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As the Copenhagen Accord indicates, most of the international
community agrees that global mean temperature should not be
allowed to rise more than two degrees Celsius above preindustrial
levels to avoid unacceptable damages from climate change. The
scientific evidence distilled in the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change and recent reports
by the US National Academies shows that this can only be achieved
by vast reductions of greenhouse gas emissions. Still, international
cooperation on greenhouse gas emissions reductions suffers from
incentives to free-ride and to renegotiate agreements in case of
noncompliance, and the same is true for other so-called “public
good games.” Using game theory, we show how one might over-
come these problemswith a simple dynamic strategy of linear com-
pensationwhen the parameters of the problem fulfill some general
conditions and players can be considered to be sufficiently rational.
The proposed strategy redistributes liabilities according to past
compliance levels in a proportionate and timely way. It can be used
to implement any given allocation of target contributions, and we
prove that it has several strong stability properties.

global warming ∣ international climate agreement ∣ renegotiation
proofness

In many situations of decision-making under conflicting inter-
ests, including the management of natural resources (1), game

theory—the study of rational behavior in situations of conflict—
proves to be a useful analysis tool. Using its methods, we provide
in this article a partial solution for the cooperation problem in a
class of so-called public good games: If a number of players re-
peatedly contribute some quantity of a public good, how can they
make sure everyone cooperates to achieve a given optimal level
of contributions? The main application we have in mind is the
international effort to mitigate climate change. There the players
are countries and the corresponding public good is the amount of
greenhouse gas (GHG) emissions they abate as compared to a
reference scenario (e.g., a “business-as-usual” emissions path).
The existing literature on the emissions problem stresses the fact
that only international agreements that contain sufficient incen-
tives for participation and compliance can lead to substantive
cooperation (2, 3), and game theory is a standard way of analyzing
the strategic behavior of sovereign countries under such complex
incentive structures. While earlier game-theoretic studies have
been mainly pessimistic about the likelihood of cooperation
(4–19), our results show that with emissions trading and a suitable
strategy of choosing individual emissions, high levels of coopera-
tion might be achieved.

The general situation is modeled here as a repeated game
played in a sequence of periods, with a continuous control variable
(e.g., emissions reductions) that can take on any value in principle.
We focus on the case where the marginal costs of contributing to
the public good are the same for all players. This is, e.g., the case if
there is an efficient market for contributions (20, 21).

We show that players can ensure compliance with a given in-
itially negotiated target allocation of contributions by adopting a

certain simple dynamic “strategy” to choose their actual contri-
butions over time. In each period, the allocation of liabilities is
redistributed in reaction to the preceding compliance levels. The
redistributions are basically proportional to shortfalls—i.e., to the
amount by which players have failed to comply in the previous
period—but with a strategically important adjustment to keep
total liabilities constant. This strategy will be called “linear com-
pensation” (LinC), and its basic idea is illustrated in Fig. 1 in a
fictitious community gardening example. In the emissions game,
these liabilities to reduce emissions then translate into emissions
allowances via the formula allowance ¼ reference emissions
minus liability.

Our main assumptions and solutions for the public good game
are as follows:

The public good game:

• Repeated game, no binding agreements or commitments
• Individual contributions are made per player and period and

are publicly known after each period
• Positive, nonincreasing marginal individual benefits, depend-

ing on total contributions
• Nonnegative total costs with nondecreasing marginals, de-

pending on total contributions, shared proportionally or based
on marginal cost pricing

• All players discount future payoffs in the same way
• Optimal total contributions are known and an allocation into

individual targets has been agreed upon

Alice

Berta

Celia

First harvest:
Berta falls short

Second harvest:
Liabilities are Liabilities are

restoredredistributed

Next spring:

Fig. 1. Illustration of linear compensation in a simple public good game.
Alice, Berta, and Celia farm their back yard for carrots. Each has her individual
farming liability (thick separators), but harvests are divided equally. In the
first year, Berta falls short by some amount (white area). Thus, in the second
year, her share of the total liabilities is temporarily increased by some multi-
ple of this amount, while those of the other two are decreased accordingly.
If, in year two, all comply with these, liabilities are then restored to their
target values (dashed separators).
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The strategy of linear compensation (LinC):

• Initial individual liabilities ¼ targets
• Shortfall per period ¼ liability − actual contribution (if posi-

tive, otherwise zero)
• New liability ¼ targetþ ½own shortfall −mean shortfall� ·

factor
• The strategy is to always contribute your liability

We prove that under certain conditions, an agreement to use
the strategy LinC is “self-enforcing” in that no player or group of
players has a rational incentive to ever deviate from this strategy
or can ever convince the other players to switch to a different
strategy by renegotiating with them. In game-theoretic terms,
it is both strongly renegotiation-proof (22, 23) and a Pareto-effi-
cient and strong Nash-equilibrium in each subgame if all players
use LinC.Moreover, applying LinC requires only a limited knowl-
edge of costs, benefits, and discounting and is robust with regard
to implementation errors such as inadvertent shortfalls because it
reacts in a proportionate way and restores full cooperation soon
afterward. Because the strategy LinC can in principle stabilize an
agreement to meet any given target allocation, it does not solve
the problem of selecting these targets themselves. However, it
indicates that players can focus on “first-best” outcomes, nego-
tiating an allocation of the highest achievable total payoff and
then implementing that allocation by using LinC.

Before presenting our results in detail, we give a short literature
review and define our formal framework. We will then discuss the
validity of our assumptions about the emissions game and the
implications the results might have for real-world climate politics.

Existing Literature on the Emissions Game
A commonly used approach to strategic interaction on mitigating
pollution is the theory of International Environmental Agree-
ments, recently surveyed in ref. 4. In this branch of the literature,
cooperation has usually been modeled as a one-shot game. Players
join or stay out of a long-term coalition for selfish (or rational)
reasons, and within such “stable” coalitions, players act to the best
of the group. When this group includes all players, the cooperation
dilemma is overcome. Early insights of this theory were that large
stable coalitions tend to be unlikely, particularly when they would
actually benefit players (5, 6), and that additional ingredients to the
international agreement are needed in order to entice more
players to join (e.g., side payments) (7). More elaborate schemes
have been conceived and explored—e.g., optimized transfers, link-
ing with research cooperation, or endogenously determined mini-
mum participation clauses (24–26)—suggesting that higher
participation levels may well be reached but at the price of added
complexity in the agreement.

A different route is taken by authors who include the time
dimension in the game by modeling it as a repeated game (8–10),
thus introducing a way for players to react to others’ shortfalls. In
analogy to the Prisoners’ Dilemma, players have the discrete
choice to “defect” (emit the individual optimum) or “cooperate”
(emit only what is optimal globally) in most of these models. The
conclusion is mostly that cooperation among more than a few
players is unlikely because the threat to punish defection by
universal defection is not credible. In ref. 10, it is shown that
in such a discrete model, defection by smaller numbers of players
can be a credible threat deterring unilateral defections. But in a
model where countries choose emissions levels from a continuum
of choices, a similar strategy only works if players value the future
highly enough (11). We will improve upon these mixed results and
show that in such a continuous model and with the ability to emit
more than the individual optimum, one can even deter multilat-
eral deviations from the global optimum by reacting in proportion
to the size of the deviation, avoiding harsh punishments for small
errors. While the above models focus primarily on analytical
results, some authors also apply numerical models based on

empirical data (12). Although their analysis is made difficult by
the fact that numerical solution requires specifying a finite num-
ber of time periods, they are able to show that the option to
retaliate improves the prospect of cooperation.

Finally, the models in refs. 13–18 describe the climate change
game as a dynamic game with a stock pollutant, thus improving
on both the repeated game model and the static one-shot game
model. In refs. 15 and 18, it is shown that some intermediate
amount of cooperation can be stabilized against unilateral devia-
tions by harsh punishments. A similar model is also used in ref. 19,
the work most similar to ours: It introduces the idea of keeping
total contributions at the optimal level also during punishments
but again using harsh instead of proportionate punishments. We
will show that a proportionate version of their redistribution
idea will even lead to renegotiation-proofness when marginal
costs are equal for all players. This is in line with some real-world
policy proposals that suggest a similar redistribution, although of
direct financial transfers, to make threats credible and thus en-
sure compliance with emissions caps (3).

Framework
The Public Good Game. Assume that there are infinitely many per-
iods, numbered1,2,…, and finitelymanyplayers, numbered1;…;n.
In each period, t, each player, i, has to choose a quantity qiðtÞ as
her individual contribution to the public good in that period.
The resulting total contributions in period t are QðtÞ ¼ ∑iqiðtÞ.

In the emissions game, qiðtÞ would be the difference between
i’s hypothetical amount of GHG emissions in period t in some
predetermined reference scenario (e.g., business as usual), and
i’s net emissions in period t. By “net emissions” we mean the
amount of real emissions caused domestically plus, if players use
emissions trading, the amount of permits or certificates sold
minus the amount of permits or certificates bought on the mar-
ket. In other words, qiðtÞ ¼ 0 corresponds to business-as-usual
behavior, and qiðtÞ > 0 means that i has reduced emissions in t
domestically and/or by buying permits or certificates.

Depending on qiðtÞ and QðtÞ, player i has certain individual
benefits biðtÞ and individual costs ciðtÞ in period t. The typical
conditions under which a problem of cooperation arises and
can be approached by our results are reflected in the following
somewhat idealized assumptions on these costs and benefits and
on the information, commitment abilities, and rationality the
players possess. For the emissions game, we discuss the validity
of the following assumptions in more detail in Discussion and in
SI Text, Validity of Assumptions on the Emissions Game.

The contributed good is called a “public” good because indi-
vidual benefits biðtÞ are determined by total contributions only,
through an increasing function f iðQðtÞÞ. They are zero at Q ¼ 0,
and marginal benefits are nonincreasing. A period’s total benefits
BðtÞ are then given by f ðQðtÞÞ ¼ ∑if iðQðtÞÞ. On the negative side,
we assume that total costs CðtÞ are also determined by a nonne-
gative and nondecreasing function gðQðtÞÞ of total contributions,
start at zero, and marginal costs are nondecreasing.*

Unlike in many other models of public goods, we assume here
that total costs are shared in a way that equalizes marginal costs—
e.g., costs might be shared in proportion to individual contribu-
tions, giving ciðtÞ ¼ qiðtÞCðtÞ∕QðtÞ. Or, what is more realistic if
there is a perfect competition market for contributions, costs
might be shared according to a rule based on marginal cost pri-
cing.† In both cases, one has the following convexity property on
which our results will rely: For each Q, there is some “cost sen-

*Formally, f i and g are twice differentiable, biðtÞ ¼ f iðQðtÞÞ, CðtÞ ¼ gðQðtÞÞ ≥ 0, f ið0Þ ¼
gð0Þ ¼ 0, f 0iðQÞ > 0, g0ðQÞ ≥ 0, f 00i ðQÞ ≤ 0, and g00 ðQÞ ≥ 0.

†Each player i would then actually contribute an amount aiðQÞ for which its individual
pretrade cost function gi has marginal costs g0iðaiðQÞÞ equal to the global marginal costs
g0ðQÞ, and would buy the remaining contribution, qi − aiðQÞ, at a price that also equals
g0ðQÞ. Individual costs are then ci ¼ giðaiðQÞÞ þ ½qi − aiðQÞ�g0ðQÞ.
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sitivity” γðQÞ so that (i) if qi andQ are both lowered by an amount
x > 0, then ci gets lowered by at most xγðQÞ; (ii) if qi is raised by an
amount x > 0 but Q is kept constant by lowering the other values
qj, then ci raises by at least xγðQÞ; and (iii) ci ¼ 0 for Q ≤ 0. In
other words, lowering your contributions by x saves you at most
costs of xγðQÞ, but if x contributions are redistributed from others
to you, your costs raise by at least that same amount. It is easy to
see that in the proportional cost-sharing case, γðQÞ equals aver-
age costs gðQÞ∕Q, while in the marginal cost pricing case, γðQÞ
equals marginal costs g0ðQÞ.

In the emissions game, the benefits of reducing emissions by
1 Gt CO2-equivalents in period t correspond to all avoided wel-
fare losses that would have been caused at times after t by that
additional 1 Gt of emissions, properly discounted to reflect the
corresponding time difference, and using any suitable welfare
measure such as consumption, income, gross domestic product,
etc. (27–29). The above form of the costs ci seems justified when
we assume an international emissions market between firms,
similar to the European Union Emission Trading Scheme (EU
ETS). A simple example cost-benefit structure is that of linear
benefits and linear marginal costs (30): f iðQÞ ¼ βiQ with βi > 0,
gðQÞ ¼ Q2 for Q > 0, and gðQÞ ¼ 0 for Q ≤ 0. For other exam-
ples, see SI Text, Examples.

We explicitly allow individual contributions qi to be any real
number in principle, positive or negative. However, as Q gets
large, costs get prohibitively high, and asQ gets small, benefits get
prohibitively negative. Hence total period payoffs, PðtÞ ¼ BðtÞ−
CðtÞ, are bounded from above but not from below, with
PðtÞ → −∞ for QðtÞ → �∞. In the emissions game, large positive
or negative values for some qi can obtain if large amounts of
emissions permits are traded. Although the strategy we will pro-
pose below prescribes such large values of qi only in cases where
there has already been an irrationally large earlier deviation, this
might still lead to problems in practice (for an alternative model,
see SI Text, Bounded Liabilities).

Players make the choices qiðtÞ individually and simultaneously
in each t, and all know that no player can commit himself
bindingly to some value of qiðtÞ at some time earlier than t. They
also know that each i has complete information about costs,
benefits, and all past contributions when choosing qiðtÞ. Players
are assumed to be rational in that they aim at maximizing their
long-term payoff, using some strategy to choose qiðtÞ on the basis
of this information, and expect the others to do so as well.
Regarding how much the players value next period’s payoffs in
comparison to this period’s, we assume as usual that for some
constant δ > 0 and all periods t, all prefer to get one payoff unit
in period tþ 1 to getting δ payoff units in t.

For some optimal amount Q⋆ of total contributions, total (ex-
pected) payoff gets maximized, and marginal total costs equal
marginal total benefits but exceed marginal individual benefits:

f ðQ⋆Þ − gðQ⋆Þ ¼ max ; g0ðQ⋆Þ ¼ f 0ðQ⋆Þ > f 0iðQ⋆Þ: [1]

Optimal total payoffs are usually much larger than the total pay-
offs the players would end up if they do not cooperate—e.g.,
in the simple example with linear benefits and marginal costs,
optimal total payoffs are larger than the noncooperative equili-
brium payoffs by a factor of approximately n2∕4, showing that the
potential gains of cooperation can be very large and increase with
the number of players (see SI Text, Properties of the One-Shot
Game and Examples).

Finally, let us assume that players can enter no legally binding
and enforceable agreements (because this is the worst case as-
sumption when studying the possibility of cooperation) but have
somehow chosen in advance (before period one) an allocation of
the optimum target into individual targets q⋆i , with ∑iq

⋆
i ¼ Q⋆.

This allocation will be so that no group G of players has an in-

centive to contribute more than what was agreed as their joint
target Q⋆

G ¼ ∑i∈Gq
⋆
i .

‡

In the emissions game, targets might be negotiated using equi-
ty criteria such as per capita emissions permits, per capita payoffs,
historical responsibility, etc. (31–33 and ref. 34, p. 915). In game-
theoretic terms, this initial negotiation poses a problem of
equilibrium selection that precedes the problem of cooperation
which we are concerned with in this article (see also SI Text,
Cooperative Analysis). Table 1 summarizes our notation.

Free-Riding and Renegotiations. In this kind of public good game,
the problem of cooperation is now this: Although the negotiated
targets provide the optimal total payoff and are often also profit-
able for each individual player, they constitute no binding
agreement. Hence player i will hesitate to meet the target if he
can hope that the others will meet it, because contributing less
reduces i’s costs more than his benefits (see Eq. 1). If there is
only one period of play, this free-rider incentive is known to make
cooperation almost impossible, because rational players will then
contribute a much smaller quantity, which means that the agree-
ment is not self-enforcing (for more on this, see SI Text, Properties
of the One-Shot Game.).

In a repeated game, however, a player i can react to the other
players’ earlier actions by choosing qiðtÞ according to some strat-
egy si that takes into account all players’ individual contributions
before t. The immediate gains of free-riding might be offset
by future losses if others react suitably. The announcement to
react in such a way can then deter free-riding as long as that
announcement is “credible” (see, e.g., Robert Aumann’s Nobel
Lecture) (35).

However, if those who react to free-riding would thereby
reduce their own long-term payoffs, and if they cannot bindingly
commit themselves beforehand to actually carry out the an-
nounced reaction despite harming themselves in doing so, then
such a threat would not be credible because a potential free-rider
could expect that a rational player will not harm herself but rather
overlook the free-riding. After the fact, a free-rider of period t
could then successfully “renegotiate” with the others between
periods t and tþ 1, convincing them to “let bygones be bygones.”
The effect is that his free-riding in t will be ignored, because in
tþ 1 everyone benefits from doing so (22).

A famous example of such a noncredible strategy, though in a
different game, is the strategy “tit for tat,” observed in various
versions of the repeated Prisoners’ Dilemma when players can
commit themselves beforehand (36, 37). That strategy is to start
with “cooperate” and then do whatever the other player did in the
previous period, thereby punishing defection with defection. But
once this calls for “defect” in some period, both would be better
off at that point if they instead both continued with “cooperate.”
So the threat to defect after a defection is void and cannot deter

Table 1. Main symbols used in this article

α compensation factor
BðtÞ, biðtÞ benefits in period t, total and for player i
βG marginal benefits at target, for a group of players G
CðtÞ, ciðtÞ costs in period t, total and for player i
d̄ðtÞ, diðtÞ shortfalls in period t, average and of player i
δ lower bound for discounting factors
fðQÞ, f iðQÞ benefit functions, total and for player i
gðQÞ total cost function
γðQÞ, γ⋆ cost sensitivity function, and value at target Q⋆

ℓiðtÞ liability of player i in period t
QðtÞ, qiðtÞ contributions in period t, total and by player i
Q⋆, q⋆

i target contributions, total and for player i
x size of potential shortfall by a group of players G

‡Formally: ∑i∈Gf
0
iðQ⋆Þ < h0ð0Þ where hðxÞ ¼ ðQ⋆

G þ xÞgðQ⋆ þ xÞ∕ðQ⋆ þ xÞ.
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free-riding under assumptions of rationality and without commit-
ment possibilities (38).§

Another problematic strategy is to simply treat free-riding as
some form of debt to be repaid with interest, as it is done, e.g., in
the Kyoto protocol, in which a country falling short in one period
has its liabilities in the following period increased by 1.3 times the
size of its shortfalls. In our framework, such a rule would lead to
inefficient contributions in tþ 1 that exceed the optimal value
Q⋆, making renegotiations likely that lower all liabilities to an
efficient value. Even worse, if a player never fulfills his liabilities,
he gets away with it.

Depending on the cost-benefit structure of a repeated game,
there might or might not be strategies that achieve a certain level
of stability against deviations such as free-riding and against
incentives to renegotiate. Fortunately, we can formally prove that
in our assumed framework, a rather simple, proportionate com-
bination of the above two ideas of punishing other’s and repaying
one’s own shortfalls is both efficient and highly stable, even when
players make small errors in implementing it. See the Introduc-
tion for a summary of our main assumptions and the suggested
solution that we present below.

Results
Avoiding Renegotiations. Let us deal with the question of renego-
tiations first. The crucial idea to avoid those in our kind of game is
to keep total contributions constant and only redistribute them as
a reaction to past behavior. Consider a strategy s which, in each
period t, tells all players to choose their contributions qiðtÞ in a
certain way which makes sure that the total target is met,
QðtÞ ¼ Q⋆. Then no matter the actions before t, there can be no
alternative strategy ~s that achieves higher total payoffs than s
from time t on. So, any alternative strategy ~s that leads to different
payoffs than s would lead to a strictly smaller payoff than s for at
least one player. This holds whether only payoffs in t are consid-
ered or also later payoffs with discounting. Hence there is no pos-
sible situation in the game that would cause all players to agree to
change the strategy. In game-theoretic terms, such a strategy is
“strongly perfect”—i.e., Pareto-efficient in all subgames. It will
thus be “strongly renegotiation-proof” (22, 23) if we manage to
do the redistribution of contributions in tþ 1 in a way that makes
free-riding in t unprofitable in the long run. This we will do next.¶

Deterring Simple Free-Riding by Groups of Players. Suppose in some
period t, all players contribute their targets, except that a setG of
players free-rides. This means they jointly contribute only a quan-
tity QGðtÞ ¼ ∑i∈GqiðtÞ that is by some amount x > 0 smaller than
their joint target contribution: QGðtÞ ¼ Q⋆

G − x. Note that G’s
benefits are given by fGðQÞ ¼ ∑i∈Gf iðQÞ, so that βG ¼ f 0GðQ⋆Þ
is G’s target marginal benefit. Let γ⋆ ¼ γðQ⋆Þ be the cost sensi-
tivity at the target contributions. Then G’s shortfalls reduce their
joint benefits in t by at least xβG but saves them costs of at most
xγ⋆. Hence their joint payoff increases by at most

xðγ⋆ − βGÞ: [2]

How much redistribution in tþ 1 is now needed to make this
unprofitable for G? Suppose the contributions in tþ 1 are redis-
tributed in such a way that everyone gets their target benefits but
group G has additional costs, and these additional costs times δ
are no smaller than the above xðγ⋆ − βGÞ. Then, in period t, it is
not attractive forG to free-ride, because in that period, they value
their resulting losses in tþ 1 higher than their gains in t. Such a
redistribution can easily be achieved: Just raise G’s joint contri-
butions QGðtþ 1Þ from Q⋆

G by at least xðγ⋆ − βGÞ∕γ⋆δ and reduce
the other players’ contributions accordingly.∥ This leads to addi-
tional costs for G in tþ 1 of at least

xðγ⋆ − βGÞ∕δ: [3]

So, G’s joint gains in t are overcompensated by these losses in
tþ 1. Although free-riding for one period might be profitable
for some individual members of G, there is always at least one
member of G for whom it is not. Fig. 1 illustrates the basic idea.
We will show next how the same kind of redistribution can be
used to deter also every conceivable sequence of deviations from
the target path.

The Strategy of Linear Compensation (LinC). A simple strategy that
does this assigns each player i in each period t a certain “indivi-
dual liability” ℓiðtÞ, which that player should contribute in t. In
period one, liabilities equal the negotiated targets, ℓið1Þ ¼
q⋆i ð1Þ. Later, they depend on the differences between last period’s
liabilities and actual contributions of all players. After each
period t, we first compute everyone’s “shortfalls” in t, which are
diðtÞ ¼ ℓiðtÞ − qiðtÞ if ℓiðtÞ > qiðtÞ, and otherwise diðtÞ ¼ 0; that is,
we do not count excesses. Then we redistribute the targets in
tþ 1 so that these shortfalls are compensated linearly but keeping
the total target unchanged:

new liability ¼ targetþ ½own shortfall −mean shortfall� · factor
ℓiðtþ 1Þ ¼ q⋆i þ ½diðtÞ − d̄ðtÞ� · α: [4]

In this, d̄ðtÞ ¼ ∑idiðtÞ∕n is the mean shortfall and α is a certain
positive “compensation factor” we will discuss below. Obviously,
if all players comply with their liabilities by putting qiðtÞ ¼ ℓiðtÞ,
then all shortfalls are zero, and both liabilities and contributions
stay equal to the original targets so that the optimal path is
implemented.

The compensation factor α has to be large enough for the argu-
ment of the previous section to apply in all possible situations,
whatever the contributions have been before t. In the simple
free-riding situation discussed in the previous section, the group’s
joint shortfall equals x and the mean shortfall is d̄ðtÞ ¼ x∕n.
Hence G’s joint additional liability in tþ 1 is ½x − jGjx∕n� · α,
where jGj < n is the number of players in G. If this is at least
x∕δ, then having shortfalls of size x is not profitable, independently
of what the actual liabilities in t were. Because only shortfalls but
not excesses lead to a redistribution, a group can neither profit
from contributing more than their liability.

In other words, to make sure no group of players has ever an
incentive to deviate from their liability for one period, even if
liabilities are already different from the target, it suffices if

α >
n
γ⋆δ

· maxG
γ⋆ − βG
n − jGj ; [5]

where the maximum is taken over all possible groups of playersG.
If it is known that the benefit functions of all players are equal,

§Unfortunately, experimental studies of repeated games have yet been rare and inconclu-
sive about the question of what the effect of credible threats on cooperation is. For
example, in ref. 39 it is concluded that the existence of equilibria with credible threats
is a necessary but not sufficient condition for cooperation in a certain type of game, while
others, like ref. 40, report that sometimes cooperation can also be sustained without
credible threats in the laboratory. In ref. 41, p. 1502, it is concluded from the experience
with existing International Environmental Agreements that only those treaties in which
compliance could be enforced lead to a substantial amount of cooperation, which can
also be interpreted as supporting the necessity of credible threats.

¶If we drop the assumption that the global target Q⋆ maximizes total payoff—e.g.,
because of uncertainty in estimating the optimum—then such redistribution strategies
are no longer Pareto-efficient in all subgames. Renegotiations that improve total payoff
may then happen, which is desirable. Still, the same reasoning as above shows that there
is never an incentive for all players to pretend past actions were different fromwhat they
really are, hence no group of players can convince the rest to ignore their shortfalls. This is
called “weak renegotiation-proofness” (22, 23). See also SI Text, Renegotiations When
Targets Are Not Optimal.

∥If G consists of all n players, optimality of Q⋆ implies that shortfalls give no gains for G in
period t.
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then βG ¼ C0ðQ⋆ÞjGj∕n ≥ γ⋆jGj∕n and Eq. 5 simplifies to
α > ½nγ⋆ − C0ðQ⋆Þ�∕γ⋆δðn − 1Þ, so that in particular α > 1∕δ suf-
fices. Note that liabilities do not depend on costs and benefits
explicitly, only via the negotiated targets q⋆i and the factor α,
so the information about costs and benefits one needs to apply
LinC is limited to the knowledge of the optimum contribution
and the marginal costs and benefits at the target. Now, a player
i who complies with the liabilities defined by Eqs. 4 and 5 by
putting qiðtÞ ¼ ℓiðtÞ is said to apply the strategy of linear compen-
sation (LinC).

In game-theoretic terms, we have shown above that when all
players apply LinC, this forms a “one-shot subgame-perfect”
equilibrium. It is then also never profitable to deviate from LinC
for any number of successive periods. The proof for this follows a
standard argument (42).** In SI Text, Why Infinite Sequences of
Deviations Do Not Pay, we prove that even no conceivable infinite
sequence of deviations is profitable for any group G of players.
Hence for any given set of targets q⋆i , it builds a strong Nash equi-
librium in each subgame if all players apply LinC given these tar-
gets. Roughly speaking, the reason is that if G continually falls
short, contributions of the other players will decrease fast enough
so that, in the long run, G’s gains from saved costs are overcom-
pensated by their losses from decreased total contributions. Note
that the others do not need to use a threat of contributing nothing
forever (which would not be credible) but only threaten to re-
spond to each period of shortfalls with a period of punishment,
one at a time. This gradual escalation is credible when there is
“common knowledge of rationality,” becauseG knows in advance
that after each individual period t of shortfalls, the others still
expect them to follow their rational interest and return to com-
pliance in tþ 1 instead of falling short again, no matter how many
shortfalls have happened already.††

Discussion
We have presented a simple strategy by which players in a public
good game can keep each other in check in the provision of
agreed target contributions. Our approach can be interpreted as
a combination of a proportionate version of the punishment ap-
proach that strategies like tit-for-tat use in the Prisoners’ Dilem-
ma and the repayment approach that is already included in the
Kyoto mechanism. This combination has been formally shown
here to have strong game-theoretic stability properties in situa-
tions where some simplifying assumptions hold, a feature that
is not true of strategies that use only one of the two ingredients.
In Axelrod’s (36) terminology, our strategy, LinC, is “nice” in that
it cooperates unless provoked, “retaliating” when provoked, “for-
giving” when deviators repay, and uses “contrition” to avoid the
echo effect.

We believe that very similar strategies will be valuable also in
contexts in which some of our assumptions are violated—e.g., fu-
ture work might use an improved model of the emissions game in
which the assumption of identical periods is replaced by certain
path-dependencies: Real-world benefit functions f i depend on
GHG stocks and hence on time and emission history, and also
the cost function g depends on time and emission history because
of technological progress. Because past contributions will reduce
future marginal costs, this will lead to a nonconstant optimal
abatement path Q⋆ðtÞ. However, these effects will probably not
weaken LinC’s stability when q⋆i is replaced by a time-dependent

target allocation q⋆i ðtÞ of Q⋆ðtÞ that is computed according to
some initially negotiated rule (e.g., in fixed proportions). This is
because then the Pareto-efficiency argument for renegotiation-
proofness still holds, whereas shortfalls would slow down techno-
logical progress and lead to even higher marginal costs in the
punishment period.

A more critical assumption is that contributions are unbounded,
which would make it possible in principle to punish even long
sequences of large shortfalls by escalating emissions, a possible
development that rational players would then avoid. If emissions
can not exceed some upper bound, it would still suffice if welfare
losses became prohibitively large when emissions approach that
bound. Only if those losses are bounded as well, the question
whether large shortfalls can be deterred depends on the actual
cost-benefit structure and on the value of δ, which is in line with
general results on repeated games with bounded payoffs (42) (see
also SI Text, Bounded Liabilities and Validity of Assumptions on the
Emissions Game).

In addition to such model refinements, future work should also
(i) assess the possibility of players to “bind their hands” ahead of
time by making long-term investment decisions that reduce their
own ability to choose qiðtÞ at t; (ii) study the influence of incom-
plete information due to restricted monitoring capacities, finite
planning horizons and of other forms of ‘bounded rationality’
(43); (iii) link emissions reductions with other issues (44); (iv) in-
clude possible altruism, reputation, and status effects, also using
experimental approaches such as (45).

Because LinC uses a proportionate and timely measure-for-
measure reaction to shortfalls, it performs well also in situations
in which players cannot control their actions perfectly. It is easy to
see from Eq. 4 that random errors do not add up or lead away
from the target, nor do one-time deviations initiate a long se-
quence of reactions. ‡‡ The latter is avoided by comparing actual
contributions not to the initial targets but to dynamic liabilities,
which are similar to the “standings” used in “contrite tit-for-tat”
for the repeated Prisoners’ Dilemma (46). All the above stability
properties of LinC hold independently of the form and amount of
discounting if the compensation factor α is chosen properly.§§

While many other games have no strong Nash equilibria, the pub-
lic good game studied here somewhat surprisingly even allows
players to sustain any allocation of the optimal total payoff with
a strategy that is a strong Nash equilibrium even in each subgame
(though leaving the coordination problem of equilibrium selec-
tion as a task for prior negotiations). Because deviations by
groups have been considered before only for nonrepeated “nor-
mal-form” games, this new combination of “strong Nash” and
“subgame-perfect” equilibrium can also be considered a contri-
bution to game theory itself.

In real-world climate politics, a redistribution mechanism such
as ours could play a key role in the implementation of cap-and-
trade regimes, whose importance is stressed by many authors
(see, e.g., the impressively broad collection of articles in ref. 2).
While in domestic emissions markets, caps can be issued by a cen-
tral authority and compliance might be enforced legally, but both
of these measures are more difficult in large international mar-
kets (47). If, as in the first two periods of the EU ETS, each coun-
try in a market issues its own permit quantity qi, a strategy like
LinC might be used to ensure compliance with some agreed in-
dividual caps that realize that market’s joint optimum, giving
countries incentives to issue only the agreed target amount of per-
mits and to ensure that domestic emissions are matched by per-
mits after trading. To choose a suitable compensation factor, only

**If m successive deviations were profitable but no shorter sequence was, then one-shot
subgame-perfectness would imply that after the first m − 1 deviations, the m-th is no
longer profitable. Hence already the first m − 1 deviations would have been profit-
able—a contradiction. Infinite sequences have to be considered separately since payoffs
are unbounded.

††This expectation is common to all Nash-like equilibrium concepts. The much stronger
demand that compliance should be optimal regardless of the other players’ behavior
would require so-called “dominant” strategies, which, however, do rarely exist in
repeated games.

‡‡With implementation errors of variance σ2 , the mean squared deviation of ℓiðtþ 1Þ from
the target q⋆i will be at most σ2α2ðn − 1Þ∕n, hence the mean squared deviation between
actual and target contributions is of magnitude σ2ð1þ α2ðn − 1Þ∕nÞ.

§§The value of δ, however, does play a role when, in addition to our assumptions, liabilities
shall be bounded. This is further explored in SI Text, Bounded Liabilities.
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a conservative estimate of the (expected) marginal costs and ben-
efits at the target and the short-term discounting factor is needed.

In this way, one could avoid using “sticks” such as trade sanc-
tions (ref. 48, p. 34) or tariffs (3), which are mostly considered to
be difficult to push politically vis-a-vis partners, and focus on
“carrots” (benefitting from other players’ emissions reductions).
Still, tariffs might be helpful vis-a-vis nonparticipants, who might
prefer to avoid them by joining the market (49). Also, starting
with a number of regional markets with possibly suboptimal caps,
several such markets might merge to decrease marginal costs (50,
51), eventually leading to a global cap-and-trade system with a
globally optimal cap. Whenever caps need to be negotiated anew
due to new participants or new cost-benefit estimates, any prene-
gotiation shortfalls would still be taken into account in LinC,
providing both continuity and flexibility as demanded in ref. 48,

p. 36. Likewise, compliance with the Kyoto protocol might im-
prove if its current compensation rule was modified to keep total
liabilities constant as in Eq. 4 and if the current compensation
factor of 1.3 was adjusted according to Eq. 5. In contrast, the
harsh punishment strategies on which earlier studies have focused
are not only less strategically stable but also less practicable
because of their disproportionate reactions and their strict dis-
tinction between “normal” and “punishment” periods.
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