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Abstract. We formulate an analytically tractable model of a limit order book on short time scales, where

the dynamics are driven by stochastic fluctuations between supply and demand and order cancellation is not

a prominent feature. We establish the existence of a limiting distribution for the highest bid, and for the
lowest ask, where the limiting distributions are confined between two thresholds. We make extensive use of

fluid limits in order to establish recurrence properties of the model. We use our model to analyze various
high-frequency trading strategies, and the Nash equilibrium that emerges between high-frequency traders

when a market continuous in time is replaced by frequent batch auctions.

1. Introduction

A limit order book (LOB) is a trading mechanism for a single-commodity market. The mechanism is of
significant interest to economists as a model of price formation. It is also used in many financial markets, and
has generated extensive research, both empirical and theoretical: for a recent survey, see Gould et al. [10].

The detailed historic data from LOBs in financial markets has encouraged models able to replicate the
observed statistical properties of these markets. Unfortunately, the added complexity usually makes the
models less analytically tractable. In particular, with relatively few exceptions, models of limit order books
are only amenable to simulation or numerical exploration. Our aim in this paper is to develop a simple
and analytically tractable model of a LOB. We do this by explicitly excluding from the model a number
of significant features of real-world markets. We shall see that, even in our simple model, a number of
non-trivial and insightful results can be obtained, with implications for more complex models.

We next describe an example of our model of a LOB, and our results for the example. A bid is an order
to buy one unit, and an ask is an order to sell one unit. Each order has associated with it a price, a real
number. Suppose that bids and asks arrive as independent Poisson processes of unit rate and that the prices
associated with bids, respectively asks, are independent identically distributed random variables with density
fb(x), respectively fa(x). An arriving bid is either added to the LOB, if it is lower than any asks present
in the LOB, or it is matched to the lowest ask and both depart. Similarly an arriving ask is either added
to the LOB, if it is higher than any bids present in the LOB, or it is matched to the highest bid and both
depart. The LOB at time t is thus the set of bids and asks (with their prices), and our assumptions imply
the LOB is a Markov process.

For this model we show that there exists a threshold κb with the following properties: for any x < κb
there is a finite time after which no arriving bids less than x are ever matched; and for any x > κb the
event that there are no bids greater than x in the LOB is recurrent. Similarly, with directions of inequality
reversed, there exists a corresponding threshold κa for asks. Further there is a density πa(x), respectively
πb(x), supported on (κb, κa) giving the limiting distribution of the lowest ask, respectively highest bid, in
the LOB. The densities πa, πb solve the equations

(1a) fb(x)

∫ κa

x

πa(y)dy = πb(x)

∫ x

−∞
fa(y)dy

(1b) fa(x)

∫ x

κb

πb(y)dy = πa(x)

∫ ∞
x

fb(y)dy.
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For example, if fa(x) = fb(x) = 1, x ∈ (0, 1), then κa = κ, κb = 1− κ, πa(x) = πb(1− x), and

(2) πb(x) = (1− κ)

(
1

x
+ log

(
1− x
x

))
, x ∈ (κ, 1− κ)

where the value of κ is given as follows. Let w be the unique solution of wew = e−1: then w ≈ 0.278 and
κ = w/(w + 1) ≈ 0.218. Observe that any example with fa = fb can be reduced to this example by a
monotone transformation of the price axis.

The existence of thresholds with the claimed properties is a relatively straightforward result, using Kol-
mogorov’s 0–1 law. In order to make the claimed distributional result precise the major challenge is to
establish positive recurrence of certain binned models: such models arise naturally where, for example,
prices are recorded to only a finite number of decimal places. Given a sufficiently strong notion of recurrence
the intuition behind equations (1) is straightforward: in equilibrium the right-hand side of equation (1a) is
the probability flux that the highest bid in the LOB is at x and that it is matched by an arriving ask with a
price less than x, and the left-hand side is the probability flux that the lowest ask in the LOB is more than
x and that an arriving bid enters the LOB at price x; these must balance, and a similar argument for the
lowest ask leads to equation (1b). To establish positive recurrence of the binned models we make extensive
use of fluid limits [2], an important technique in the study of queueing networks.

The orders we have described so far are called limit orders to distinguish them from market orders which
request to be fulfilled immediately at the best available price. Market orders are straightforward to include
in our model: in the example just described we simply associate a price 1 or 0 with a market bid or market
ask respectively. As the proportion of market bids increases towards a critical threshold, w ≈ 0.277 in the
above example, the support of the limiting distributions πa, πb increases to approach the entire interval (0, 1):
above the threshold the model predicts recurring periods of time when there will exist either no highest bid
or no lowest ask in the LOB. This conclusion holds, with the same critical threshold w, for any example with
fa = fb.

Our model of a LOB is a form of two-sided queue, the study of which dates at least to the early paper
of Kendall [11] who modelled a taxi-stand with arrivals of both taxis and travellers as a symmetric random
walk. Recent theoretical advances involve servers and customers with varying types and constraints on
feasible matchings between servers and customers, with applications ranging from large-scale call centres to
national waiting lists for organ transplants [1, 15, 16]. Our interest in models of LOBs is in part due to the
simplicity of the matchings in this particular application: types, as real variables, are totally ordered and so
when an arriving order can be matched the match is uniquely defined.

Next we comment on several important features of real-world markets that are missing from our basic
model of a LOB. We assume that orders are never cancelled and that the arrival streams of orders, with
their prices, are not dependent on the state of the LOB. These assumptions might correspond with orders
from long-term investors who place orders for reasons exogenous to the model,1 and who view the market
as effectively efficient for their purposes. These assumptions, and the related assumption of stationarity of
the arrival streams, may be more reasonable for a high-volume market where there may be a substantial
amount of trading activity even over time periods where no new information becomes available concerning
the fundamentals of the underlying asset. Mathematically our model may be viewed as assuming a separation
between these time-scales. We also assume that all orders are for a single unit. Here we note that an investor
who is attempting to be passive in her execution, so as not to move the price against her, may well spread
a larger order in line with volume in the market [7].

Markets may contain traders other than long-term investors, and there is currently considerable interest
in the effect of high-frequency trading on LOBs. Interestingly, many high-frequency trading strategies are
straightforward to represent within our model, since traders who can react immediately to an order entering
the LOB may leave the Markov structure intact. Consider first the following sniping strategy for a single
high-frequency trader: he immediately buys every bid that joins the LOB at price above q and every ask
that joins the LOB at price below p, where p and q are chosen to balance the rates of these purchases. This
model fits straightforwardly within our framework, and we show how to calculate the optimal values, for the
high-frequency trader, of the constants p and q. A single trader might instead behave as a market maker

1For example, to manage their portfolios. Investors may differ in their preferences and in their valuations, even given the
same information, which creates potential gains from trade.
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and place an infinite number of bid, respectively ask, orders at p, respectively q, where κb < p < q < κa.
We are again able to analyze this case. Notably the optimal rate of return under this strategy may beat
that under the sniping strategy: it does so for the simple example above where fa(x) = fb(x) = 1, x ∈ (0, 1),
describes the order flow from long-term investors. But a third strategy, which combines market making and
sniping, will generally beat both the individual strategies.

Our model also allows us to study the Nash equilibrium when there are multiple high-frequency traders
competing using mixtures of market making and sniping. There has been considerable discussion recently
of the effects of competition between multiple high-frequency traders, and of proposals aimed to slow down
markets. A key issue is that high-frequency traders may compete on the speed with which they can snipe
an order, rather than compete on price. Budish et al. [3, 4] propose replacing a market continuous in time
with frequent batch auctions, held perhaps several times a second. We study the Nash equilibrium in such
a market when there are multiple high-frequency traders competing using mixtures of market making and
sniping. Competition removes the attraction for the traders of market making, and the Nash equilibrium
has traders sniping bids above, respectively asks below, a central price.

The previous research most similar in mathematical framework to that reported here is by Cont and
coauthors [6, 5] who also describe LOBs as a Markovian system of interacting queues, and are able to obtain
analytical expressions for various quantities of interest. In their model the arrival rates of orders at any
given price depends on how far the price is above or below the current best ask or bid price. Gao et al. [9]
study the temporal evolution of the the shape of a LOB in the model of [6], under a scaling limit. The work
of Lachappelle et al. [12], building on Roşu [14], uses a different mathematical framework, that of a mean
field game, but shares with our approach some important features. In particular, these authors distinguish
between institutional investors whose decisions are independent of the immediate state of the LOB and high-
frequency traders who trade as a consequence of the immediate state of the LOB. The models of both [5]
and [12] keep detailed information on queue sizes only at the best bid and best ask prices; [6] shares with
our approach a Markov description of the entire LOB.

In much of the market microstructure literature features of LOBs, such as large bid-ask spreads, are
explained as a consequence of participants protecting themselves from others with superior information.
While this is clearly an important aspect of real-world markets we note that such features may also arise
for other reasons. The driving force for the dynamics of the LOB in our approach, as in [12, 14], is not
asymmetric information but stochastic fluctuations between supply and demand.

The organisation of the paper is as follows. In Section 2 we describe precisely our model and our main
results. Section 3 develops the scaffolding necessary for the proofs, which are given in Section 4. In Section 5
we describe some applications of our results: this section contains our discussion of market orders and of
high-frequency trading strategies.

2. Model and results

Informally, the limit order book operates as follows. There are some queued orders, called “bids” and
“asks”; a bid is an order to buy a unit of a commodity for at most a given price, and an ask is an order to
sell a unit of commodity for at least a given price. New orders arrive into the book, and whenever there is a
price match, orders are executed: the newly arriving order departs with the best order on the opposite side
of the book. We now formalize this notion.

The state of the LOB at time t is a pair (Bt, At) of (possibly infinite) counting measures on R. The
counting measure Bt represents the prices of queued bids, while At represents the prices of queued asks.
New orders arrived as a labeled Poisson point process; 2 each label records the type of order (bid or ask) and
the price (any real number). We assume the labels of orders are independent and identically distributed,
and in particular independent of the state of the book. We allow the price distributions of bids and asks to
be different.

We formalize the concept of a “price match” using a price function, that is a nondecreasing, not necessarily
continuous, function P : R → R. A bid-ask pair is weakly compatible if P(bid) ≥ P(ask), and strongly
compatible if P(bid) > P(ask). The particularly important examples of P will be P(x) = x, and the

2It will not be important that the time structure is that of a Poisson process, only that there is a sequence of incoming
orders.
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function that partitions all prices into n pricing bins; we will refer to this latter case, where the image of P
is a finite set, as the binned model. Note that compatibility of bid-ask pairs is unchanged under any strictly
increasing transformation of prices; so without loss of generality we may assume that P(x) ∈ (0, 1) for all x.
We will therefore think of prices as falling in the interval (0, 1).

We are now ready to define the strict and non-strict limit order books Lt and Lt.
Initial state: Initially, there should be no compatible bid–ask pairs in the book. Equivalently, the initial
state (B0, A0) satisfies

B0(x, 1) ·A0(0, y) = 0 if

{
P(y) < P(x), strict

P(y) ≤ P(x), non-strict

Change at order arrival: We do not allow cancellations in the model, so all changes to the state occur
at the time of an order arrival. Suppose at time t a bid at price p arrives. If there is a matching ask in
the book, i.e. if At−(0, y) > 0 for some y such that P(y) < P(p) (strict) or P(y) ≤ P(x) (non-strict), then
nothing happens to the bids in the book (Bt = Bt−), and the lowest ask departs: At = At− − δq, where
q = min{x : At−{x} > 0}. If there are no matching asks in the book, the bid joins the book: Bt = Bt− + δp
and At = At−. The situation is symmetric if the arriving order is an ask at price q: if there is a matching
bid, the two orders depart (so At = At− and Bt = Bt− − δp where p = max{x : Bt−{x} > 0}), and if there
are no matching bids, then the ask joins the book (Bt = Bt− and At = At− + δq).

We will be keeping track of the highest (price of a) bid βt and lowest (price of an) ask αt in the book at
time t. If an order departs the book at time t, it must be at price βt− (if a bid) or αt− (if an ask). We allow
B0{x} =∞ or A0{y} =∞; if this is the case, then no bids left of x, and no asks right of y, will ever depart
the limit order book, since they will never be the highest bid (respectively lowest ask).

Below, we will refer to continuous and discretized models of LOBs. A continuous LOB is one where the
bid and ask price distributions are absolutely continuous, and the price function is strictly increasing (e.g.
P(x) = x). Discretized models will typically have the binned price function. In a continuous LOB, strict
and non-strict compatibility coincide, because almost surely all order prices are distinct.

For a discretized, binned LOB, we will use notation JxK to denote the index of the bin containing x; JxK
is a positive integer ranging from 1 to N for some N > 0. We may also write P(JxK) to mean P(x); there
will be no confusion, because x ∈ (0, 1) and JxK is an integer.

We now present the main results concerning the model. The first result, Theorem 2.1, establishes a
transition at threshold values κb and κa. Eventually bids arriving below κb, and asks arriving above κa, will
never be executed; whereas all bids arriving above κb, and all asks arriving below κa, will be executed. The
second result, Theorem 2.2, presents the distribution of the rightmost bid and leftmost ask.

Theorem 2.1 (Thresholds). There exist prices κb and κa with the following properties:

(1) Almost surely there exists a random time T0 <∞ such that βt > κb and αt < κa for all t ≥ T0.
(2) For any ε > 0, infinitely often there will be no orders with prices in (P(κb) + ε,P(κa)− ε).
(3) Let (x, y) be such that P(x) > P(κb) + ε and P(y) < P(κa)− ε for some ε > 0. Consider the LOB

started with infinitely many bids at x, infinitely many asks at y, and finitely many orders in between.
The evolution of the orders at prices in the interval (x, y) is a positive (Harris) recurrent Markov
process, with finite expected time until there are no orders in the interval.

The existence of a threshold κb such that bids leave to the right of it and do not leave to the left of it, at
least eventually, is an easy corollary of Kolmogorov’s 0–1 law. The challenging part of the above theorem is
the claim that in certain intervals there will simultaneously be neither bids nor asks. In fact, we will need to
prove this part of Theorem 2.1 and Theorem 2.2 below simultaneously, and will make extensive use of fluid
models.

Theorem 2.2 (Distribution of the highest bid). Suppose P(x) = x and suppose the arrival price pdfs fb
and fa are supported on [0, 1], are bounded above and below, are absolutely continuous, and have bounded
densities bounded above and below: M−1 ≤ fa, f b ≤ M . Let πb be the limiting density of the highest bid,
and let $b = πb/f b; define πa and $a similarly. Then κb > 0, F b(κb) = 1 − F a(κa), and $b satisfies the
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following ODE: (
− fa(x)

1− F b(x)
(F a(x)$b(x))′

)′
= $b(x)fb(x)

with initial conditions

(F a(x)$b(x))|x=κb
= 1, (F a(x)$b(x))′|x=κb

= 0

and the additional constraint $b(x) → 0 as x ↑ κa. The distribution of the lowest ask satisfies a similar
ODE.

Corollary 2.3 (Uniform arrivals). Suppose that P(x) = x and the arrival price distribution is uniform on
[0, 1] for both bids and asks. Then κb ≈ 0.217 is given by κ = w/(w + 1) where wew = e−1. The limiting
density of the highest bid is supported on (κb, 1− κb), and is given by

$b(x) = 1(κ,1−κ)(1− κ)

(
1

x
+ log

(
1− x
x

))
and the limiting density of the lowest ask is $a(x) = $b(1− x).

Remark 1 (Absolute continuity). The assumption of absolute continuity of F b and F a with respect to the
Lebesgue measure can be replaced by the assumption that the derivative dF b/dF a exists and is bounded
above and below. Indeed, whenever this is the case, we can replace F b and F a by absolutely continuous
distributions, and use a suitable price function to transform them. (However, the result of Theorem 2.2 is
easier to state in terms of densities.) The requirement that the ratio of the densities be bounded avoids the
trivial examples f b = 21[0,1/2), f

a = 21(1/2,1] (nonoverlapping supports, no orders leave) or fa = 21[0,1/2),

f b = 21(1/2,1] (nonoverlapping supports, no threshold). It may be possible to relax the requirement on
bounded derivatives and simply require the supports of the distributions to coincide.

As long as the arrival price distributions are absolutely continuous as above we can reparametrize space
so that bids arrive uniformly on the interval [0, 1], and so Corollary 2.3 covers also the case where the
distributions of arriving bid and ask prices are identical. We describe some other analytically tractable
examples of Theorem 2.2 in Section 5.

In Figure 1, we show the exact limiting distribution of the highest bid for the non-strict binned LOB with
uniform arrivals 50 bins, along with the limiting distribution for the continuous LOB. Note the “shoulder”
bin: in the binned LOB, the threshold happens to fall into the middle of a bin, so the long-term probability
of having the rightmost bid land into the bin is positive but below the limiting prediction.

While we have been able to compute analytically the distribution of the location of the rightmost bid,
there are many related quantities for which we do not have an exact expression (although the positive
recurrence established in Theorem 2.1 implies that they are well-defined and can be estimated consistently
from simulation). Notably, we have not been able to derive analytic expressions for the equilibrium height
of the book (i.e. expected number of bids or asks at a given price in the binned model), or for the joint
distribution of the highest bid and lowest ask.

3. Preliminary results: monotonicity

Before proving the main results, we erect a certain amount of scaffolding. Part of its purpose is to allow
us to transition between continuous LOBs (for which we expect to get differential equations in the answer)
and binned models (which can be modelled as countable-state Markov chains). It also allows us to compare
LOBs with different arrival price distributions.

Lemma 3.1 asserts that the state of the limit order book is Lipschitz in the initial state with Lipschitz
constant 1: in particular, small perturbations in the arrival and matching patterns will lead to small per-
turbations in the state of the book. Lemma 3.2 asserts that actions that decrease cumulative bid and ask
queues by either shifting orders or removing them in bid–ask pairs will only decrease future queue sizes.

Lemma 3.1 (Adding one order). Consider a limit order book L, and let L̃ differ from L by the addition of

one bid at time 0; let their arrival processes and matching function be the same. Then at all times L̃ differs
from L either by the addition of one bid, or by the removal of one ask.
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Figure 1. Limiting density of the highest bid for the non-strict binned LOB with 50 bins,
and limiting density for a continuous LOB (dotted line). Note the “shoulder” bin containing
the threshold in the binned model.

Proof. The roles of “bid” and “ask” are symmetric here. The claim clearly holds until the additional bid is
the highest bid that departs from the system; once it does, L differs from L̃ by the addition of a single ask,
and the result follows by induction. �

Define cumulative queue sizes Qb(p, t) = Bt(0, p], Q
a(p, t) = At[p, 1). (Note that we count bids from the

left and asks from the right.) When we want to highlight the dependence on only one of the variables, we
will drop the other variable into a subscript.

Lemma 3.2 (Decreasing queues). Consider a limit order book L, and let L̃ differ from L by modifying

the initial state in such a way that Q̃b0 ≤ Qb0, Q̃a0 ≤ Qa0 (as functions of p), and also Q̃b(1) − Q̃a0(0) =

Qb0(1) − Qa0(0). In words, to get from L to L̃, at time 0 we remove some bid–ask pairs, and/or shift some

bids to the right, and/or shift some asks to the left. Then at all future times t ≥ 0, Q̃bt ≤ Qbt and Q̃at ≤ Qat .

Proof. We show Q̃b ≤ Qb, the argument for asks being identical. The argument proceeds by induction on
time, i.e. the number of arrived orders.

Consider first the arrival of a bid at time t+ and price p. For it to upset the inequality, it must stay
in L̃ but depart immediately in L; additionally, we need Qbt(q) = Q̃bt(q) for some q ≥ p. Note that if the
bid departs immediately in L, the leftmost ask at αt must be compatible with p, and in particular there
are no bids right of p: Qbt(p) = Qbt(∞). This, together with Qbt(q) = Q̃bt(q) and Q̃bt ≤ Qbt , implies that

Qbt(∞) = Q̃bt(∞). Since bid–ask departures occur in pairs, this in turn implies Qat (−∞) = Q̃at (−∞). But it

is easy to see that if Q̃at ≤ Qat and they are equal at −∞, then α̃t (the leftmost jump of Q̃at ) and αt (the

leftmost jump of Qat ) satisfy α̃t ≤ αt, and hence the arriving bid actually departs immediately in L̃ as well.
Next consider the arrival of an ask at time t+ and price p. For it to upset the inequality, it must cause

the departure of the highest bid in L, but not in L̃, and we must have Qbt(q) = Q̃bt(q) for some q ≥ βt with

P(βt) ≥ P(p). Now, in L̃ there are no bids at prices ≥ P(p), hence Q̃bt(∞) = Q̃bt(q) = limε→0 Q̃
b
t(βt − ε).

However, this contradicts the inequality Q̃bt ≤ Qbt , since limε→0Q
b
t(βt − ε) = Qbt(q)− 1. �

We now have a way to bound continuous LOBs by binned models as follows. Notice that in a non-strict
LOB, merging bins results in extra order pairs departing from the LOB, which decreases queue sizes; in a
strict LOB, this happens if we split bins. A continuous LOB is simultaneously strict and non-strict; so we
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can bound the queues in a continuous LOB by a strict binned LOB from above, and by a non-strict binned
LOB from below. We can also bound the order queues of a continuous LOB from above by a book in which
all bid arrivals are shifted slightly to the left, and all ask arrivals are shifted slightly to the right. Notice that
we can reproduce the behavior of a strict binned LOB from a non-strict one by shifting all bids one bin left
relative to all asks (both initially and as they arrive). Consequently, we can bound a continuous LOB from
both sides by non-strict binned LOBs with slightly different arrival patterns (and different price functions,
since one of these bounding LOBs has more bins than the other). Lemma 3.1 assures that the states of these
two non-strict LOBs will be close to each other, giving us tight control over the behavior of the continuous
LOB in terms of systems described by countable-state Markov chains.

4. Proof of main results

We begin by stating a weaker form of Theorem 2.1.

Proposition 4.1 (Weak thresholds). There exist prices κb and κa with the following properties:

(1) Almost surely there exists a random time T0 <∞ such that βt > κb and αt < κa for all t ≥ T0.
(2) For any ε > 0, infinitely often there will be no bids with price exceeding P(κb)+ε. Similarly, infinitely

often there will be no asks with price below P(κa)− ε.
(3) The threshold values κb and κa satisfy F b(κb) = 1− F a(κa).

In addition, suppose that the bid and ask price distributions are supported on [0, 1] and are absolutely con-
tinuous, with densities bounded above and below. Then the following holds:

(4) For any ε > 0, with probability 1, there exists a sequence of times Tn → ∞ such that at time Tn
there are no bids with prices above P(κb) + ε, and the number of asks with prices below P(κa)− ε is
bounded above by 2MεTn.

Proof. The first two claims follow from Kolmogorov’s 0–1 law. Consider the events

Eb(x) = {finitely many bids will depart from prices ≤ P(x)}
Ea(x) = {finitely many asks will depart from prices ≥ P(x)}.

Lemma 3.1 shows that these events are in the tail σ-algebra of the arrival process. Since the arrival process
consists of a sequence of independent and identically distributed events, Kolmogorov’s 0–1 law ensures that
for each x, Eb(x) has probability 0 or 1 (and similarly for Ea(x)). Now let

(3a) κb = sup{x : P(Eb(x)) = 1}, κa = inf{x : P(Ea(x)) = 1}.
The first two asserted properties now follow upon noticing that Eb(x) ⊆ Eb(y) for x ≥ y, and that whenever
there is a bid departure at price x, there must be no bids at prices higher than P(x). (The situation is
similar for asks.)

We next show that F b(κb) + F a(κa) = 1. From the strong law of large numbers for the arrival process
and the 0–1 law above, we know that F b(κb) is the proportion of arriving bids that stay in the system:

(3b) F b(κb) = lim inf
t→∞

1

t
#(bids in the LOB at time t).

A similar equality clearly holds for asks with 1−F a(κa). Since bids and asks always depart in pairs, a further
appeal to the strong law of large numbers for the arrival process shows that we must have F b(κb) = 1−F a(κa).

The existence of times Tn as in part (4) of the theorem follows by a similar argument from the functional
law of large numbers for the arrival processes. Picking a large enough time Tn when there are no bids at
prices above P(κb) + ε, we see that there cannot be more than (1 − F a(κa) + Mε)Tn asks in the system.
Since asks to the right of κa arrive at rate (1−F a(κa)) and eventually never leave, for large enough Tn there
will not be more than 2MεTn asks at prices below κa − ε. �

This result is weaker than the positive recurrence we wish to prove eventually: in particular, it does not
show that the total number of orders, both bids and asks, between κb and κa is ever zero. In order to obtain
statements about positive recurrence, we will need to use fluid limit techniques, and our overall approach
will be similar to that of [2, Chapter 4]. Specifically, the final proof of stability will come from the use of
the multiplicative Foster’s criterion (state-dependent drift) [13, Theorem 13.0.1]. In order to get there, we
need to show that whenever there are many bids or asks in (κb, κa), their number decreases at some positive,
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bounded below, rate over long periods of time. This is a standard line of argument in queueing theory; but
the challenge of our model is that the evolution of the queues depends on which queues are positive, rather
than which queues are large. It is known that in general Markov chains of this form are very difficult to
analyze ([8] shows that in general the stability of such chains is undecidable), but the special structure of
our chain makes it amenable to analysis. The outline of the proof is as follows.

(1) We work with binned LOBs. We begin by showing that, after appropriate rescaling, both the queue
sizes and the local time of the highest bid (lowest ask) in each bin converge to a set of Lipschitz
trajectories, which we call fluid limits. We then proceed to develop properties of the fluid limits.

(2) We next show that all fluid limits tend to zero for bins between JκbK + 1 and JκaK − 1. We exploit
the equations and inequalities satisfied by fluid limits to show the following:
(a) There is an interval [x0, y0] on which, whenever the fluid limit of the number of orders is positive,

it decreases (at a rate bounded below). Therefore, after some time T0 (which depends on the
initial state), the fluid limit will be zero on [x0, y0].

(b) Following T0, we will be able to bound from below the rate of increase of the local time of
the rightmost bid on [x1, x0] for some x1 < x0, and of the leftmost ask on [y0, y1] for some
y1 > y0. Since whenever the highest bid is in [x1, x0] it has a positive chance of departing, we
will conclude that whenever the number of orders in [x1, y1] is large, it will decrease (at a rate
bounded below). We repeat the argument until [xn, yn] ≈ [κb, κa].

(3) We show that if on some interval, all fluid limits converge to 0 in finite time, then the binned LOB is
recurrent on that interval. Since the number of bids in a continuous limit order book can be bounded
from above by binned ones, this will also show recurrence of the continuous LOB.

4.1. ODE of the limiting distribution. Our first result shows that the ODE which should describe the
unique limit, as t → ∞, of the empirical distribution of the highest bid does in fact describe some such
limit. In the process, we also establish 0 < κb < κa < 1. We consider the case of arrival price pdfs that are
bounded from above and below.

Reparametrize space so that fa + f b = 2 is constant on [0, 1].

Proposition 4.2 (Weak distribution of the highest bid). Suppose the LOB has N bins, and the arrival price
distributions are bounded, absolutely continuous, with densities bounded above and below: M−1 ≤ fa, f b ≤
M .

Let Tn = Tn(N, ε) → ∞ be the sequence of times identified in Proposition 4.1. Let πb(n,N, ε) be the
empirical density of the highest bid over the time interval [0, Tn], let πb be the limit of πb(n,N, ε) as n,N →∞
and ε → 0. Define also the corresponding densities πa(n,N, ε) → πa for asks. The limits πb and πa exist
and are unique. Further, defining $b = πb/f b and $a = πa/fa, these satisfy the pair of integral equations

(4a) F a(x)$b(x) =

∫ 1

x

$a(y)fa(y)dy, x ∈ (κb, κa);

∫ κa

κb

$b(x)f b(x)dx = 1,

(4b) (1− F b(x))$a(x) =

∫ x

0

$b(y)fb(y)dy, x ∈ (κb, κa);

∫ κa

κb

$a(x)fa(x)dx = 1.

Wherever $b is differentiable, it satisfies the ODE

(5a)

(
−1− F b(x)

fa(x)
(F a(x)$b(x))′

)′
= $b(x)fb(x)

with initial conditions

(5b) (F a(x)$b(x))|x=κb
= 1, (F a(x)$b(x))′|x=κb

= 0

and the additional constraint $b(x) → 0 as x ↑ κa. The distribution of the leftmost ask satisfies a similar
ODE.

Remark 2 (Normalization and initial conditions). (1) From the integral equation (6) it follows that $b

will be continuous, whereas πb may not be. In particular, if we are interested in piecewise continuous
functions f b and fa, then $b will satisfy the ODE on each of the segments where f b and fa are
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continuous, and can be patched together from the requirement that $b(x) and (F a(x)$b(x))′ are
both continuous (in x).

(2) The initial conditions here are a consequence of the fact that P(αt < κb) → 0 as t → ∞, which
happens for all finite initial states. Consider instead a limit order book with an infinite starting
state, e.g. an infinite supply of bids at some price p > κb. Then the initial conditions as above would
hold for all x ∈ (κ̃b, p], meaning $b(x) = 1/F a(x) on that interval. Of course, P(αt ≤ p) = 0. For
an LOB with infinite starting state, $a(x) may not tend to 0 as x ↓ p.

Proof. The proof proceeds as follows:

(1) Fix the number of bins N , and consider the collection of empirical densities πb(n,N, ε), πa(n,N, ε).
Along any sequence n,N →∞ and ε→ 0 there is a convergent subsequence.

(2) Any subsequential limit satisfies a certain pair of integral equations, hence some ODEs.
(3) The ODEs will directly imply κb < κa; in addition, 0 < κb and κa < 1.
(4) The solution to these ODEs is unique, and in particular the limit does not depend on the order of

n,N →∞ and ε→ 0.

Step 1:
The space of probability distributions with compact support is compact, so along any sequence of empirical
distributions there will be convergent subsequences. Moreover, if the bin width is a, then whenever the
highest bid is in bin JxK, bid departures occur from the bin at rate ≥ F a(x)πb(JxK), whereas bid arrivals
occur into that bin at rate at most f b(x). Consequently, πb(JxK) ≤ f b(x)/F a(x) is bounded uniformly in n,
N , ε, guaranteeing the existence of limiting densities along subsequences.

Step 2:
The integral equations are expressing the idea that the rate of bid arrival should be equal to the rate of bid
departure. Along a sequence of times where the queues are small (i.e. ε ≈ 0), this is very nearly true; it

will be exactly true in the limit. The bid arrival rate at x is f b(x)P(αt > x) = f b(x)
∫ 1

x
πa(y)dy, and the

bid departure rate at x is πb(x)F a(x), so setting the two equal gives the result; the ODE is obtained by
differentiating twice.

Of course, if we fix N , the limit distribution will be described by a difference equation rather than an
integral (or differential) equation. It is standard to see that the limit of solutions to the difference equations
solves the differential (or integral) equation.

Step 3:
To see κb < κa, note that πb is bounded above by f b/F a always, so if it integrates to 1 we must have

κb < κa. To see κb > 0 (and κa < 1), we consider a binned LOB L̃ with three bins, with bin partitions at x
and x+ ε for some x ∈ (κb, κa). By monotonicity, Jκ̃bK = 1 and Jκ̃aK = 3. For ε small enough, the number of
orders in the middle bin will eventually be stochastically dominated by a geometric random variable. Indeed,
whenever there are bids in bin 2, more bids arrive at rate F b(x + ε) − F b(x) and depart at the larger rate
F a(x + ε) (this is after asks from bin 3 stop departing). The situation is similar for asks. Consequently, in

L̃ we must have π̃b(2) > 0 and π̃a(2) > 0. Suppose that π̃b(1) and π̃a(3) are such that (almost) all orders
depart, then from π̃b(1)F a(x) = F b(x) we find

π̃b(1)F a(x) = F b(x) =⇒ π̃b(2) =
F a(x)− F b(x)

F a(x)
=⇒ F a(x) > F b(x).

Now let ε be small enough that F a(x) > F b(x + ε), and solve for π̃b(2) from the alternative expression
π̃b(2)F a(x+ ε) = (F b(x+ ε)− F b(x))π̃a(3). This gives

π̃b(1) + π̃b(2) =
F b(x)

F a(x)
+
F b(x+ ε)− F b(x)

F a(x+ ε)

1− F a(x+ ε)

1− F b(x+ ε)
< 1.

The contradiction shows that in fact in this LOB we must have π̃b(1)F a(x) < F b(x) − δ for some δ > 0,
which implies F b(κ̃b) ≥ δ. By monotonicity, we obtain κb > 0 as well (for N large enough that the above
bin of width ε is one of the original bins of the LOB).

Step 4: The uniqueness of solution follows from the fact that we have a second-order ODE with two
initial conditions (which, as we just showed, are finite). Note that an alternative argument for κb > 0 would
be to show that πb(x) > 0 for some x > 0, since then the ODE forces πbF a/f b decreasing, and πb(x) ∼ 1/x
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near 0, which is not integrable. However, it is not immediately obvious why in a binned LOB the highest
bid couldn’t spend (almost) all of its time in the leftmost bin, hence we give the more involved argument
above. �

The second result we require about the ODE is monotonicity in the initial conditions:

Lemma 4.3 (ODE monotonicity). Let $b and $̃b be two solutions of the ODE (5a) with initial conditions

$b(x0) ≥ $̃b(x0), ($b)′(x0) ≥ ($̃b)′(x0).

Then for all x ≥ x0, $b(x) ≥ $̃b(x).

Proof. Reparametrize space monotonically so that F a(x) = x; this clearly does not affect the result. Then
the ODE (5a) becomes

(F b(x)− 1)
(
x($b)′(x) +$b(x)

)′
+ xfb(x)($b)′(x) = 0,

which is a first-order ODE in ($b)′(x). Trivially, $b(x) satisfies a first-order ODE in ($b)′(x). Since
first-order ODEs are increasing in their initial conditions, we obtain the result. �

Corollary 4.4. Suppose the initial conditions for $b come from a LOB, and the initial conditions for
$̃b are F a(x0)$̃b(x0) = 1, (F a(x)$̃b(x))′|x=x0

= 0. Then $b(x0) ≤ $̃b(x0) and ($b)′(x0) ≤ ($̃b)′(x0).
Consequently, $b(x) ≤ $̃b(x).

Proof. Reparametrize space as before, so that F a(x) = x. Then

(x$b(x))′ = −πa(x), $b(x) =
1

x

(
1−

∫ x

0

$a(y)dy

)
.

From this it is clear that $b(x0) ≤ $̃b(x0). Further,

x($b)′(x) = −πa(x)−$b(x) = − 1

x
−
∫ x

0

($a(y)−$a(x))dy.

Now, in a LOB, (1− Fb(x))$a(x) is increasing (cf. x$b(x) which is decreasing), meaning $a is increasing.
Consequently, the integral above is nonpositive, and we see x0($b)′(x0) ≤ − 1

x0
= x0($̃b)′(x0) as required.

�

4.2. Fluid limits. In this section we introduce the fluid-scaled processes associated with the limit order
book, discuss their convergence to fluid limits, and determine properties of the limits.

Throughout the section, we work with a binned limit order book. We assume that bid and ask arrival
price distributions are supported on [0, 1] and are absolutely continuous; arriving orders are equally likely to
be bids and asks. We may, without loss of generality, reparametrize space and time so that the overall rate
of order arrival is the same, 1/N , for each of the N bins.

Let Bk(·) and Ak(·) be the arrival processes of bids and asks into bin k (indexed by time). For this section,
we will assume that arrivals occur at deterministic points of time (one arrival every half of a time unit), and
are then assigned the tag (type, price) in an iid fashion. We further assume that the total arrival rate of
all orders is 2, so that pbk and pak are arrival rates of bids and asks into bin k. Let Qbk(t) and Qak(t) be the

number of bids, respectively asks, in bin k at time t. Let T βk (t) and Tαk (t) be the amount of time up to time
t when the rightmost bid, respectively leftmost ask, is in bin k: that is,

T βk (t) =

∫ t

0

1{JβsK = k}ds, Tαk (t) =

∫ t

0

1{JαsK = k}ds.

It is clear that the initial data Qbk(0), Qak(0) together with the arrival processes Bk(·), Ak(·) give sufficient
information to determine the values of all of these processes at later times. In fact, we have the following
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expressions:

JβtK = k ⇐⇒ Qbk(t) > 0,
∑
k′>k

Qbk′(t) = 0(6a)

JαtK = k ⇐⇒ Qak(t) > 0,
∑
k′<k

Qak′(t) = 0(6b)

Qbk(t) = Qbk(0) +

∫ t

0

1{[α(s)] > k}dBk(s)−
∑
k′≤k

∫ t

0

1{[β(s)] = k}dAk′(s)(6c)

Qak(t) = Qak(0) +

∫ t

0

1{[β(s)] < k}dAk(s)−
∑
k′≥k

∫ t

0

1{[α(s)] = k}dBk′(s)(6d)

T βk (t) = T βk (0) +

∫ t

0

1{[β(s)] = k}ds(6e)

Tαk (t) = Tαk (0) +

∫ t

0

1{[α(s)] = k}ds(6f)

We define the fluid-scaled processes by Xn(t) = n−1X(nt) for any process X.
Let pbk and pak be the probabilities that an arriving order is a bid, respectively ask, falling into bin k. (We

have
∑
k(pak + pbk) = 1.) We now have the following result on convergence to fluid limits:

Theorem 4.5 (Convergence to fluid limits). Consider a sequence of processes

(Bk,n(·), Ak,n(·), Qbk,n(·), Qak,n(·), T βk,n(·), Tαk,n(·))

whose initial state (at time 0) is bounded:
∥∥∥Qak,n(0), Q

b

k,n(0)
∥∥∥ ≤ 1. As n → ∞, any such sequence has a

subsequence which converges, uniformly on compact sets of t, to a collection of Lipschitz functions

(bk(·), ak(·), qbk(·), qak(·), tβk(·), tαk (·))
uniformly on compact sets. (Different subsequences may converge to different 6-tuples of Lipschitz functions.)
We call the limiting 6-tuple a fluid limit.

Any fluid limit satisfies the following equations almost everywhere (i.e. everywhere where the derivatives
are defined):

b′k(t) = pbk, a′k(t) = pak(7a)

tβk
′
(t) = 0 if

∑
k′>k

qbk′(t) > 0, tαk
′(t) = 0 if

∑
k′<k

qak′(t) > 0(7b) ∑
k≤JκbK−1

tβk(t) = 1,
∑

k≥JκaK+1

tαk (t) = 1(7c)

qbk(t) ≥ 0, qak(t) ≥ 0(7d)

qbk
′
(t) = 0 if qbk(t) = 0, qak

′(t) = 0 if qak(t) = 0(7e)

qbk
′
(t) = pbk

∑
k′>k

tαk′
′(t)− tβk

′
(t)
∑
k′≤k

pak′(7f)

qak
′(t) = pak

∑
k′<k

tβk′
′
(t)− tαk

′(t)
∑
k′≥k

pbk′ .(7g)

Proof. The expression in (6) together with the functional law of large numbers for the arrival processes leads
to the u.o.c. convergence along subsequences to a fluid limit. The integral representation implies that limits
must be Lipschitz functions.

To see that any fluid limit must satisfy (7), we note that (7a) follows directly for the functional law of
large numbers for the arrival processes. Identities (7b) follows from the corresponding statement for prelimit
processes: if

∑
k′>k q

b
k′(s) > ε > 0 on a time interval s ∈ (t − ε, t + ε), then for all sufficiently large n,∑

k′>kQ
b
k′,n(ns) > nε/2 > 0, so [β(ns)] > k and T βk (ns) is not increasing. Identify (7c) holds for a similar
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reason: the rightmost bid (leftmost ask) is always in one of the bins in the prelimit processes, so this must
be true in the limit as well. Note that the rightmost bid (leftmost ask) cannot be in any bin k ≥ JκaK − 1
(k ≤ JκbK + 1) since there are infinitely many asks (bids) in bin JκaK − 1 (JκbK + 1). Identities (7d) follows
for a similar reason: prelimit queues are nonnegative, hence the limit is nonnegative as well.

Identity (7e) is a corollary of (7d): a process that is always nonnegative, differentiable at t, and equal to
0 at t must have derivative 0 there.

Finally, identities (7f) and (7g) are a corollary of corresponding statements (6) for the prelimit queues,
where we make use of (6a) and (6b) in (6). More precisely, the rate at which the bid queue changes is this:
if the lowest ask is higher than bin k, then bids arrive into the queue at rate pbk; and if the highest bid is in
bin k, then all asks arriving at prices below k deplete the queue at k. Because the location of the highest
bid or lowest ask does not show up in the fluid limit, we instead use the “local times” tβ and tα. �

We introduce notation πβk (t) = (tβk)′(t), παk (t) = (tαk )′(t).

4.3. Fluid limits drain. We will now show that the fluid limit processes drain, that is, converge to 0 on
the bins ranging from JκbK + 1 to JκaK− 1. We will assume that bin widths (and hence pbk, pak) are all small.

Theorem 4.6 (Fluid limits drain). Consider a fluid limit corresponding to a binned LOB with N bins,
normalized so that the total arrival rate is 2 (rate 1 for each of the bids and asks). Suppose the arrival
process is symmetric (pbk = paN−k), satisfies the absolute continuity requirements, and pb(k) is decreasing in
k (but bounded below, from the absolute continuity requirements). Suppose that initially there are infinitely
many bids in bin JκbK+ 1 and infinitely many asks in JκaK−1; then the fluid limit of queues can be described

by qa,bk (t) for JκbK + 2 ≤ k ≤ JκaK − 2, and the fluid limit of the local times can be described by πa,bk (t) for
JκbK + 1 ≤ k ≤ JκaK− 1.

Let the initial state of the fluid limit satisfy
∥∥(qb(0), qa(0)

∥∥ ≤ 1. There exists ε = ε(N) → 0 as N → ∞,

and a time T depending on {M,pak, p
b
k, bin widths}, such that for all bins k satisfying Jκb+ εK < k < Jκa− εK,

and all times t ≥ T ,

qbk(t) = 0, qak(t) = 0, ∀t ≥ T.
Further, in the interval Jκb+εK < k < Jκa−εK and for t ≥ T , the derivatives πβk (t) satisfy the second-order

difference equation

∆k

(
1− F b(k)

pak+1

·∆k

(
F a(k)

pbk
πβk

))
= πβk+1,

with initial conditions satisfying

F a(Jκb + εK)
pbJκb+εK

πβJκb + εK ≤ 1, ∆Jκb+εK

(
F a(k)

pbk
πβk

)
≤ 0.

and similarly for asks. As N →∞, the difference equation converges to the ODE (5a) with initial conditions
given by (5b).

Note that there are intrinsically two sets of thresholds here: the κb and κa that correspond to a LOB
with a finite starting state, and the thresholds of the LOB with an infinite starting state. We treat κb, κa as
coming from the LOB with a finite starting state, so that they do not depend on N . For large N , the two
sets of thresholds will be close to each other (this follows from the Lipschitz property of Lemma 3.1, and the
characterization of κb in (3b)).

Proof. The proof proceeds in stages.
Stage 0. Let x0 be given by F a(x0) = F b(κa)−F b(x0), and let y0 be given by 1−F b(x0) = (1−F a(κb))−

(1−F a(y0)). Equivalently, F a(x0) +F b(x0) = 2x0 = F b(κa), so x0 = 1
2F

b(κa), and 1− y0 = 1
2 (1−F a(κb)).

Claim 0.1: κb ≤ x0 < y0 ≤ κa.
Proof: Note that F a(κb) is a lower bound on the rate of bid departure from the Markov chain when there
are any bids present, while F b(κb) − F b(κa) is an upper bound on the rate of bid arrival. Consequently, if
F a(κb) > F b(κb) − F b(κa), then the number of bids on the entire interval (κb, κa) would be stochastically
bounded, whereas it should scale as a random walk. A similar argument gives y0 ≤ κa. Finally, to see
x0 < y0, recall from Proposition 4.2 that κb < κa, which implies 1

2F
b(κa) < 1

2 (1 + F a(κb)). �
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Claim 0.2: There exists T0 = T0(M) such that for all times t ≥ T0 and all fluid models,
∑Jy0K−1
k=Jx0K+1(qbk(t)+

qak(t)) = 0.
Proof: Since these processes are absolutely continuous and nonnegative, it suffices to show that whenever
there are any fluid orders in the interval (and all the derivatives are defined), the fluid number of orders in the
interval decreases at a rate bounded below. By (7f) and (7g), we see that for Q(t) =

∑
Jx0K+1≤k≤JκaK−1 q

b
k(t),

Q′(t) ≤

{
0, Q(t) = 0∑JκbK−1
k=Jx0K+1 p

b
k −

∑
k′≤Jx0K+1 p

a
k < F b(κb)− F b(x0)− F a(x0)− ε, Q(t) > 0.

Consequently, after a finite amount of time T b0 , there will be no fluid bids in bins ≥ Jx0K + 1. Similarly, after
a finite amount of time T a0 , there will be no fluid asks in bins ≤ Jy0K− 1; we may take T0 = max(T b0 , T

a
0 ). �

Claim 0.3: There exists ε0 > 0 such that for all times t ≥ T0 and all fluid models,
∑
k≤Jx0K π

β
k (t) ≥ ε0

and
∑
k≥Jy0K π

α
k (t) ≥ ε0. (This result requires bins to be sufficiently small.)

Proof: Note that equations (7f) and (7g) hold at all times, even when there are no fluid orders in the bin;
thus, for t ≥ T0 and all k ∈ [Jx0K + 1, Jy0K− 1] we have

pbk
∑
k′>k

παk′(t) = πβk (t)
∑
k′≤k

pak′ , pak
∑
k′<k

πβk′(t) = παk (t)
∑
k′≥k

pbk′ .

Omitting the dependence on t for clarity, these equations, together with the observation that
∑
k π

α
k =∑

k π
β
k = 1, can be rearranged to give two decoupled second-order difference equations for παk and πβk , as

follows. Here, the operator ∆k is given by ∆k(f) = fk+1 − fk for any sequence indexed by k, and we abuse
notation to write F a(k) =

∑
k′≤k p

a
k′ and similarly for F b(k).

(8a) ∆k

(
1− F b(k)

pak+1

·∆k

(
F a(k)

pbk
πβk

))
= πβk+1, Jx0K + 1 ≤ k ≤ Jy0K− 1.

(There is a corresponding equation for πa, of course.)
If we had two initial conditions for this second-order difference equation, we would be able to solve it.

Unfortunately, in general we do not have such initial conditions, but we have bounds on them, namely

(8b)
F a(Jx0K)
pbJx0K

πβJx0K ≤ 1, ∆Jx0K

(
F a(k)

pbk
πβk

)
≤ 0.

These inequalities would hold with equality in a different limit order book L̃0, in which we assign the same
low price to all the bins up through Jx0K + 1, and the same high price to all the bins from Jy0K− 1 up. (We

nonetheless keep track the bins containing the highest bid and lowest ask of L̃.) Corollary 4.4 shows that

the solutions to (8) on Jx0K + 1 ≤ k ≤ Jy0K− 1 are bounded from above by the solution for L̃. (The result is
in continuous space, but the arguments work just as well for difference equations.) We refer to the solution

for L̃ as π̃β (and π̃α).
We now have

(9)
∑

k≤Jy0K−1

πβk ≤
Jy0K−1∑

k=Jx0K+1

π̃βk +

JκaK−1∑
k=Jy0K

pbk∑
k′≤k p

a
k′
.

Notice that π̃β must satisfy π̃βk = (F a(k))−1pbk for [κ̃b] + 1 ≤ k ≤ Jx0K, as bids will not be queueing in those
bins. Consequently, for the first term in the right-hand side of (9) we have

Jy0K−1∑
k=Jx0K+1

π̃βk ≤ 1−
Jx0K∑

k=[κ̃b]+1

pbk
F a(k)

≤ 1−
JκaK−1∑
k=Jy0K

pbk
F a(k)

− ε0,

where the last inequality holds provided the bins are sufficiently narrow. Indeed, notice that x0 − κ̃b >
x0 − κb = κa − y0 (from monotonicity of L vs. L̃ and symmetry), the denominator is increasing in k, and
the bid arrival density decreases with translation to the right. It is possible for finitely many bins that the
sums are empty, but if the bins are narrow enough this will not occur.

Stage 1. We now let x1, y1 be defined by F b(x0) − F b(x1) = ε0F
a(x1) and F a(y1) − F a(y0) = ε0(1 −

F b(y1)). Similarly to the argument for Stage 0, there exists a time T1 such that for all t ≥ T1 there will be
13



no fluid queues on [Jx1K + 1, Jy1K − 1]. Indeed, if there are fluid bids in the interval [Jx1K + 1, Jx0K], then
whenever the highest bid is below Jx0K it is in fact in this interval; the defining inequality then means that
the fluid amount of bids in this interval decreases, and similarly for asks.

Next, we use the difference equation description on [Jx1K + 1, Jy0K− 1] to show that after T1, the highest
bid spends at least ε1 > 0 of its time below x1. This will require comparison against a different restricted
LOB L̃1, where we merge all prices up to Jx1K + 1 and from Jy1K− 1.

Subsequent stages. We can now construct a nested sequence of intervals . . . < x2 < x1 < x0 < y0 <
y1 < y2 < . . . , where the inequalities are strict provided bins are narrow enough. It remains to show
that limk→∞,N→∞ xk = κb and limk→∞,N→∞ yk = κa. (Note that N → ∞, i.e. thinner bins, is certainly
necessary for this to hold!)

This result follows from the fact that εi are bounded below:

εi ≥
JxiK∑

k=[κ̃b]+1

pbk∑
k′≤k p

a
k′
−

JκaK−1∑
k=JyiK

pbk∑
k′≤k p

a
k′
≥
(

1

F a(JxiK)
− 1

F a(JyiK)

)(
F b(JxiK)− F b([κ̃b] + 1)

)
.

It is clear that as long as xi is bounded away from κb (and bin widths are small enough), this will be bounded
below, and therefore xi − xi+1 and yi+1 − yi will be bounded below.

Convergence to ODE. The convergence of difference equations to ODE is standard. The argument
above gives an inequality for the initial conditions, but note that as we approach κb the initial conditions
become exact. Indeed,

F a(κb + ε)$b(κb + ε) =

∫ 1

κb+ε

$a(x)fa(x)dx→ 1,

since the lowest ask will never be below κb. Also,

(F a(x)$b(x))′|x=κb+ε = −$a(κb + ε) = −(1− F b(κb + ε))−1
∫ κb+ε

0

$b(x)f b(x)dx→ 0,

since the highest bid density is bounded. �

Putting this result together with Proposition 4.2 shows that, for symmetric distributions pb, pa with pb

decreasing, the fluid limits πβk (t)/pbk, παk (t)/pak will approach, as t → ∞ and N → ∞, the solution of the
ODE (5), uniformly on compact subsets of (κb, κa).

It remains to show that stability of fluid limits implies positive recurrence of the Markov chain.

Lemma 4.7 (Fluid stability and positive recurrence). Consider a LOB satisfying the assumptions of Theo-
rem 4.6. Suppose that on some interval of bins k0 ≤ k ≤ k1, all fluid limits with initial state bounded above
by 1 satisfy the following: there exists a time T depending on {M,pak, p

b
k, bin widths}, such that for all times

t ≥ T ,

qbk(t) = 0, qak(t) = 0, k0 ≤ k ≤ k1, t ≥ T.
Consider a limit order book L̃ started with infinitely many bids in bin k0 − 1 and infinitely many asks in

bin k1; its state is described by the Markov chain of queue sizes in bins k0 ≤ k ≤ k1. This Markov chain
associated to L̃ is positive recurrent.

Proof. To go between fluid stability and positive recurrence, we use the multiplicative Foster’s criterion [13,
Theorem 13.0.1]. Let

Q(t) =
∥∥(Qbk(t), Qak(t))k0≤k≤k1

∥∥ ,
and let C > M be sufficiently large. Let Q(0) = q > C, and consider the fluid scaling Q

a,b

k (t) = q−1Qa,bk (qt).

By Theorem 4.5, if C and hence q is large enough, there exists a fluid limit (qak(t), qbk(t), ταk (t), τβk (t))k0≤k≤k1

satisfying
∥∥qak(t), qbk(t)

∥∥ = 1, such that P(
∥∥∥Qak(t)− qak(t), Q

b

k(t)− qbk(t)
∥∥∥ > ε) ≤ ε for all t ∈ [0, T ]. In

particular, P(‖Qak(qT ), Qak(qT )‖ > εq) < ε. Note further that
∥∥Qak(qT ), Qbk(qT )

∥∥ ≤ qT simply because
orders arrive deterministically at rate 1. Thus, we conclude

Eq[
∥∥Qak(qT ), Qbk(qT )

∥∥] ≤ ε(1 + T )q.

Choosing ε < (1 + T )−1 completes the proof. �
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4.4. General order price distributions. It remains to remove the extra conditions (symmetric and de-
creasing) on the order price distributions, and finish the argument for continuous limit order books. This
requires two observations:

(1) Recall that a continuous LOB could be bounded by two discrete non-strict LOBs with different
arrival price distributions (in one of them, we shift all arriving bids one bin to the left). This
shifted arrival distribution no longer satisfies the absolute continuity conditions, but nevertheless,
Lemma 3.1 shows that all of the above fluid-scaled arguments work for it as bin size shrinks to 0.
Specifically, we model the bid arrivals as shifting the rightmost bin of bids all the way to the left, and
then the difference between the two books is at most two bins’ worth of arrivals over the fluid time
interval [0, T ], which will be small provided bins are narrow. This allows us to conclude the positive
recurrence of a continuous LOB with infinitely many bids at price P(κb)+ ε and infinitely many asks
at price P(κa) − ε, provided fa, f b satisfy absolute continuity assumptions, are symmetric, and f b

is decreasing.
(2) Recall that replacing the bid arrival price distribution by another distribution with stochastically

higher prices, and/or replacing he ask arrival price distribution by another distribution with stochas-
tically lower prices, results in fewer orders in a book. In particular, if we have shown the positive
recurrence of an LOB with an infinite supply of bids at price p and asks at price q with a particular
arrival distribution, the LOB will remain positive recurrent when we switch to an arrival price dis-
tribution with bids further right, and asks further left. Notice that as long as there are bids in the
interval (p, q), they evolve on that interval identically whether or not there is an infinite supply of
bids at p; and similarly for asks. This can be used to show that fluid limits drain in the new LOB
on the interval (p, q).

In the new LOB with the shifted price distribution, (p, q) may not be close to (κ̃b, κ̃a), so we will
be wanting to extend the interval, as in Claim 0.3 of Theorem 4.6. The argument there does not
use the full extent of the symmetry and monotonicity conditions; they are only used to prove the
inequality

JpK∑
k=[κ̂b]+1

pbk
F a(k)

≥
Jκ̃aK−1∑
k=JqK

pbk
F a(k)

+ ε

for some ε > 0. (Here, we had κ̂b < κ̃b.) For this inequality to hold, it is entirely sufficient to only
assume p− κ̃b = κ̃a − q and f b(x) > f b(y) if x ∈ (κ̃b, p) and y ∈ (q, κ̃a); or more generally, that∫ p

κ̂b

f b(x)

F a(x)
dx ≥

∫ κ̃a

q

f b(x)

F a(x)
dx+ ε.

(So we may have κ̃a − q 6= p− κ̃b as long as this inequality still holds.)
Consequently, for general (f b, fa) satisfying the absolute continuity conditions, we begin by finding

f b0 , f
a
0 with F b0 ≤ F b, F a0 ≥ F a which are symmetric and for which f b0 is decreasing. We use Theo-

rem 4.6 to show that fluid limits drain for f b0 , f
a
0 (and hence for (f b, fa)) on an interval (κb,0, κa,0).

We then modify the distributions on (κb,0, κa,0) to find (f b1 , f
a
1 ) satisfying the absolute continuity

conditions, for which F b0 ≤ F b1 ≤ F b, F a ≤ F a1 ≤ F a0 . We already know from monotonicity that
fluid limits will drain for these distributions on (κb,0, κa,0), and we use the inequality for p ≤ κb,0
and q ≥ κa,0 to extend fluid stability to the bigger interval (κb,1, κa,1). We repeat the process until
the interval (κb,n, κa,n) approaches the entire interval (κb, κa) for the original pair of distributions
(f b, fa).

Notice that all that really matters for the thresholds κb and κa of a LOB is F a,b(x), κb ≤ x ≤ κa;
it is immaterial what f b and fa do outside of those intervals, so long as they integrate to the correct
amounts. Consequently, if κb,n > κb + ε, it must be that F bn < F b or F an > F a somewhere on
[κb,n, κa,n], which means that the process won’t get “stuck” until κb,n ↘ κb and κa,n ↗ κa.

5. Discussion

In this section we discuss several applications of our earlier methods and results. We begin with a
discussion of market orders and then consider various simple trading strategies.
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5.1. Market orders. The orders we have considered so far, each with a price attached, are called limit
orders. Suppose that, in addition to limit orders, there are also market orders which request to be fulfilled
immediately at the best available price. Suppose that limit order bids and asks arrive as independent Poisson
processes of rates νb, νa respectively; and that the prices associated with limit order bids, respectively asks,
are independent identically distributed random variables with density fb(x), respectively fa(x). Without
loss of generality we may assume that x ∈ (0, 1). In addition suppose that there are independent Poisson
arrival streams of market order bids and asks of rates µb, µa respectively. Then these correspond to extreme
limit orders: we simply associate a price 1 or 0 with a market bid or market ask respectively.

Note that, in addition to market orders, we have also allowed an asymmetry in arrival rates between bid
and ask orders. The intuition behind equations (1) leads to the generalization

(10a) νbfb(x)

∫ κa

x

πa(y)dy = πb(x)

(
µa + νa

∫ x

0

fa(y)dy

)

(10b) νafa(x)

∫ x

κb

πb(y)dy = πa(x)

(
νb

∫ 1

x

fb(y)dy + µb

)
although now the existence of a solution to these equations satisfying the required boundary conditions is
not assured, and the deduction of the recurrence properties necessary for an interpretation of πb(x), πa(x) as
limiting densities may fail. To illustrate some of the possibilities we shall look in detail at a simple example.

Suppose fa(x) = fb(x) = 1, x ∈ (0, 1), νa = νb = 1 − λ and µa = µb = λ. Thus a proportion λ of all
orders are market orders. Use the notation πb(λ;x) for the solution to equations (10) satisfying the required
boundary conditions in this example. Then this solution is

(11) πb(λ;x) = πb

(
1 + λ

1− λ
x− λ

1− λ

)
where πb(.) is the earlier solution (2) provided λ < w ≈ 0.278, the unique solution of wew = e−1. Indeed,
provided λ < w the model is simply a rescaled version of the earlier model with distribution (11) having a
support increased from (κ, 1− κ) to the wider interval (κ(λ), 1− κ(λ)) where

κ(λ) =
1 + λ

1− λ
· w

1 + w
− λ

1− λ
.

The inclusion of market orders in the model causes the price distributions to have atoms and not to be
absolutely continuous with respect to each other; but nevertheless the analysis of earlier sections continues
to apply since the market orders arrive outside of the range (κ(λ), 1− κ(λ)).

Next we explore this example as λ ↑ w and the support becomes the entire interval (0, 1). In our model a
market order bid, respectively ask, which arrives when there are no ask, respectively bid, limit orders in the
order book waits until it can be matched. When λ < w there is a finite (random) time after which the order
book always contains limit orders of both types and no market orders of either type and hence the analysis
of previous sections applies. But if λ > w then infinitely often there will be no asks in the order book and
infinitely often there will be no bids in the order book, with probability 1. Now the difference between the
number of bid and ask orders in the limit book is a simple symmetric random walk and hence null recurrent.
There will infinitely often be periods when the order book contains limit orders of both types and no market
orders of either type, but such states cannot be positive recurrent.

In the model described above an arriving market order which cannot be matched immediately must wait
until it can be matched. If instead such orders are lost then we obtain a model which can be analyzed by
the methods in Section 5.2.1: namely, we start the LOB with an infinite bid order at 0 and an infinite ask
order at 1.

5.2. Trading strategies. Next we consider a few simple strategies that can be analyzed using our model.
For simplicity, we present the results for the case when the bid and ask price distributions are equal and
uniform on (0, 1), but the analysis easily extends to other arrival distributions. Recall that the limiting
densities of the rightmost bid and leftmost ask were determined in Corollary 2.3.
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5.2.1. Market making. We begin by considering a single market maker who places an infinite number of bid,
respectively ask, orders at p respectively q = 1 − p, where κb < p < q < κa. Thus whenever q is the lowest
ask price, the trader obtains all bids that arrive at prices above q, and whenever p is the highest bid price,
she obtains all asks that arrive at prices below p, making a profit of q− p per bid–ask pair so acquired. Call
the orders placed by the trader artificial, to distinguish them from the natural orders. Notice that the rate
at which the trader is able to match her orders is proportional to p times the probability that the rightmost
bid is exactly p.

Note that placing an infinite supply of bids at a level below κ has no effect on the evolution of the LOB.
For p > κ ≈ 0.217 no ask is accepted at a price less than p, and there will be a positive probability that the
rightmost bid is exactly p. This probability mass is exactly the probability that the rightmost bid is p or
less in a model with no asks arriving to the left of p and with no artificial bids. For this model the rightmost
natural bid has density 1/x on [κb, p), and C

(
1
x + log 1−x

x

)
on [p, q], for C such that the resulting density is

continuous. This allows us to find κb as

κb =
p

e

(
1− p
p

)C
and to deduce that the rightmost natural bid has density

$b(x) =


1

x
,

p

e

(
1− p
p

)C
≤ x ≤ p;

C

(
1

x
+ log

1− x
x

)
, p ≤ x ≤ q;

where C = (1 + p log((1− p)/p))−1. The probability the rightmost natural bid is p or less is thus 1−C log((1−
p)/p), and this is therefore the probability that the rightmost bid is exactly p in the model with infinitely
many artificial bids at p and infinitely many artificial asks at q = 1− p, where κ < p < 1/2 < q.

Thus to maximize the profit rate we need to solve the optimization problem

maximize (1− 2p)p(1− C) where C = (1− p) log
1− p
p

subject to p ∈ [κ, 1/2].

The maximum is attained at p ≈ 0.369, and gives a profit rate of ≈ 0.064.

5.2.2. Sniping. We next consider a trader with a sniping strategy: the trader immediately buys every bid
that joins the LOB queue at price above q, and every ask that joins the LOB queue at price below p (with
q = 1 − p still). There is a twofold difference between this model and the market making model: here, the
trader has lower priority than the orders already in the queue, but she obtains a better price for the orders
that she does manage to buy.

The effect on the LOB of the sniping strategy is to ensure no queued bids above q and no queued asks
below p; for p < q, the set of bids and asks on (p, q) is the same in the sniping and the market making model.
But it also makes sense to consider the sniping strategy with p > q, when it ensures that there are no queued
orders of any kind in the interval (q, p): they are all sniped up by the trader. (An ask arriving at price
a ∈ (q, p) cannot be matched with a queued bid, because there are no queued bids above q.) In particular,
the trader makes a net profit of zero on the orders in (q, p); the point of sniping them is to increase the
probability of being able to buy a bid at a high price.

Summarizing, if p > q then the LOB has no queued orders between p and q and rightmost bid has density
1/x on [κb, q), where κb = q/e. Notice that the distribution of the rightmost bid stochastically decreases as
q decreases, hence the probability of acquiring an ask at low price a < 1/2 increases as q decreases. This
shows that profit from sniping bids above q and asks below p for p > 1/2 is strictly higher than the profit
from sniping bids above p and asks below q. Thus, it suffices to consider the case of p > 1/2 > q. We thus
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solve

maximize

∫ κa

p

(2b− 1) log
1− b

1− κa
db

where κa = 1− 1− p
e

subject to p ∈ [1/2, 1].

The maximum is attained at p = (e2 − e + 1)/(e2 + 1) ≈ 0.676 and gives a profit rate of ≈ 0.060. Perhaps
surprisingly, this is lower than the optimized profit rate with a market making strategy.

Figure 2 presents a comparison between the profit rates from the market making and sniping strategies,
as a function of p (which, recall, is the price below which the trader would like all asks) – for completeness,
p < 1/2 is included for the sniping strategy as well. Notice that the optimum for the market making strategy
has p < 0.5, while the optimum for the sniping strategy has p > 0.5.
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Figure 2. Profit from sniping and market making strategies. Solid line is the sniping
strategy, dashed line is the market maker strategy. (Sniping with p < 1/2 is shown for
completeness; as argued in the text, it does not maximize the profit.)

5.2.3. A mixed strategy. It is possible to consider a mixture of the above strategies: the trader places an
infinite supply of bids at P (thus acquiring all asks that arrive below P whenever P is the highest bid price),
but in addition attempts to snipe up all the additional asks that land at prices x < p. We assume the trader
gets the best of the two possible prices when both p and P are larger than the price of the arriving ask.
There are several possible cases corresponding to the relative arrangement of p, P , and 1/2:

(1) If p < P (this means that there are no additional asks to snipe up), this degenerates to the mar-
ket maker strategy, with a profit of (1 − 2P ) per bid–ask pair bought, with pairs bought at rate
P log(P/κb). (The probability of the highest natural bid being below P is log(P/κb); when it is
there, asks arrive at prices below P at rate P .) Clearly, one wants P < 1/2 in this case, otherwise
the profit is negative, so we can write this case as p < P < 1/2.

(2) If P < p < 1/2, then one gets additional asks at price x at rate log(x/κb), for a profit of (1 − 2x),
for all x from P to p.

(3) If P < 1/2 < p, there are two further cases: we may have P < 1− p or P > 1− p.
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(a) If P < 1 − p < 1/2 < p < 1 − P , then the trader snipes all orders between 1 − p and p for a
net profit of 0. Profit (1 − 2P ) from a bid–ask pair matching the infinite orders is generated
at rate P log((1 − p)/κb), and profit 1 − 2x, P ≤ x ≤ 1 − p, from sniping is generated at rate
1 + log(x/κb). Note that here the bid density is 1/x on (κb, 1− p], so κb = (1− p)/e.

(b) If 1−p < P < 1/2 < 1−P < p, then P is always the best bid, which means that the trader gets
all the asks that arrive below P , generating profit at rate (1− 2P )P . Orders arriving between
P and 1 − P cancel each other, and all the asks arriving between 1 − P and p are bought up
for a loss (negative profit) of (1− 2x).

(4) Finally, the case P > 1/2 is silly, because every bid–ask pair bought will be bought at a loss.

Figure 3 shows the profit for the two-parameter space. The largest profit is obtained when P = 1− p = 1/4,
and the profit is then acquired at rate 1/8 = 0.125. This corresponds to the trader placing an infinite bid
order at 1/4 (thus buying all asks that arrive with price below 1/4 for 1/4), an infinite ask order at 3/4, and
sniping up all orders that join the LOB at prices between 1/4 and 3/4.

Figure 3. Profit rate from the mixed strategy, as a function of sniping threshold p and
infinite bid order location P .

5.3. Nash equilibrium. Finally we analyze the situation that arises when multiple traders compete. There
is clearly an advantage for a trader who can snipe an order more quickly than the other traders. It has been
argued that competition on speed is wasteful [3], and there are proposals to encourage traders to compete
on price, rather than speed, as for example in the proposal [4] where a market continuous in time is replaced
with frequent batch auctions, held perhaps several times a second. We shall explore the consequences of
competition on price between high-frequency traders who can all react at the same speed to a new order
entering the LOB.

We will look for a Nash equilibrium between traders each using the mixed strategies of Section 5.2.3, since
these are easy to implement and analyze. Notice first of all that no Nash equilibrium strategy can involve
any compulsory trades that incur a loss, since it is always optimal for a single trader to opt out of those.
In addition, the Nash equilibrium strategy cannot involve infinite orders: if those make a profit, then it is
optimal for a trader to improve the price of her own infinite bid order infinitesimally, thus gaining all the
profit from those orders for herself alone. There is the possibility of two infinite orders at 1/2, but it incurs
no profit for anyone in the market.
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Thus, we are reduced to considering the space of sniping strategies, in which one only snipes at asks with
prices below 1/2 (or bids at prices above 1/2). In this case, it is clearly preferable for each trader to snipe at
all such orders (getting the order with the same probability as each of the other traders), and we conclude
that the Nash equilibrium is for all traders to snipe at all asks below 1/2 and at all bids with prices above
1/2. The rightmost bid will then have density 1/x on (1/(2e), 1/2). This results in a combined profit rate
1/(2e)− (1+e2)/(8e2) ≈ 0.042. Thus price competition between traders has decreased their combined profit
rate from 0.125 to 0.042.

Next we comment on the impact of traders on the bid-ask spread. The mean of the distribution (2)
can be calculated and is simply (1 − κ)/2. Thus without traders the mean spread between the highest bid
and the lowest ask in the LOB is κ ≈ 0.218, while the maximum spread is 1 − 2κ ≈ 0.564. At the Nash
equilibrium between traders both are increased, the mean spread to 1/e ≈ 0.368 and the maximum spread
to 1−1/e ≈ 0.632. These calculations are for a uniform price distribution, but provided the arriving bid and
ask prices distributions are identical the results give the mean and maximum spreads in terms of percentiles
of that distribution.

As a final remark we comment on the inventory of traders under the Nash equilibrium described above.
Observe that the LOB below 1/2 evolves independently of the LOB above 1/2, and both processes are positive
recurrent. Consider the net position of the traders collectively, that is all the bids they have matched minus
all the asks they have matched, observed at those times when the LOB is empty. This evolves as a symmetric
random walk, and is null recurrent. Slight variations of the traders strategies would moderate this conclusion:
for example, a trader might refrain from sniping bids close enough to 1/2 when her net position is large.
And of course such variations will be essential over longer time-scales than those considered in this paper
where the arrival price distributions may vary.
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