurse by
L, we can take the two-point space {L guilty, L not guilty}. Alternatively,
the three-point space {A crime has not been committed, A crime has been
committed and L is guilty, A crime has been committed and L is not guilty}.
In the first choice, a uniform prior would lead to a prior probability of guilt
of 1/2 for L, in the second case it leads to a prior probability of 1/3.

We will apply the theory we are about to develop to Example 1.2 in
Section 4. There we will see that using an uninformative prior, which is
possible in our theory, leads to a different result than using a uniform prior.
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The fact that these priors lead to different results confirms that these priors
are really distinct: a uniform prior is not a prior representing ignorance, and
using a uniform prior does not lead to the same results as using a prior that
does represent ignorance.

Finally, we give an example in which a non-uniform prior is provided by
statistics about previous similar cases.

Example 1.3. Statistics indicate that when a married women is murdered, in
40% of the cases the husband is responsible for this. It has been suggested
[2] to use this number as a prior for guilt of the husband when his wife
is murdered. This, however, does not seem fair: a general statistic about
husbands should not be used as evidence in the case of this specific husband.
In the absence of evidence regarding this particular husband, it would be
better to impose ignorance about the possible guilt of the husband. This is
not possible in the classical theory.

The examples suggest that the usual axioms of probability may not
always be appropriate in legal and forensic settings. In particular, there are
at least two (related) problems: (1) the additivity of probabilities, that is,
P (A)+P (B) = P (A∪B) if A and B are disjoint, is not always desirable, and
(2) there is no way to model ignorance in a given population in the classical
theory. We are not the first ones to observe this, of course. Already back
in the seventies of the previous century, there have been at least two major
attempts, by Cohen [7] and Shafer [20] respectively, to develop a theory of
probabilities, or generalizations thereof, for legal settings outside the realm
of the axioms of Kolmogorov. However, both these attempts have been
criticized fiercely (references below), for various and different reasons, and
nowadays they are not used at all in assessing evidence in legal settings.

This history fits in a classical pattern in science at large. There is a
certain theory (in our case classical probability axioms) which is supposed to
describe or explain certain phenomena (in our case dealing with uncertainty
in legal and forensic context). Then certain problems or anomalies arise (for
our case, see the examples above). Nevertheless, despite these anomalies, the
theory is often uphold, often mainly by the lack of an acceptable alternative.
In our case, the proposed alternatives of Cohen and Shafer seemed to have
too many problems in themselves, and as such they were not acceptable and
the classical theory prevailed. The philosopher Thomas Kuhn described this
generic process for instance in [16], together with many examples from the
history of science.

We think that Shafer’s approach is the most promising when it comes
down to application possibilities and general acceptance, since it is concep-
tually simpler and closer to classical probability than the approach of Cohen.
This is the reason that in this article we restrict our attention to Shafer’s
approach.

Before we introduce belief function properly, we should review for what
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reasons Shafer’s belief functions have been essentially ignored in the forensic
and mathematical literature, other than being criticized. To be sure, they
are not completely ignored, but they are typically framed as somewhat of
a curiosity and not taken very seriously, for instance in Dawid’s otherwise
excellent notes [8]. We list three main points of concern that can be found
in the literature, and briefly indicate our position.

First of all, Shafer himself reports in [21] that many of his critics rejected
his belief functions because of the lack of a suitable betting interpretation. In
other words, it is the interpretation that seemed to be an obstacle. Shafer
argues in [21] that no such behavioral interpretation is necessary. In our
companion paper to the current one [15], we do however formulate a very
natural betting interpretation of Shafer’s belief functions. We note though
that this particular criticism does not play a role in the current article.

A second, and much more important point of concern about Shafer’s
belief functions can be found for instance in [19] and [11]. In both references,
the main reason to reject Shafer’s belief functions is that the calculus of
these belief functions, as put forward in the so called Dempster rule of
combination, is arbitrary, not well founded and therefore unacceptable. This
rule is supposed to describe how different belief functions should be combined
into a new one. Let us be clear about this point: we also reject Dempster’s
rule and the calculus that stems from it. In the companion paper [15] we
motivate this rejection in great detail. Despite this rejection, in the current
article we do develop a very useful calculus of belief functions without using
Dempster’s rule. The only thing we need is a proper rule for conditioning,
and this is much less controversial, if at all. This should take care of the
points raised in [19] and [11].

A third point of concern is articulated, again, in [11]. The very fact that
a belief function can allow zero belief to both an event and its complement,
makes it, according to [11], inadequate to be used in legal matters, where a
decision has to be taken, and where not making a decision is not an option.
However, we do not think that this objection is well founded, since it seems
to mix up the notion of belief with the act of making a decision about
declaring someone guilty. Based on a belief function which assigns belief
zero to both guilt and innocence, a suspect will not be convicted. Actually,
belief functions seem to do more justice to the situation, since a judge will
make a certain decision only if there is enough evidence. One should only
convict someone if the belief in the hypothesis that he or she is actually
guilty, is high enough, and this does not seem to have anything to do with
the fact that the belief in a proposition and its complement can both be
zero.

Finally, in [17] it is questioned whether or not belief functions respect
some ‘rules’ of reasoning when it comes to knowledge. For the most part,
Pearl’s criticism does not apply to our theory and how we want to use it,
and we hope to convince the reader that there are many situations in which

5



the use of belief functions is very reasonable, by supplying a number of
examples.

The goal of the present article is to convince the forensic and legal
communities of the fact that Shafer’s belief functions can be put to good
use in legal and forensic matters, by developing an uncontroversial calculus,
thereby taking away the main obstacle for the use of Shafer’s theory and
providing the communities with an acceptable extension of the classical
theory. We do this theoretically, but most and for all also practically,
by computing (conditional) belief functions in classical problems like the
island problem and parental identification problems. Furthermore, we show
through examples how we can use an analogue of Bayes’ formula. Shafer’s
belief functions can take care of the problems noticed in the two examples
above. Indeed, they are so general that they can distinguish between lack
of belief and disbelief, and they are also flexible enough to be able to model
complete prior individual ignorance.

We want to stress that the belief functions of Shafer are a generalization
of classical probabilities, and that everything that can be modeled with
classical probability theory, can therefore also be modeled with these belief
functions. If there is a good reason to take a classical informative prior,
the theory allows for that. We lose nothing. As expected, having no
prior information leads to different outcomes when it comes to the question
whether someone is guilty or not. This is only reasonable we think, since
the classical procedure imposes a prior which is legally problematic.

Belief functions can be interpreted epistemologically, that is, relating to
knowledge of facts rather than to facts themselves. In the current article,
we will not explore this in any detail. In the companion paper [15] we do
include a discussion of this epistemological interpretation, including a more
specified betting interpretation and the relation of beliefs to frequencies.

Although we do address and resolve the problems with the classical
theory that we mentioned above, this does not mean that the theory as
we present it solves all problems. The difficulty of quantifying weights of
evidence is just one example of a problem we are still facing in our theory,
as is the choice of the relevant population. Despite this, we think the theory
it is a significant step forward, and perhaps it is hard to imagine how a
mathematical theory would satisfactorily solve these issues anyway.

On the theoretical part we will in this article be as brief as possible, but
we make sure that the current paper remains self-contained. An in-depth
and extensive theoretical development is carried out in the companion paper
to the current paper in [15], including an extensive discussion of betting
interpretations, a law of large numbers for belief functions, a thorough
discussion of independence, a detailed analysis of Dempster’s rule, and an
in-depth discussion of the interpretation of belief functions. For the forensic
and legal applications in the current paper, such an in-depth mathematical
study is not necessary, but we do note the fact that the subject is very
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interesting from both a theoretical and an applied perspective, and we plan
to develop it much more in the future.

The current paper is organized as follows. In Section 2 we introduce
belief functions and summarize their main properties. In Section 3 we
develop our calculus, based on conditioning and independence. Next we
apply the theory in Section 4 to the classical island problems, and in Section
5 to the problem of parental identification. In Section 6 we explain our
analogue of Bayes’ rule, and finally in Section 7 we conclude by discussing
some consequences of our theory for legal and forensic casework.

2 The basic definitions

Let Ω be a finite outcome space, for instance the members of a certain
population. We want to make statements about the elements of Ω in the
presence of uncertainty, like saying something about who is the culprit in
a certain crime. The classical way to do this is by means of a suitable
probability distribution on Ω. A probability distribution assigns a non-
negative weight p(ω) to each element ω ∈ Ω in such a way that the
total weight is equal to 1. We may, for instance, express out uncertainty
about who is the culprit by means of such a probability distribution. The
probability that the culprit can be found in a subset A of Ω is then equal to

P (A) :=
∑

ω∈A

p(ω). (2.1)

The probability measure P can be interpreted as subjective, frequentistic
or otherwise, depending on the context and personal taste. The weight
p(ω) represents the probability or confidence in the outcome ω, and P (A)
represents our probability or confidence in an outcome which is contained
in A. In classical probability theory, a subset of Ω is also called an event
or sometimes also a hypothesis, we make no distinction between the tow
phrases. The probability measure P describes the probability of all such
events or hypotheses.

Next we define basic belief assignments and belief functions. The
difference between a basic belief assignment and a probability distribution,
is that the former assigns weights to nonempty subsets of Ω rather than to
individual outcomes. We write 2Ω for the collection of all subsets of Ω.

Definition 2.1. A function m : 2Ω → [0, 1] is a basic belief assignment if
m(∅) = 0 and

∑

C⊆Ω

m(C) = 1. (2.2)

Whereas p(ω) represents the probability or confidence in the outcome ω,
m(C) represents our confidence in an outcome in C which is not specified
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further. It may appear that there is not much difference between P and
m, but in fact there is. The crucial difference between P and m is that the
weight of a subset C of Ω is not immediately related to the weights of the
elements or subsets of C. For instance, if we have no clue whatsoever about
the outcome, that is, if we have no information at all, then we may express
this by putting m(Ω) = 1 and m(A) = 0 for all strict subsets of Ω. Or we
may take m({a, b}) = 1/2 and simultaneously m({a}) = m({b}) = 0, for
a, b ∈ Ω, stating that we have evidence for the union of a and b, but no
further information to distinguish between them.

It is also possible that a basic belief functions only assigns positive weight
to singletons. In such a case, we are back in the classical situation. The
quantity m(C) is sometimes referred to as the weight of the evidence that
points to C.

We should view m as the analogue of p in the classical description above.
We next define the analogue of P , which is called a belief function. We want
to quantify how much belief we can assign to a subset A of Ω. To this end,
we consider all sets C in Ω with C ⊆ A, which are precisely the events whose
occurrence implies the occurrence of A. The belief in a set A now is the sum
of the weights of all subsets of A. In terms of evidence, the belief in A is
the total weight of all evidence which implies A.

Definition 2.2. Given a basic belief assignment m : 2Ω → [0, 1], the
corresponding belief function Bel : 2Ω → [0, 1] is defined by

Bel(A) :=
∑

C⊆A

m(C). (2.3)

We next discuss a number of examples which should convince the reader
that in many situations there are natural belief functions which adequately
describe the situation.

Example 2.3. Suppose we want to state our beliefs about a suspect being
guilty or innocent, so Ω = {guilty, innocent} is our outcome space. If
the only evidence we have is evidence of weight p that the suspect is
innocent, and no further information, then we have m({innocent}) = p,
m({guilty}) = 0 and m(Ω) = 1 − p. The weight of 1 − p assigned
to Ω should be interpreted as the weight of ignorance. Notice that the
belief that the suspect is guilty is not equal to 1 minus the belief that
the suspect is innocent. The corresponding belief function Bel is given by
Bel({guilty}) = 0, Bel({innocent}) = p and Bel(Ω) = 1.

Example 2.4. The function m for which m(Ω) = 1 and m(A) = 0 for all
other A ⊆ Ω is a basic belief assignment. The corresponding belief function
assigns belief 1 to Ω and belief zero to all strict subsets of Ω. This belief
function expresses total ignorance, except for the fact that the outcome must
be in Ω. As such it addresses the problem noticed in Example 1.2.
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Example 2.5. (Probability distributions) Every probability distribution is a
belief function, as we already indicated. To see that, let P : 2Ω → [0, 1] be a
probability distribution. Set m({ω}) = P ({ω}) for all ω ∈ Ω and m(C) = 0
for all C such that |C| > 1. Then we get

Bel(A) =
∑

a∈A

m({a}) =
∑

a∈A

P ({a}) = P (A) (2.4)

for every A ⊆ Ω. Probability distributions are belief functions for which
the corresponding basic belief assignment only assigns positive weight to
singletons. If m(C) > 0 for some C with |C| > 1, then Bel is not a
probability distribution because it not additive: for any nonempty, disjoint
A,B ⊆ Ω such that A ∪B = C we find

Bel(A ∪B) > Bel(A) + Bel(B). (2.5)

In concrete situations, the basic belief assignment can very well be based
on classical probabilistic considerations when it is reasonable to do so. Here
is an important example which we will discuss in full detail in Section 4.

Example 2.6. (The island problem) LetX = {1, . . . , N+1} be the population
of the island. At the scene of the crime a DNA profile Γ is found which we
know has frequency p ∈ (0, 1] in the population. This means that a randomly
chosen person has probability p to have the characteristic, independent of the
other individuals. We remark that this assumption is in the realm of classical
probability theory. This is reasonable since the frequency interpretation of
classical probability works well within the context of DNA profiles.

Our basic belief assignment should capture our prior knowledge, that is,
prior to the fact that we found the DNA profile at the crime scene. We
have prior knowledge about two different things: (1) we know that we have
selected S uniformly at random from the population, and (2) we know the
population frequency of the DNA profile to be p. Both these items can be
satisfactorily described with a classical probability distribution, and with
classical independence assumptions. This leads to the following basic belief
assignment, prior to the evidence.

We set Ω = X × X × {0, 1}N+1 and let C : Ω → X,S : Ω → X and
Γi : Ω → {0, 1} be projections on respectively the first, second and i + 2-
th coordinate. C represents the criminal, S the selected individual, and
Γi = 1 indicates that the i-th individual has characteristic Γ. Without any
reference to the crime, but with reference to the particular characteristic
Γ, we can model the characteristics Γi and the choice of S by defining the
following basic belief assignment on Ω. Let y1, . . . , yN+1 ∈ {0, 1} be such
that

∑N+1
i=1 yi = k. Then for k = 0, . . . , N + 1,

m(C ∈ X,S = x,Γ1 = y1, . . . ,ΓN+1 = yN+1) =
1

N + 1
pk(1− p)N+1−k,

(2.6)
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for all x ∈ X, and m(A) = 0 for all other subsets of Ω. We will typically
write {S = x,Γ1 = y1, . . . ,ΓN+1 = yN+1} for the set in (2.6) and similar
ones later on, and not explicitly mention the first coordinate.

This basic belief assignment expresses the facts that characteristics are
random and independent with success probability p and that S is chosen
uniformly on X. But also, and very importantly, it says nothing about the
crime and nothing about the identity of the criminal C. For instance, for
all x ∈ X, we assign zero belief to the event that C = x.

In the theory we are about to develop, classical probability distributions
are replaced by the more general belief functions, allowing for more
flexibility. In Examples 2.4 and 2.6 above, the basic belief assignments
reflect prior knowledge, or the absence thereof. As such it it reasonable
to call the basic belief assignments and the corresponding belief functions
our priors in these examples. These priors play the same role as the prior
probabilities in the classical situation, with the crucial difference that they
need not be a classical probability distribution anymore. As such they need
not be additive and they can be genuinely uninformative if that is what
corresponds to reality.

Whereas belief functions are in general not additive, it follows directly
from the definition that they are superadditive, i.e.

Bel(A ∪B) ≥ Bel(A) + Bel(B), (2.7)

for all disjoint A,B ⊆ Ω. The following theorem by Shafer shows that belief
functions are characterized by a property between additivity and super-
additivity.

Theorem 2.7. A function Bel : 2Ω → [0, 1] is a belief function if and only
if

(B1) Bel(Ω) = 1, and

(B2) For all A,B ⊆ Ω we have

Bel(A ∪B) ≥ Bel(A) + Bel(B)− Bel(A ∩B). (2.8)

Theorem 2.7 can be used to give an alternative definition of belief
functions without deriving them from basic belief assignments. Using the
theorem we can directly check whether or not a function f : 2Ω → [0, 1] is a
belief function. If f is a belief function, we can use the following lemma by
Shafer to retrieve the basic belief assignment corresponding it.

Lemma 2.8. Every belief function Bel : 2Ω → [0, 1] has a unique
corresponding basic probability assignment m : 2Ω → [0, 1] which is given
by

m(A) =
∑

C⊆A

(−1)|A|−|C|Bel(C). (2.9)
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We end this section with one more remark about the relation between
belief functions and classical probability distributions. There is a natural
way to identify a belief function with a collection of probability distributions,
namely the collection PBel of all probability distributions that one can obtain
by distributing a total mass of m(C) over the elements of C, for all C ⊆
Ω. For instance, if m(Ω) = 1, then the corresponding PBel consists of all
probability distributions on Ω. If Ω = {0, 1}, and m({0}) = 1−m({0, 1}) =
1
3 , then PBel consists of all probability distributions that assign probability
at least 1

3 to 0.
It is not difficult to see that

Bel(A) = min
P∈PBel

P (A). (2.10)

Indeed, only for sets C which are completely contained in A, their massm(C)
contributes to Bel(A), and those are precisely the sets whose mass cannot
be moved outside A. This identity could lead to the idea to interpret belief
functions as uncertainty as to which element of PBel is the “correct” one,
still keeping the idea that the actual situation is described by an (unknown)
probability distribution from the collection PBel.

We do not adhere to this viewpoint for two reasons. The first reason is
philosophical in nature: why assuming that there is a classical probability
distribution underlying the phenomena of interest if there is no need to do
so? The second reason is more practical: in the next section we will see
that our notion of conditioning, which we think is most natural, is in fact
incompatible with this interpretation of belief functions.

3 A calculus of belief functions

The next item on the agenda is to investigate how belief functions change
when additional or new information is provided. This is akin to the classical
situation in which a prior probability is updated into a posterior one as
we briefly mentioned in the introduction. In this section we explain how
this works in our setting. The first thing to do is to determine how a
belief function changes under additional information, or under a certain
hypothesis. This means we need to understand how conditioning works in
our context.

3.1 Conditioning

The rule we propose for conditioning is described as follows. Suppose we
have a basic belief assignment m and corresponding belief function Bel. We
want to condition on an event H. The weight of the evidence m(A) for A
now becomes weight of evidence for A ∩H, if A is consistent with H in the
sense that A ∩ H 6= ∅. If A ∩H = ∅, then the new weight of evidence for
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A becomes zero. Next we rescale the weights of the evidence in such a way
that the weights again sum up to 1. This can of course only be done if there
is evidence with positive weight that is consistent with H. This leads to the
following definition.

Definition 3.1. Let m : 2Ω → [0, 1] be a basic belief assignment and Bel
the corresponding belief function. For H ⊆ Ω such that Bel(Hc) 6= 1 we
define the conditional basic belief assignment mH : 2Ω → [0, 1] by

mH(A) :=

∑

B∩H=A m(B)

1−
∑

B∩H=∅ m(B)
, (3.1)

for A 6= ∅ and mH(∅) = 0. The corresponding conditional belief function
BelH : 2Ω → [0, 1] is defined as

BelH(A) =
∑

B⊆A

mH(B). (3.2)

Readers familiar with the work of Shafer [20] will notice that our notion
of conditioning is sometimes called Dempster-conditioning. This name is
somewhat misleading though. Indeed, Shafer derives the formula as a special
case of Dempster’s rule, a rule which we reject. It so happens that one can
naturally define conditional belief without using Dempster’s rule.

In the special case that Bel = P is a probability distribution, our notion
of conditional belief coincides with the notion of conditional probability.
Indeed, in that case we can write

BelH(A) =

∑

ω∈A∩H m({ω})
∑

ω∈H m({ω})
= P (A|H), (3.3)

for every A ⊆ Ω and H such that 1− Bel(Hc) = P (H) > 0.

Example 3.2. Suppose we have a case in which the suspects are two parents
and their son, so Ω = {Father,Mother,Son}. We have a lot of evidence that
points to the parents, none of which points to one of them in particular.
Further, we have some evidence that points to the son. The corresponding
basic belief assignment is, say, m({Father,Mother}) = 9

10 and m({Son}) =
1
10 . Under the hypothesis H that it is a man, i.e. H = {Father,Son}, the
evidence pointing to the parents counts as evidence pointing to the father,
so

mH({Father}) =
9

10
. (3.4)

However, as we will show now, conditional belief is not the same as the
minimum of the corresponding conditional probabilities over the collection
of probability distributions PBel which we introduced after Example 2.3.
This gives one argument not to adhere to the aforementioned interpretation
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of belief functions. In [15] we discuss the interpretation matter in much
more detail.

The collection of probability measures that we can obtain by distributing
the weight on {Father,Mother} over {Father} and {Mother} would be

PBel =

{

Pc : 0 ≤ c ≤
9

10

}

, (3.5)

where the probability distribution Pc : 2
Ω → [0, 1] is given by

Pc({Father}) := c,

Pc({Mother}) :=
9

10
− c,

Pc({Son}) :=
1

10
.

(3.6)

Since

Pc({Father}|H) =
c

c+ 1
10

, (3.7)

we find

min
P∈PBel

P ({Father}|H) = 0. (3.8)

Compared to (3.4), we think the answer in (3.4) seems more appropriate
than the one in (3.8). The expression in (3.8) is sometimes called FH-
conditioning, after Fagin and Halpern [9].

3.2 Independence

Now that we have a notion of conditioning, we can also introduce a notion
of independence, and to this end we consider the following situation. Let
Ω1 and Ω2 be outcome spaces of two phenomena that we would describe as
‘independent’. Now we consider these two phenomena simultaneously. We
set Ω := Ω1×Ω2 and let X : Ω → Ω1 and Y : Ω → Ω2 be the projections onto
respectively the first and second coordinate. On Ω we define a basic belief
assignment m : 2Ω → [0, 1] and corresponding belief function Bel. We want
m and Bel to reflect the ‘independent’ nature of the two phenomena. To do
that, we need a mathematical definition of independence that is consistent
with our intuitive idea about ‘independence’.

There are now at least three ways to proceed. In the first approach we
take conditional beliefs as the starting point, and require that

BelY ∈B(X ∈ A) = Bel(X ∈ A) (3.9)

and

BelX∈A(Y ∈ B) = Bel(Y ∈ B), (3.10)
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for all A ⊆ Ω1 and B ⊆ Ω2 for which the conditional beliefs are defined. It
is not difficult to show directly that (3.9) and (3.10) are equivalent, but this
will follow also from Theorem 3.3 below, so we do not prove this here.

In the second approach, we proceed via a product form for the belief
Bel(X ∈ A;Y ∈ B). As a natural generalization of independence in
probability theory, we require that this is equal to the product of the
‘marginal’ beliefs, i.e.

Bel(X ∈ A ; Y ∈ B) = Bel(X ∈ A)Bel(Y ∈ B) (3.11)

for all A ⊆ Ω1 and B ⊆ Ω2.
Instead of looking at a product form for Bel(X ∈ A;Y ∈ B), we could

also look at a product form for m(X ∈ A;Y ∈ B), which is our third
approach. We first define Bel1 and Bel2 to be the ‘marginal’ belief functions,
i.e.

Bel1(A) := Bel(X ∈ A) and Bel2(B) := Bel(Y ∈ B) (3.12)

for all A ⊆ Ω1 and B ⊆ Ω2. Now let m1 and m2 be the corresponding
‘marginal’ basic belief assignments of respectively Bel1 and Bel2. Since

Bel(X ∈ A) =
∑

B⊆A×Ω2

m(B)

=
∑

B| X(B)⊆A

m(B)

=
∑

B⊆A

∑

C| X(C)=B

m(C),

(3.13)

it follows that we can express m1 as

m1(A) =
∑

C | X(C)=A

m(C). (3.14)

A similar expression of course is true for m2. Notice that m1(A) is in general
not the same as m(X ∈ A), since the set {X ∈ A} is in general not the only
set with positive basic belief which projects onto A. Our third approach to
independence requires that

m(X ∈ A;Y ∈ B) = m1(A)m2(B) (3.15)

for all A ⊆ Ω1 and B ⊆ Ω2.
It turns out that the requirements of the first two approaches are

weaker than the requirement of the third. However, if we add a natural
additional constraint for to the first two requirements, all three approaches
become equivalent, as expressed in the following theorem which we prove
in [15]. This additional constraint is that m only takes positive values on
‘rectangular’ sets, i.e. C ⊆ Ω with C = X(C) × Y (C). We say that m
concentrates on rectangles if this is the case.
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Theorem 3.3. The following statements are equivalent:

1. m concentrates on rectangles and

BelY ∈B(X ∈ A) = Bel(X ∈ A) (3.16)

for all A ⊆ Ω1 and B ⊆ Ω2 with Bel(Y ∈ Bc) 6= 1.

2. m concentrates on rectangles and

Bel(X ∈ A;Y ∈ B) = Bel(X ∈ A)Bel(Y ∈ B) (3.17)

for all A ⊆ Ω1 and B ⊆ Ω2.

3. We have
m(X ∈ A;Y ∈ B) = m1(A)m2(B) (3.18)

for all A ⊆ Ω1 and B ⊆ Ω2.

Because it is the shortest formulation, we take the requirement of the
third approach to be our actual definition of independence.

Definition 3.4. The projections X and Y are independent if for all A ⊆ Ω1

and B ⊆ Ω2 we have

m(X ∈ A;Y ∈ B) = m1(A)m2(B).

We will come across an application of our theory of independence in
Section 4.2 below.

4 The island problems

Now that we have established and discussed the main theoretical issues,
we move on to our first important examples, namely the well known and
classical island problems. The context of the island problems is classical. A
crime has been committed on an island with N + 1 inhabitants, so that we
can be sure that one of them is the culprit. Now some characteristic of the
criminal, e.g. a DNA profile, is found at the scene of the crime and we may
assume that this profile originates from the culprit. Then we somehow select
an individual s from the island, who happens to have the same characteristic
as the criminal. The question is what we can say about the probability or
belief in the event that s is in fact the criminal. This is not a well defined
question yet, as it depends on the way s was found. We distinguish between
two cases: the cold case in which we randomly select an inhabitant, and the
search variant in which we consider the inhabitants one by one in a random
order, until we find an inhabitant with the characteristic found at the crime
scene.
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With the island problems, our belief functions allow us to assign a zero
prior belief in the guilt of any of the individuals of the island, while at
the same time assigning belief one to the full populations. This seems
better suited to the legal context than the classical Bayesian setting since
assigning a non-zero prior probability to an individual, without any evidence
against the individual itself other than belonging to the population, seems
unreasonable. Of course, we have to make modeling assumptions, as in the
classical case and we will discuss these below. But as we shall see, the
outcomes are different from the classical outcome: if we assume total prior
ignorance the belief that s is the culprit is in our setting different from the
classical probability that he is guilty under a uniform prior. We turn to the
examples now.

4.1 The cold case

We continue Example 2.6. Recall that X = {1, . . . , N +1} is the population
of the island. At the scene of the crime a DNA profile Γ is found which
we know has frequency p ∈ (0, 1] in the population. We set Ω = X ×
X × {0, 1}N+1 and let C : Ω → X,S : Ω → X and Γi : Ω → {0, 1} be
projections on respectively the first, second and i + 2-th coordinate. C
represents the criminal, S the selected individual, and Γi = 1 indicates
that the i-th individual has characteristic Γ. Without any reference to the
crime, but with reference to the particular characteristic Γ, we can model the
characteristics Γi and the choice of S by defining the following basic belief
assignment on Ω. Let y1, . . . , yN+1 ∈ {0, 1} be such that

∑N+1
i=1 yi = k.

Then for k = 0, . . . , N + 1,

m(S = x,Γ1 = y1, . . . ,ΓN+1 = yN+1) =
1

N + 1
pk(1− p)N+1−k, (4.1)

for all x ∈ X, and m(A) = 0 for all other subsets of Ω. This basic belief
assignment and the corresponding belief function form our prior in this case.
We denote the set at the left hand side by A(x, y1, . . . , yN+1).

Now we want to incorporate the crime and condition on the event
Hs = {S = s,ΓC = ΓS = 1} that s ∈ X was chosen, and that the
criminal C and the chosen s both have characteristic Γ. According to
our theory of conditioning, we have to assign the mass originally assigned
to A(x, y1, . . . , yN+1) in (4.1) to the intersection of this set with Hs, and
normalize suitably. Clearly, this intersection is non-empty only if x = s
and ys = 1, and in this case the intersection A(s, y1, . . . , yN+1) ∩Hs can be
written as

{C ∈ {i : yi = 1}, S = s; Γ1 = y1, . . . ,ΓN+1 = yN+1}. (4.2)

Next we need to find the correct normalization. We claim that the total
mass of sets of the form in (4.1) which have non-empty intersection with Hs

16



is given by

1

N + 1

N
∑

j=0

(

N

j

)

pj+1(1− p)N−j =
p

N + 1
. (4.3)

Note that one can obtain the outcome at the right hand side by either
computing the sum, or by simply noticing that for the intersection to be
non-empty it is necessary and sufficient that s = x and that ys = 1. Since
(4.1) describes a classical probabilistic experiment, the total mass of the
basic belief assignment that has non-empty intersection with Hs, is just
the probability that in this classical experiment, S = s and ys = 1. This
happens with probability p/(N + 1).

It follows that for y1, . . . , yN+1 such that ys = 1 and
∑

i yi = k + 1,
k = 0, . . . , N that

mHs
(A(s, y1, . . . , yN+1) ∩Hs) =

pk+1(1− p)N−k

N + 1
·
N + 1

p

= pk(1− p)N−k.

Summarizing, we have that for y1, . . . , yN+1 such that ys = 1 and
∑

i yi =
k + 1,

mHs
(C ∈ {i : yi = 1}, S = s; Γ1 = y1, . . . ,ΓN+1 = yN+1) = pk(1− p)N−k.

(4.4)
Another way of writing this is as follows: for any A ⊂ X such that s ∈ A
and |A| = k + 1, we have, writing 1A(i) for 1{i∈A},

mHs
(C ∈ A,S = s,Γ1 = 1A(1), . . . ,ΓN+1 = 1A(N + 1)) = pk(1− p)N−k.

(4.5)
This is the new basic belief assignment after conditioning on Hs and can be
called the posterior in this case.

We can now use this result to compute belief in certain events, but before
we do that, we would like to discuss the chosen modeling. We defined the
basic belief assignment m without using that we know that someone in the
population has Γ, namely the criminal C; this information is only added
once we condition on Hs. Perhaps some readers might find this somewhat
counterintuitive. Why not use the information that there is at least one
individual in X which has Γ in the definition of the basic belief assignment?
We now explain how this can be done, and show that it leads to the same
belief assignment after proper conditioning.

Let y1, . . . , yN+1 be such that
∑

i yi = k + 1, k = 0, . . . , N . We define
the basic belief assignment m′ as follows:

m′(C ∈ {i : yi = 1}, S = x , Γ1 = y1, . . . ,ΓN+1 = yN+1) = (4.6)

=
1

N + 1

pk+1(1− p)N−k

1− (1− p)N+1
.
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This belief assignment gives us our belief in the characteristics Γi conditioned
on the event that at least one yi is equal to 1. It expresses no knowledge
about the identity of C other than that we know that C has Γ. We denote
the event in (4.6) by A′(x, y1, . . . , yN+1).

Next we condition on the event H ′
s = {S = s,ΓS = 1}. As before,

H ′
s ∩A′(x, y1, . . . , yN+1) can only be nonempty if x = s and ys = 1. In that

case H ′
s ∩ A′(x, y1, . . . , yN+1) is exactly the event in (4.2) and the correct

normalization is

1

N + 1

N
∑

j=0

(

N

j

)

pj+1(1− p)N−j

1− (1− p)N+1
=

p

N + 1
·

1

1− (1− p)N+1
. (4.7)

It now follows that after conditioning we obtain the same belief assignment
as before, since the extra term 1−(1−p)N+1 appears in both the numerator
and the denominator. We conclude that the two approaches lead to the same
result, as they should.

Now that we have computed the new basic belief assignment, we can
compute our belief in certain events, most notably our belief in the event
that C ∈ B for B ⊂ X. It follows from the formulas that our belief in C ∈ B
can only be positive if the chosen s ∈ B. This is of course very reasonable,
since we started out with no knowledge whatsoever, and if s /∈ B there is
nothing we have learned about C being in this set B or not.

If however s ∈ B then we have learned something:

BelHs
(C ∈ B) =

∑

E⊂{C∈B}

mHs
(E)

=
∑

A⊆B|s∈A

mHs
(C ∈ A;S = s; Γ1 = 1A(1) . . . ;

. . . ; ΓN+1 = 1A(N + 1))

=

|B|−1
∑

k=0

(

|B| − 1

k

)

pk(1− p)N−k

= (1− p)N+1−|B|. (4.8)

An interesting special case occurs when B = {s}. The conditional belief
that C = s is apparently given by

BelHs
(C = s) = (1− p)N , (4.9)

simply take |B| = 1. This formula has a simple interpretation: the belief
that s is the criminal is just the probability that all other members of the
population are excluded since they have the wrong profile.

It is interesting to compare this answer to the classical one, in which a
uniform prior is taken. In the classical case, the posterior probability that
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C = s is equal to
1

1 +Np
, (4.10)

see e.g. [23] or [3]. We observe that

1

1 +Np
=

N−1
∏

k=0

1 + kp

1 + (k + 1)p
>

(

1

1 + p

)N

>

(

1− p2

1 + p

)N

= (1− p)N .

(4.11)
Hence in our setting, the belief that C = s is always smaller than in the
classical case, something we can intuitively understand by recalling that we
assign prior belief zero to this event. To give some indication of the difference
between the two answers, if p ∼ N−1 (for N → ∞), then (4.10) ∼ 1

2 , while
(4.9) ∼ e−1.

Since belief functions generalize probability distributions, we should be
able to re-derive the classical result (4.10) using our approach, and we now
show that this is indeed the case. If we want to take a uniform prior for the
criminal, then the basic belief assignment, denoted by mc, is as follows. Let
y1, . . . , yN+1 be such that

∑N+1
i=1 yi = k. Then our prior is given by

mc(C = t, S = x,Γ1 = y1, . . . ,ΓN+1 = yN+1) =
1

(N + 1)2
pk(1− p)N+1−k,

(4.12)
for all t, x ∈ X, and mc(A) = 0 for all other subsets of Ω. Note that
the corresponding belief function is a probability distribution, since only
singletons have positive basic belief. Next we condition on the same event
Hs = {S = s,ΓC = ΓS = 1} as before. The intersection of the set in (4.23)
with Hs is only non-empty if s = x and ys = yt = 1. The probability that
s = x and ys = 1 is p/(N + 1) as before. Given this, the probability that
also yt = 1 is 1 if t = s and p if t 6= s. Hence the intersection is non-empty
with probability

p

N + 1

(

1

N + 1
+

N

N + 1
p

)

=
p(1 +Np)

(N + 1)2
.

We can now compute the conditional belief assignment mc
Hs

but we note
that we only need (with ys = 1 and

∑

i yi = k + 1)

mc
Hs

(s, s, y1, . . . , yN+1) =
pk+1(1− p)N−k

(N + 1)2
(N + 1)2

p(1 +Np

=
pk(1− p)N−k

1 +Np
.

Summing over all k = 0, . . . , N and using Newton’s binomium, we see that
the conditional belief that S = C = s is given by (4.10), as required.
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This example illustrates that we lose nothing by working with belief
functions, and that belief functions only add flexibility. If a certain classical
prior is reasonable then we can take that prior and work with it. If there
are reasons to have a non-classical prior, for instance complete ignorance
within a given population, then belief functions are flexible enough to deal
with this.

4.2 The cold case generalized

So far we have assumed that we can describe the realization of the
characteristic with a classical probability distribution with independence
between different individuals. The flexibility that is possible with belief
functions was only used in order to model complete ignorance about the
culprit.

But is is possible to be even more flexible with our knowledge of the
characteristics, and use belief functions also for them. This entails a certain
uncertainty about the occurrence of the characteristic Γ. We still attach
belief p > 0 to an individual having the property, but now attach belief
q ≤ 1 − p to an individual not having the property. This means that we
assign belief 1−p−q ≥ 0 to complete ignorance about the characteristic of a
given individual, for instance because of measurement problems or otherwise.
We do want the characteristics to be independent in the sense of Definition
3.4 though.

To be more precise, we let m′ be the basic belief assignment on {0, 1}
defined by m′({1}) = p, m′({0}) = q and m′({0, 1}) = 1 − p − q =: r.
This basic belief assignment describes our belief in the presence of the
characteristic for a given individual. Note that when r = 0 we are back in the
cold case. The basic belief assignment m′′ on the product space {0, 1}N+1

corresponding to N + 1 individuals which yields independence between the
characteristics of the N + 1 individuals, is given by the generalization of
(3.4) to N + 1 dimensions, and can be written as

m′′(Y1, Y2, . . . , YN+1) = pk1qk0rN+1−k0−k1 ,

where Yi ∈ {{0, }, {1}, {0, 1}} and k1 =
∑

i 1(Yi = {1}) and k0 =
∑

i 1(Yi =
{0}). This all leads to the following prior basic belief assignment m on
Ω = X ×X × {0, 1}N+1 as the analogue of (4.1):

m(S = x,Γ1 ∈ Y1, . . . ,ΓN+1 ∈ YN+1) =
1

N + 1
pk1qk0rN+1−k0−k1 . (4.13)

From here on, the analysis is more or less as before. We denote the set
in (4.13) by A(x, Y1, . . . , YN+1). Again we want to condition on Hs = {S =
s : ΓC = ΓS = 1}. The intersection Hs ∩ A(x, Y1, . . . , YN+1) is nonempty
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if and only if x = s and Ys = {1} and can in that case be written as

{C ∈ {i : Yi 6= {0}}, S = s,Γ1 ∈ Y1, . . . ,Γn ∈ YN+1}. (4.14)

The total mass of these sets is

p

N + 1
, (4.15)

for the same reason as before. Hence we have the posterior

mHs
(A(s, Y1, . . . , YN+1) ∩Hs) =

pkqlrN+1−k−l

N + 1
·
N + 1

p

= pk−1qlrN+1−k−l.

For s ∈ B we find

BelHs
(C ∈ B) = qN+1−|B|. (4.16)

When r = 0 this is just (4.9) as it should. It is noteworthy that the belief
in C ∈ B only depends on |B| and q, and not on p and r. This is to be
expected: the belief that s is the criminal is the probability that we know
for sure that all other members of the population do not have the correct
profile.

4.3 The search case

In the search variant, we do not choose a random individual S but we check
the inhabitants one by one in a random order, until an individual with the
relevant characteristic is found. As in the cold case, there are (at least) two
ways to approach the situation. In the first approach, we do not immediately
link the characteristic to the crime, and then it is a priori not certain that
an individual with the characteristic found at the scene of the crime exists
in the population. In the second approach, we condition the distribution of
the characteristics on the fact that we know at least one individual has it.

For the first approach, the space Ω must be rich enough to accommodate
the possibility that no one has the characteristic. To this end, we set Ω =
X ×X ∪ {∗}× {0, 1}N+1 and let C : Ω → X,S : Ω → X ∪ {∗} and Γi : Ω →
{0, 1} be projections on respectively the first, second and i+2-th coordinate.
If no one has the characteristic we set S = ∗ to encode that we could not
find a suspect (which is only the case if Γ1 = Γ2 = · · · = ΓN+1 = 0). If
at least one individual has the characteristic, it is clear that S is uniformly
selected from the subset of individuals that have the trait. Let x ∈ X. For
y1, . . . , yN+1 such that

∑

i yi = k, k = 1, . . . , N + 1, and yx = 1 we set our
prior basic belief assignment as follows:

m(S = x,Γ1 = y1, . . . ,ΓN+1 = yN+1) =
1

k
pk(1− p)N+1−k (4.17)
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and
m(S = ∗,Γ1 = Γ2 = . . . = ΓN+1 = 0) = (1− p)N+1.

Note that there are two differences compared to the cold case: we have to
assume that yx = 1, and we have to divide by k rather than by N + 1.

Next we link the characteristic to the crime and we condition on
Hs = {S = s,ΓC = ΓS = 1}. Note that the conditioning does not
contain information about the length of the search or the identity of searched
individuals. We only know that s was the first one to be found with the
characteristic. We have, for y1, . . . , yN+1 such that ys = 1,

{S = s; Γ1 = y1; . . . ; ΓN+1 = yN+1} ∩Hs (4.18)

= {C ∈ {i : yi = 1}, S = s; Γ1 = y1, . . . ,ΓN+1 = yN+1}.

Note that the sets in (4.18) are the only subsets of Ω with positive mass that
have a nonempty intersection withHs. Hence the normalization follows from
the total mass of such sets, which is equal to

Ms :=
N
∑

j=0

(

N

j

)

1

j + 1
pj+1(1− p)N−j =

1− (1− p)N+1

N + 1
. (4.19)

Notice that we can derive (4.19) by observing that Ms does not depend on
s and thus (N +1)Ms plus Bel(S = ∗) = (1− p)N+1 adds up to 1. (A direct
computation is also possible of course.)

Hence for A ⊆ X such that |A| = k+1 and s ∈ A we have the posterior

mHs
(C ∈ A,S = s,Γ1 = 1A(1); . . . ,ΓN+1 = 1A(N + 1))

=
pk+1(1− p)N−k

k + 1

N + 1

1− (1− p)N+1
. (4.20)

Now we can compute our belief in certain events. For instance, our belief in
{C = s} is given by

BelHs
(C = s) = mHs

(C = s, S = s,Γs = 1,∩i 6=s{Γi = 0})

=
p(1− p)N (N + 1)

1− (1− p)N+1
, (4.21)

which is different compared to the cold case. Notice that (4.21) equals zero
if p = 1 and if p < 1 we can rewrite (4.21) as

N + 1
∑N

k=0(1− p)−k
. (4.22)

There is a very natural interpretation of the expression in (4.21). In the
numerator, we have the probability that a binomially distributed random
variable with parameters N +1 and p is equal to 1. The denominator is the
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probability that this random variable is positive, so (4.21) is the conditional
probability for such a random variable to be 1 given it is positive. This
makes sense, since we can only know for sure that C = s when s is the only
one with the characteristic.

As already mentioned above, there is the alternative approach in which
we deduce from the characteristic found at the crime scene that at least one
individual has the characteristic. In this case we do not need the extended
Ω since S = ∗ has probability zero. For y1, . . . , yN+1 such that yx = 1 and
∑

i yi = k + 1, k = 0, . . . , N , the basic belief assignment is now given by

m′(C ∈ {i : yi = 1}, S = x , Γ1 = y1, . . . ,ΓN+1 = yN+1) =

=
1

k + 1

pk+1(1− p)N−k

1− (1− p)N+1
.

After this, we condition on H ′
s = {S = s}. It is easily seen that the

normalizing factor is just 1/(N + 1), and this immediately leads to the
same formula as in (4.21).

In the classical case, starting with a uniform probability distribution,
the posterior probability that C = s is equal to

1− (1− p)N+1

(N + 1)p
=

1

N + 1

N
∑

j=0

(1− p)j, (4.23)

see e.g. [3]. Note that (4.23) is the arithmetic mean of 1, 1 − p, (1 −
p)2, . . . , (1 − p)N , while (4.22) is the harmonic mean of the same sequence.
Hence the answer using our approach is - as it was in the cold case - smaller
than the classical answer.

We briefly demonstrate that we can also derive this classical result with
our technology. In the classical case, the basic belief assignment is given by

mc(C = c, S = x,Γ1 = y1, . . . ,ΓN+1 = yN=1) =
1

k

1

N + 1
pk(1− p)N+1−k,

(4.24)
whenever

∑

i yi = k, and

mc(S = ∗,Γ1 = Γ2 = · · · = ΓN+1 = 0) = (1− p)N+1. (4.25)

Note that the corresponding belief function is a probability measure, since
only singletons have positive basic belief assignments. We condition on
Hs = {S = s,ΓC = Γs = 1} as usual. To compute the (classical) belief in
C = s conditioned on Hs we need to compute the conditional basic belief
assignment mc

Hs
, for which we need the correct normalizing constant and

the total mass of sets in (4.24) whose intersection with Hs is not empty.
Elementary combinatorics gives that the latter is equal to

N
∑

k=0

(

N

k

)

1

k + 1

1

N + 1
pk+1(1− p)N−k =

1− (1− p)N+1

(N + 1)2
. (4.26)
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The normalizing constant follows from the total mass assigned to sets whose
intersection with Hs is non-empty. For this intersection to be non-empty,
we need that x = s, ys = 1 and yC = 1. In the classical probabilistic
experiment described by mc, we simply need to compute the probability
that Hs occurs. We need subsequently (1) yC = 1, and (2) s is chosen
(implying that ys = 1). The first step occurs with probability p. Given this,
we now know that not all labels are 0, and every individual has the same
probability to be chosen. Hence, the conditional probability of Step (2)
given Step (1) is simply 1/(N + 1). It follows that the correct normalizing
constant is p/(N + 1). Combining this with (4.26) yields (4.23).

5 Parental identification

Our next example concerns the situation in which we have a known mother
and a known child, but we do not know who the father is. We assume
that there is a set X = {1, . . . , N + 1} of potential fathers. We would like
to make belief statements about the possible father-ship of someone chosen
from the population, based on the DNA profile of this chosen person. In
order to keep things as simple as possible, we assume that we only consider
one specific locus of the DNA. Furthermore, we assume that the alleles of
mother and child at that locus are such that we know what the paternal
allele must be. Every potential father i in X has two alleles at the locus,
and we denote by Γi the number of ‘correct’ alleles matching the paternal
allele, hence Γi ∈ {0, 1, 2}.

In order to set up our prior belief function, we set Ω = X ×X ×{0, 1}×
{0, 1, 2}N+1 and let F : Ω → X,S : Ω → X, A : Ω → {0, 1} and Γi : Ω →
{0, 1, 2} be projections on respectively the first, second, third and i + 3-th
coordinate. F represents the father, and S the selected individual which is
the putative father. The indicator A is associated with the putative father,
and is only relevant if the putative father has exactly one ‘correct’ allele;
in that case A = 1 means that he passes on this correct allele to his child,
while A = 0 indicates that he does not do that. As said above already, Γi

is the number of alleles of the right type of the i-th potential father. Let
p0, p1 and p2 be the probabilities that an individual has 0, 1 respectively 2
alleles of the right type. We assume that we know these probabilities from
population surveys. Set kj :=

∑N+1
i=1 1(yi = j) for j = 0, 1, 2. Then the prior

basic belief assignment is given by

m(S = x,A = a,Γ1 = y1, . . . ,ΓN+1 = yN+1) =
1

2

1

N + 1
pk00 pk11 pk22 . (5.1)

As before, this basic belief assignment is a summary of what we know,
and is formulated in terms of items that can be well described by classical
probabilities. The factor 1

2 comes from the fact that a father passes a
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randomly chosen allele to his child. Note that the basic belief assignment
in (5.1) only assigns positive basic belief to sets that contain no information
whatsoever about the father, other than the fact that he belongs to the given
population. We denote the event in (5.1) by A(x, a, y1, . . . , yN+1).

Now we have to distinguish between two scenarios: the suspect in
question has one or two alleles of the right type. We look at the case he has
two such alleles first. This means we want to condition on

Hs,2 = {S = s,ΓS = 2, {ΓF = 2} ∪ {ΓF = 1, A = 1}}. (5.2)

We have to assign the mass originally assigned to A(x, a, y1, . . . , yN+1) to the
intersection of this set with Hs,2, and normalize suitably. This intersection
is non-empty precisely when x = s and ys = 2, and as before, the total mass
of this can be calculated by viewing the basic belief assignment in (5.1) as
a classical probabilistic experiment, leading to a normalizing constant of

p2
N + 1

. (5.3)

It follows that if ys = 2 we have the posterior

mHs,2
(A(s, a, y1, . . . , yN+1) ∩Hs,2) =

1

2

1

N + 1
pk00 pk11 pk22 ·

N + 1

p2

=
1

2
pk00 pk11 pk2−1

2 .

We claim that this basic belief assignment leads to the following posterior
belief function: if B is such that s ∈ B, then

BelHs,2
(F ∈ B) =

1

2

(

p
N+1−|B|
0 + (p0 + p1)

N+1−|B|
)

. (5.4)

One can compute this analogously to the computation leading to (4.8), but
we can also convince ourselves from the correctness of this answer as follows:
If a = 1, then we are back in the classical cold case of the island problem,
with p replaced by 1 − p0, since one correct allele will be enough now. If,
on the other hand a = 0 then the situation reduces to the cold case of the
island problem with p = p2, since a potential father now needs two alleles.
This idea can also be used to simplify the combinatorics and to perform a
more direct calculation, leading to the same answer of course.

Next we consider the case in which we condition on

Hs,1 = {S = s,ΓS = 1, {ΓF = 2} ∪ {ΓF = 1;A = 1}}. (5.5)

Now A(x, a, y1, . . . , yN+1)∩Hs,1 can only be non-empty if x = s and ys = 1.
Note however that if a = 0 and yi 6= 2 for all i then the intersection is in
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fact empty. The latter occurs with probability 1
2(p0 + p1)

N , and hence the
correct normalizing constant is

p1
N + 1

−
1

2

p1
N + 1

(p0 + p1)
N =

p1
N + 1

(

1−
1

2
(p0 + p1)

N

)

. (5.6)

It follows (except when a = 0 and yi 6= 2 for all i) that we have the posterior

mHs,1
(A(s, a, y1, . . . , yN+1) ∩Hs,1) =

1

2

pk00 pk1−1
1 pk22

1− 1
2(p0 + p1)N

. (5.7)

We can now compute the corresponding posterior belief function using a
similar argument as the one which led to (5.4). When a = 1 we have the
same situation as before. When a = 0, we only need to rule out the case in
which all labels yi are 0 or 1. This means that compared to the combinatorics
of the previous case, we have to subtract (p0 + p1)

N in this case. For s ∈ B
we now get

BelHs,1
(F ∈ B) =

1

2

p
N+1−|B|
0 + (p0 + p1)

N+1−|B| − (p0 + p1)
N

1− 1
2 (p0 + p1)N

. (5.8)

In the special case in which B = {s} we find

BelHs,1
({s}) =

1
2p

N
0

1− 1
2(p0 + p1)N

(5.9)

and

BelHs,2
({s}) =

1

2
pN0 +

1

2
(p0 + p1)

N , (5.10)

and we note that (5.9) is smaller than (5.10), which is what common sense
requires.

6 An analogue of Bayes’ rule

In the context of belief functions, we do not have a useful explicit closed
expression as the analogue of Bayes’ rule as formulated in (1.1). However,
we do have a similar process of updating prior belief statements when we
are given additional knowledge. In this section we explain how the analogue
of working with Bayes’ rule works in our context, and how we can use it
in computations with belief functions. We think this is best explained by
analyzing a number of instructive example, and this is what we turn to now.

We recall the odds form of Bayes’ rule:

P (G|E)

P (Ḡ|E)
=

P (E|G)

P (E|Ḡ)
·
P (G)

P (Ḡ)
, (6.1)
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where Ḡ denotes the negation or complement of G. (The rule can also
be used when Ḡ is not the complement of G but satisfies G ∩ Ḡ =
∅.) Whatever the interpretation of the classical probability measure P ,
subjective, frequentistic or otherwise, P (G|E) represents the posterior
probability of guilt conditioned on the available evidence, while P (G)
denotes the prior probability of guilt, before taking the evidence E into
account.

One can, however, also look at the posterior odds from the perspective of
the joint distribution of G and E. Once we have the full joint distribution,
the posterior odds (and any other quantity relating E and G, for that
matter) can be computed. Equation 6.1 in fact tells us that in the classical
setup, the complete joint distribution of G and E can only be determined
as a joint effort of both expert (likelihood ratio) and legal representative
(prior). They both contribute to the joint distribution, albeit in different
ways, and as such both contribute to the posterior odds as well. This means
that to develop the analogue of Bayes’ rule in our context of belief functions,
we need to explain how the joint belief of G and E can be constructed, under
a given prior belief on G (which may be complete ignorance).

Both G and E can, in our examples, only take values 0 and 1, where a 1
represents guilt and the existence of evidence, respectively. So we work on
Ω = {0, 1} × {0, 1} where, for instance, the state (1, 0) corresponds to the
situation that suspect is guilty, but there is no evidence against him or her.
We start with a classical situation which we first compute with (6.1) and
after that a second time from the perspective of belief functions. After that
we present two examples which cannot be done in a classical way.

Example 6.1. (A classical situation) Suppose we would like to impose a
prior probability of α that our suspect is guilty, and a prior probability
1 − α that he is not, for some α ∈ [0, 1]. We assume further that if the
suspect is guilty, evidence is found with probability 0.8, and if he is not
guilty, evidence is found with probability 0.05. This leads to prior odds of
1/9 and a likelihood ratio of 0.8/0.05 = 16. Hence the posterior odds are
16/9, and this corresponds to a posterior probability of guilt of 16/25 = 0.64.

Now let us recompute this example in the context of belief functions. In
this classical case this may appear as more work, but the point is of course
that the forthcoming method can be extended to non-classical situations.

The assumptions imply that our basic belief assignment on {0, 1}2 should
be such that when we project on the first coordinate, we must have total
mass 0.1 on G = 1 and mass 0.9 on G = 0. In combination with the
other assumptions about the probabilities to find evidence under various
hypotheses, this leads to the following basic belief assignment on {0, 1}2:

m





G = 0 G = 1

E = 0 ∗

E = 1



 = 0.9 × 0.95 = 0.855, (6.2)
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m





G = 0 G = 1

E = 0

E = 1 ∗



 = 0.9× 0.05 = 0.045, (6.3)

m





G = 0 G = 1

E = 0 ∗
E = 1



 = 0.1 × 0.2 = 0.02, (6.4)

m





G = 0 G = 1

E = 0

E = 1 ∗



 = 0.1 × 0.8 = 0.08. (6.5)

Conditioning on E = 1 means we disregard the first and third option since
these sets have an empty intersection with E = 1. Only the last option gives
mass to G = 1 after conditioning, and therefore the conditional probability
that G = 1 given E = 1 is given by 0.08/(0.08 + 0.045) = 0.64, agreeing
with the earlier computation.

Suppose now that we want to model complete ignorance about the guilt
of our suspect. This boils down to the requirement that our basic belief
assignment on Ω must be such that when we project any set with positive
basic belief assignment on the first coordinate, we must get the full marginal
{0, 1}. There are nine subsets of Ω with this property, and it is very
instructive to list them and to decide whether or not each of them should be
assigned positive basic belief assignment. This is more work than assigning
conditional probabilities for application of the classical Bayes’ rule, but the
advantage is that we can very precisely model the possibly subtle relation
between G and E. We list the possibilities as 2 by 2 arrays, hopefully
increasing readability and clarity of the exposition.

We start with the three ‘rectangular’ sets, whose interpretation is
straightforward:

I:

G = 0 G = 1

E = 0 ∗ ∗
E = 1 ∗ ∗

Interpretation: uninformative.

II:

G = 0 G = 1

E = 0 ∗ ∗
E = 1

Interpretation: absence of evidence in all circumstances.

III:

G = 0 G = 1

E = 0

E = 1 ∗ ∗
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Interpretation: existence of evidence in all circumstances.

The next possibility corresponds to the situation that evidence exists
precisely when suspect is guilty. In ideal cases one would like to assign a lot
of belief to this set.

IV:

G = 0 G = 1

E = 0 ∗
E = 1 ∗

Interpretation: incriminating evidence that exists precisely when suspect
is guilty.

There are two perturbations of Option IV, namely with the possibilities
of a false positive respectively false negative added:

V:

G = 0 G = 1

E = 0 ∗
E = 1 ∗ ∗

Interpretation: as in Option IV but with false positive for incriminating
evidence possible. Alternatively, we can interpret this as ruling out a false
negative for incriminating evidence.

VI:

G = 0 G = 1

E = 0 ∗ ∗

E = 1 ∗

Interpretation: as in Option IV but with false negative for incriminating
evidence possible. Alternatively, we can interpret this as ruling out a false
positive for incriminating evidence.

The remaining options seem more suitable for exculpatory evidence:

VII:

G = 0 G = 1

E = 0 ∗
E = 1 ∗

Interpretation: perfect exculpatory evidence.

The last two options are perturbations of Option VII.

VIII:

G = 0 G = 1

E = 0 ∗
E = 1 ∗ ∗

Interpretation: as Option VII with false positive for exculpatory evidence
possible. Alternatively, we can interpret this as ruling out a false negative
for exculpatory evidence.
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IX:

G = 0 G = 1

E = 0 ∗ ∗
E = 1 ∗

Interpretation: as Option VII with false negative for exculpatory
evidence possible. Alternatively, we can interpret this as ruling out a false
positive for exculpatory evidence.

Obviously, the actual belief that one wants to assign to various possibili-
ties depends on personal taste, background knowledge, and on details of the
situation. This is not different from the situation when working in a classical
setting. In the context of our belief functions, we need to decide about the
assignment of prior belief to a relatively large number of sets. In our example
above, we need to make decisions about 9 sets. To compare: in our example,
a classical Bayesian analysis requires no more than 4 probabilities, namely
the probabilities that E = i if G = j, for i, j ∈ {0, 1}. But our belief
functions are much more flexible, and allow us to tailor the modeling very
much to the actual situation.

Once we have decided about our basic belief assignment, we can perform
computations with the calculus that we have developed in Section 3.

Example 6.2. (The cold case revisited) Consider the cold case from Section
4.1 once again, but now phrased in the terminology of this the current
section. Suppose s is chosen, and {G = 1} corresponds to s being guilty.
The event {E = 1} corresponds to the event that both s and C have the
characteristic. We can now write down our basic belief assignment as follows.

First of all,

m





G = 0 G = 1

E = 0 ∗ ∗

E = 1



 = 1− p, (6.6)

since this is our belief in the set that there is no evidence for sure, which is
precisely the case when s does not have the characteristic. Then we have

m





G = 0 G = 1

E = 0

E = 1 ∗ ∗



 = pN+1, (6.7)

since we know that there will be incriminating evidence precisely when
everyone has the characteristic. Next we set

m





G = 0 G = 1

E = 0 ∗ ∗
E = 1 ∗



 = p(1− p)N , (6.8)

because this option corresponds to ruling out a false positive, which occurs
when s is the only one with the characteristic. The remaining mass goes to
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m





G = 0 G = 1

E = 0 ∗ ∗
E = 1 ∗ ∗



 = p− pN+1 − p(1− p)N , (6.9)

which makes perfect since, since this is the probability that s has the
characteristic, and in addition there is at least one other person with the
characteristic, and also at least one who does not have it. In this situation
we have complete ignorance when it comes to s. (Note that for N = 2, the
mass of the last option is 0. This is understandable, since we need at least
three individuals for this option to be realized.)

Next we condition on E = 1. The first set has empty intersection
with {E = 1}, and following the rules of our calculus we compute that
the conditional belief that G = 1 is equal to (1 − p)N , in accordance with
(4.9).

What we have done here is analogous to the classical situation. We
started out with a belief function on {0, 1}2 which represented complete
ignorance about the question whether or not the suspect is guilty, and which
assigned positive basic belief to various possibilities. This is the analogue
of a prior probability in the classical situation, together with the value of
various conditional probabilities. Next we have conditioned on the event
that E = 1 and we have calculated the ensuing conditional belief in G = 1.
This is the analogue of calculating the conditional probability that G = 1
given E = 1 using Bayes’ rule. Although we do not have an explicit formula
like Bayes’ rule at our disposal, we can nevertheless carry out the necessary
calculations, leading to a well-defined answer.

We would like to emphasize once more that we lose nothing when we
work with belief functions, compared to the classical probabilistic set-up.
We can start out with a classical probability distribution as our prior, and
mimic a classical situation. We illustrate this with an example.

The relevant sets in Example 6.2 were completely disjoint from the
relevant sets in Example 6.1, but it may very well happen that we want
to model both partial prior ignorance together with some partial specific
prior belief. To this end we give our third example.

Example 6.3. (A mixture of ignorance and specific belief) Consider the same
situation as in the previous examples, but this time there is a prior indication
that suspect is not guilty, say by a witness statement. Suppose we want to
assign a total belief of 0.7 to this witness. Then the basic belief assigment
m should assign a total mass of 0.7 to sets whose projection onto G is {0}.
We have no indication about guilt, so m should assign the remaining mass
of 0.3 to sets whose projection onto G is {0, 1}.

We now need to model what the probability of evidence is when suspect
is not guilty. Suppose we have some reason to believe in false positives, but
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also some reason not to have any information about E at all when G = 0.
These considerations could for example lead to the following prior belief
assignment:

m





G = 0 G = 1

E = 0 ∗
E = 1



 = 0.5, (6.10)

m





G = 0 G = 1

E = 0

E = 1 ∗



 = 0.05, (6.11)

m





G = 0 G = 1

E = 0 ∗
E = 1 ∗



 = 0.15, (6.12)

m





G = 0 G = 1

E = 0 ∗
E = 1 ∗



 = 0.2, (6.13)

m





G = 0 G = 1

E = 0 ∗

E = 1 ∗ ∗



 = 0.05, (6.14)

m





G = 0 G = 1

E = 0 ∗ ∗

E = 1 ∗



 = 0.05. (6.15)

When we now condition on E = 1, the mass 0.5 of the first option is
lost, so we have to renormalize by multiplying with 2. Hence we find that

m{E=1}(G = 0) = 2(0.05 + 0.15) = 0.4,

m{E=1}(G = 1) = 2(0.2 + 0.05) = 0.5,

and

m{E=1}(G ∈ {0, 1}) = 2 · 0.05 = 0.1.

The original belief of 0.7 not being guilty by in the witness statement is
reduced to 0.4 after the evidence, but note that uncertainty persists.

Working with belief functions rather than probability distributions may
seem rather complicated. Due to the nature of the theory in which we
assign probabilities to subsets rather than to singletons, there are many
more objects which can receive positive mass in our set-up compared to the
classical one. However, in many cases modeling assumptions can be made
which can, and should for that matter, drastically reduce the number of sets
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with positive basic belief assignment. The computations themselves can of
course be programmed.

Having explained how the analogue of applying Bayes’ rule works in
our context, a next step would be to investigate the analogue of a Bayesian
network. Since we know how to mimic the working of Bayes’ rule, we can now
also create the analogue of a Bayesian network. This however, needs more
space than we have in the current paper, and we carry out the construction
of such a Bayesian networks in our context in a forthcoming paper.

7 Discussion and legal practice

How does the theory of belief functions as developed in this article relate
tot the legal practice when expert witnesses are called to testify? It is to
this question that we now turn.

We start by describing the current practice when classical probability
theory is used. In this current practice, the legal representative (judge or
jury member for instance) and expert witness play a very different role,
and their contributions are well-separated. This is theoretically backed up
by Bayes’ rule. To be precise, writing G for the event, say, that a certain
suspect is the donor of a DNA profile found at the scene of the crime), and
E for the available evidence, the so called odds form of Bayes’ rule states
that

P (G|E)

P (Ḡ|E)
=

P (E|G)

P (E|Ḡ)
·
P (G)

P (Ḡ)
, (7.1)

where Ḡ denotes the negation or complement of G. Whatever the inter-
pretation of the classical probability measure P , subjective, frequentistic or
otherwise, P (G|E) represents the posterior probability of G conditioned on
the available evidence, while P (G) denotes the prior probability of G, before
taking the evidence E into account.

Formula (7.1) describes how the prior odds P (G)/P (Ḡ) are transformed
into the posterior odds P (G|E)/P (Ḡ|E), by multiplying the prior odds with
the so-called likelihood ratio P (E|G)/P (E|Ḡ). This likelihood ratio is in the
provenance of the forensic expert. This expert can, in certain circumstances
at least, compute, estimate or assign a probability to the evidence under
various hypothesis, and thereby compute the likelihood ratio. The expert
does not express how likely these hypotheses themselves are, that is, the
expert says nothing about the prior probabilities P (G) and P (Ḡ). Hence, the
expert does not make a statement about the posterior probabilities P (G|E)
and P (Ḡ|E). Indeed, for the latter probabilities, one in addition needs the
priors and these are not in the provenance of the expert.

One can also look at the posterior odds from the perspective of the
joint distribution of G and E. Once we have the full joint distribution, the
posterior odds (and any other quantity relating E and G, for that matter)
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can be computed. But it is only through the joint effort of expert and legal
representative that the joint distribution can be computed. In other words,
the complete joint distribution of G and E can only be determined as a joint
effort of both expert and legal representative. They both contribute to the
joint distribution, albeit in different ways, and as such both contribute to
the posterior odds as well.

Obviously, the legal practice is more complicated than this simple
procedure suggests. Although Bayes’ rule is mathematically not difficult,
confusion between likelihood ratio and posterior odds arises easily, and there
are many examples in which such confusion has had serious consequences
see e.g. [8] and the references therein. But also, as already articulated
in the introduction, there are many situations possible where a prior in
the context of classical probability theory is not possible or at least not
appropriate from a legal perspective. Furthermore, the clean theory about
division of responsibilities between expert and legal representative does not
always work this way: there are situations in which the prior actually enters
the likelihood ratio, which complicates matters significantly, see e.g. [23].
Finally, it is highly questionable whether all available evidence is amenable
to numerical manipulation.

The theory as developed in this article suggests a different procedure
which does not suffer from some of the problems mentioned above and in
the introduction. In the classical setting, Bayes’ rule (7.1) explains that a
posterior evaluation of probabilities is not possible without using explicit
prior probabilities. The likelihood ratio provided by the forensic expert is
used to transform the prior odds into posterior odds. Prior odds, or at
least bounds on them, are needed, even if there is no knowledge to make
a serious estimate or guess. The crux of the matter is that in our set-up,
we do not impose a prior if we have no argument to assign it a certain
value. That is, we can model this appropriately by assuming complete prior
ignorance (apart from the assumption that we have an outcome in Ω) via
the uninformative basic belief assignment given by m(Ω) = 1.

This means that the highly subjective act of imposing a prior can be
replaced by simply modeling ignorance where appropriate, if that is what
reality dictates. In such cases, the forensic expert can determine the joint
belief structure of E and G without any need for input from the legal
representative. In the classical case this is not possible, since a prior must be
provided. (We recall that prior ignorance is often modeled by using a prior
uniform distribution. However, these two things, ignorance on the one hand
and uniform probabilities on the other, are certainly not the same thing as
we have argued at some length in Section 1.)

The new procedure can be illustrated with the cold case in the island
problem discussed in Section 4.1. In the classical case, the expert witness
can only deliver the likelihood ratio, which in this case would be 1/p. Indeed,
in the case that the suspect is guilty, the probability to find the evidence
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is 1, and in case he is not, the probability to find this particular profile is
nothing but the frequency p of that profile in the population. With uniform
prior this leads to the posterior in (4.10), but note that other priors would
lead to different result. Note that in any case, a prior must be made explicit
in order to arrive at posterior probabilities.

In our setting, the expert could simply report (4.9) which contains all
the available information in the case. If we have no prior information, then
no unfounded or subjective choice for a prior needs to be made, apart from
the choice of the relevant population. We do not need a uniform prior. This
means that the classical subdivision of tasks between legal representative and
expert is no longer always necessary in our context. Anyone with knowledge
about (in this case) the value of the frequency p (and the population size
N) can compute the conditional belief function in (4.9), but it is clear that
in this case, and in many other cases, we will need the forensic expert to
determine the value of p (or a related quantity in more complicated settings).
In other words, the belief function governing the relation between E and G
can now be computed just by the expert witness himself.

The calculation of the belief in a certain hypothesis (like G = 1 in
the above examples) is conceptually simpler in the new setting. The joint
distribution of E and G need no longer depend on inadequate or unfounded
prior probabilities, but of course we always have the possibility to impose a
real prior probability if there is reason to do so. But we have also seen in
the examples in the island problem that the numbers obtained are certainly
less impressive than in the classical case. This is of course not surprising:
starting out with an uninformative prior instead of a uniform prior gives us
less information to start with.

Is this a weakness of the theory of belief functions as we have set out in
this paper? We do not think so. It is far better to have a less impressive
number which is well founded and not so easy to challenge, than to have
a more impressive number which may depend on unfounded arguments or
assumptions, and which is easy to dismiss by, say, the defense. As such,
our theory may even help to convict actual criminals, even though we insist
that if there is no prior information about a certain quantity, we should not
pretend there is.

In this article we have described the basic principles of our new theory,
with basic forensic examples. Together with the more mathematical
companion paper [15], this gives a solid foundation of the theory. Obviously
there is a lot of work to be done in the theoretical development and in
applications to forensic examples.
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