
A simple generative model of collective
online behavior
James P. Gleesona,1, Davide Cellaia, Jukka-Pekka Onnelab, Mason A. Porterc,d, and Felix Reed-Tsochasd,e,f

aMathematics Applications Consortium for Science and Industry, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland;
bDepartment of Biostatistics, Harvard School of Public Health, Boston, MA 02115; cOxford Centre for Industrial and Applied Mathematics, Mathematical
Institute, University of Oxford, Oxford OX2 6GG, United Kingdom; dCABDyN Complexity Centre, eSaïd Business School, University of Oxford, Oxford OX1 1HP,
United Kingdom; and fInstitute for New Economic Thinking at the Oxford Martin School, University of Oxford, Oxford OX2 6ED, United Kingdom

Edited by Kenneth W. Wachter, University of California, Berkeley, CA, and approved June 4, 2014 (received for review July 27, 2013)

Human activities increasingly take place in online environments,
providing novel opportunities for relating individual behaviors to
population-level outcomes. In this paper, we introduce a simple
generative model for the collective behavior of millions of social
networking site users who are deciding between different software
applications. Our model incorporates two distinct mechanisms: one
is associated with recent decisions of users, and the other reflects
the cumulative popularity of each application. Importantly, although
various combinations of the two mechanisms yield long-time behav-
ior that is consistent with data, the only models that reproduce the
observed temporal dynamics are those that strongly emphasize the
recent popularity of applications over their cumulative popularity.
This demonstrates—evenwhen using purely observational data with-
out experimental design—that temporal data-driven modeling can
effectively distinguish between competing microscopic mechanisms,
allowing us to uncover previously unidentified aspects of collective
online behavior.

branching processes | complex systems

The recent availability of datasets that capture the behavior of
individuals participating in online social systems has helped

drive the emerging field of computational social science (1), as
large-scale empirical datasets enable the development of de-
tailed computational models of individual and collective behav-
ior (2–4). Choices of which movies to watch, which mobile
applications (“apps”) to download, or which messages to retweet
are influenced by the opinions of our friends, neighbors, and
colleagues (5). Given the difficulty in distinguishing between
potential explanations of observed behavior at the individual
level (6), it is useful to examine population-level models and at-
tempt to reproduce empirically observed popularity distributions
using the simplest possible assumptions about individual behavior.
Such generative models have arisen in a wide range of disciplines—
including economics (7, 8), evolutionary biology (9, 10), and physics
(11). When studying generative models, the microscopic dynamics
are known exactly, so it is possible to explore the population-level
mechanisms that emerge in a controlled manner. This contrasts
with studies driven by empirical data, in which confounding effects
can always be present (6). The value of explanations based on
mechanisms has long been appreciated in sociology (12–14), and
they have recently received increased attention due to the avail-
ability of extensive data from online social networks (15–18).
One well-studied rule for choosing between multiple options is

cumulative advantage (also known as preferential attachment),
in which popular options are more likely to be selected than
unpopular ones. This leads to a “rich-get-richer” agglomeration
of popularity (7, 9, 19–22). Bentley et al. (5, 23, 24) proposed an
alternative model, in which members of a population randomly
copy the choices made by other members in the recent past. As
a result, products whose popularity levels have recently grown
the fastest are the most likely to be selected (whether or not they
are the most popular overall). In the present paper, we show that
models of app-installation decisions that are biased heavily

toward recent popularity rather than cumulative popularity
provide the best fit to empirical data on the installation of
Facebook apps. We use the model to identify the timescales over
which the influence of Facebook users upon each others’ choices
is strongest, and we argue that the interaction between these
timescales and the diurnal variation in Facebook activity yields
many of the observed features of the popularity distribution of
apps. More generally, we illustrate how to incorporate temporal
dynamics in modeling and data analysis to differentiate between
competing models that produce the same long-time (i.e., after
transients have died out) behavior.
We use the Facebook apps dataset that was first reported in

ref. 15 by Onnela and Reed-Tsochas. These data include the
records, for every hour from June 25, 2007 to August 14, 2007, of
the number of times that every Facebook app (of the n = 2,705
total available during this period) was installed. At the time,
Facebook users had two streams of information about apps:
a “cumulative information” stream gave an “all-time best-seller”
list, in which all apps were ranked by their cumulative popularity
(i.e., the total number of installations to date), and a “recent ac-
tivity information” stream consisted of updates provided by
Facebook on the recent app installation activity by a user’s friends.
Users could also visit the profiles of their friends to see which
applications a friend had installed.
The data thus consist of N time series ni(t), where the “pop-

ularity” ni(t) of app i at time t is the total number of users who
have installed app i by hour t of the study period. The discrete
time index t counts hours from the start of the study period (t = 0)
to the end (t = tmax ≡ 1,209). The distribution of ni values is
heavy-tailed (SI Appendix, Fig. S1), so the popularities ni(t) of
the apps cover a very wide range of scales. Facebook apps first
became available on May 24, 2007, corresponding to t ≈ −720 in
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our notation. By time t = 0, when the data collection began,
980 apps had already launched (with unknown launch times);
the remaining apps in our dataset were launched during the
study period. Among the latter, we pay particular attention to
those for which we have at least tLES ≡ 650 h (i.e., more than
one-half of the data collection window) of data. We call these

apps the “launched-early-in-study” (LES) apps. Denoting by
ti the launch time of app i, the 921 LES apps i are those that
satisfy ti > 0 and ti < tmax − tLES = 559. We set ti = 0 for apps
that were launched before the study period.
To measure the change in app popularity during hour t,

we define the “increment” in popularity of app i at time t as
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Fig. 1. (Left) Mean scaled age-shifted growth rate r(a), (Center) distributions of app popularity, and (Right) popularity over time for the top-five apps,
showing turnover. (A and B) Behavior of the entire LES set of applications and its two subsets (which are described in the text); (C ) trajectories of the top-
five apps in the dataset (ordered by popularity at t = 0; note apps that were not in the t = 0 top-five are not shown here but can be seen in SI Appendix,
Fig. S7). (D–F ) Cumulative-information model (γ = 1), for which (E ) shows popularity distributions at t = tmax (upper symbols) and for LES app growth to
age a = tLES (lower symbols); empirical data are in black. (G–I) Recent-activity model with short memory (γ = 0, H = 168, T = 5). (J–L) Recent-activity model
with long-memory (γ = 0, H = 168, T = 50).
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fi(t) = ni(t) − ni(t − 1) [with fi(t) = 0 for t ≤ ti] (15). The total app
installation activity of users during hour t is then as follows:

FðtÞ=
XN
i=1

fiðtÞ: [1]

We show in SI Appendix, section SI1 that F(t) has large diurnal
fluctuations superimposed on a linear-in-time aggregate growth.
We define the “age-shifted popularity” ~niðaÞ= niðti + aÞ and

“age-shifted increment” ~f iðaÞ= fiðti + aÞ of app i at age a to en-
able comparison of apps when they are the same age (i.e., at the
same number of hours after their launch). An examination of the
trajectories of the largest LES apps reveals that their popularity
grows exponentially for some time before reaching a steady-
growth regime in which ~niðaÞ increases approximately linearly
with age. The corresponding age-shifted increment functions
~f iðaÞ reach a “plateau” at large a, although they have a super-
imposed 24-h oscillation (SI Appendix, Figs. S3 and S4). To study
the entire set of LES apps, we scale the increment ~f i of app i by
its temporal average ~μi = ðPtLES

a=1  
~f iðaÞÞ=tLES over the first tLES =

650 observations for each app. This weights very popular apps
and other (less popular) apps in a similar manner (25). For
a given set I of LES apps, we define the “mean scaled age-
shifted growth rate” as follows:

rðaÞ=
*
~f iðaÞ
~μi

+
I
; [2]

where 〈·〉 denotes an ensemble average over all apps in the set I .
The mean scaled age-shifted growth rate reveals several in-

teresting features (Fig. 1A). First, at large ages (e.g., a ≥ 150 h),
the function r(a) has 24-h oscillations superimposed on a nearly
constant curve. The behavior of r(a) is very different for smaller
ages; we dub this the “novelty regime,” as it represents the
(approximately 1-wk) time period that immediately follows the
launch of apps. The r(a) curve for the entire LES set is similar to
those found by splitting the LES set into two disjoint subsets
based on ordered launch times—the 460 applications with earlier
launch times (ti ≤ 260; early-launch) and the 461 applications
with later launch times (ti ≥ 261; late-launch). The small differ-
ence between the r(a) curves for these cases gives an estimate of
the inherent variability within the data and sets a natural target
for how well stochastic simulations can fit the data. We find
similar results for other subsets of the same size (SI Appendix,
section SI3).
To directly measure the growth of new apps in their first tLES

hours, we show the distribution of ~niðtLESÞ− ~nið0Þ for the entire
LES set in Fig. 1B. We also show the corresponding distributions
for the two LES subsets (early and late launch). The similarity of
distributions for early-born apps and late-born apps implies that
the launch time, at least in the period that we examined, does not
have a strong effect on the growth of new apps. This contrasts
with Yule–Simon models of popularity (7, 21, 26) and related
preferential-attachment models used to model citations (11). In
these models, early-born apps have more time to accumulate
popularity and hence exhibit a different aging behavior to later-
born apps (27).
In Fig. 1C, we examine changes in the rank order of the top-5

list of apps by plotting the trajectories of the largest apps (ranked
by their popularity at time t = 0) over the duration of the study
(and see SI Appendix, Fig. S7, for plots of top-10 lists). Repro-
ducing realistic levels of turnover in such lists is a challenging test
for models of popularity dynamics (24, 28).
The popularity dynamics for the novelty regime seem to be

app-specific (Fig. 1A and SI Appendix, Fig. S4), but a simple model
can satisfactorily describe the postnovelty regime. We introduce
a general stochastic simulation framework with a “history-window

parameter” H and consider an app to be within its “history
window” for the first H hours that data on the app are available.
The history window of LES apps extends from their launch time
to H hours later; for non-LES apps, we define the history window
to be the first H hours (t = 0 to t = H) of the study. We conduct
stochastic simulations by modeling F(t) computational “agents”
in time step t, each of whom installs one app at that time step.
We take the values of F(t) from the data (Eq. 1). Note that our
simulated agents do not correspond directly to Facebook users,
as we do not have data at the level of individual users. In reality,
a Facebook user can, for example, install several different apps
during an hour; in our simulations, however, such actions would
be modeled by the choices of several agents.
We simulate the choices of the agents as follows. First, for any

app i that is in its history window at time t, we copy the increment
fi(t) directly from the data. This determines the choices of FH(t)
of the agents, where FH(t) is the number of installations of all
apps that are within their history window at time t. Each of the
remaining F(t) − FH(t) agents then installs any one of the apps
that are not in their history window. An installation probability
pi(t) is allocated based on model-specific rules (see below), and
the F(t) − FH(t) agents each independently choose app i with
probability pi(t). These rules ensure that the total number of
installations in each hour exactly matches the data and that the
history window of each app is reproduced exactly.
We investigate several possible choices for pi(t) by comparing

the results of simulations with the characteristics of the data
highlighted in Fig. 1 A–C. The history-window parameter H plays
an important role in capturing the app-specific novelty regime.
However, if H is very large, then most of the simulation is copied
directly from the data and the decision probability pi(t) becomes

Fig. 2. Schematic of the model. The squares indicate the number of in-
stallations at time t of two example apps; their size represents the number of
installations of an app in a particular hour. The circles represent agents, and
the arrows indicate the adoption of an app. In the history window (ages 0 to
H), we copy the installation history directly from the data. Outside of the
history windows, we simulate the actions of F(t) agents by assigning prob-
abilistic rules for how they choose which app to install. An agent who uses
(Left) the recent-activity rule at a given time copies the choice of an agent
who acted in the recent past, so apps that were recently more popular are
more likely to be chosen. By contrast, an agent who uses (Right) the cu-
mulative rule at a given time installs the app with the larger number of
accumulated installations. We represent this cumulative popularity using
the dashed contour, which increases in width with time as more instal-
lations occur.
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irrelevant. It is therefore desirable to find models that fit the
data well while keeping H as small as possible. Motivated by
the information available to Facebook users during the data col-
lection period, we propose a model based on a combination of a
“cumulative rule” pci ðtÞ and a “recent activity rule” pri ðtÞ. See the
schematic in Fig. 2.
An agent who uses the cumulative rule at time t chooses app

i with a probability proportional to its cumulative popularity
ni(t − 1), yielding the following:

pci ðtÞ=K   niðt− 1Þ; [3]

where the constant K is determined by the normalizationP
ip

c
i ðtÞ= 1. In contrast, an agent who follows the recent-activity

rule at time t copies the installation choice of an agent who acted
in an earlier time step, with some memory weighting (Eq. 4
below). Consequently, apps that were recently installed by many
agents [i.e., apps with large fi(τ) values for τ ≈ t] are more likely
to be installed at time step t even if these apps are not yet
globally popular [i.e., ni(t − 1) can be small]. In reality, the in-
formation available to Facebook users on the recent popularity
of apps was limited to observations of the installation activity of
their network neighbors. As we lack any information on the real
network topology, we make the simplest possible assumption:
that the network is sufficiently well-connected (see ref. 29 for
a study of Facebook networks from 2005) to enable all agents in
the model to have information on the aggregate (system-wide)
installation activity. When applying the recent-activity rule, an
agent chooses app i with a probability proportional to the recent
level of that app’s installation activity:

pri ðtÞ=L
Xt−1
τ=0

W ðt− τÞfiðτÞ; [4]

where L is determined by the normalization
P

i p
r
i ðtÞ= 1. The

“memory function” W(τ) determines the weight assigned to
activity from τ hours ago and thereby incorporates human-activity
timescales (30). In SI Appendix, we consider several examples
of plausible memory functions and also examine the possibility of
heterogeneous app fitnesses.
If our dataset included the early growth of every app, then

a constant weighting function W(t) ≡ 1 would reduce pri to pci .
However, because of our finite data window, many apps have
large values of ni(0), so we cannot capture the cumulative rule by
using a suitable weighting function in the recent-activity rule.
Instead, we introduce a tunable parameter γ ∈ [0, 1] so that the
population-level installation probability pi used in the simulation
is a weighted sum,

piðtÞ= γ   pci ðtÞ+ ð1− γÞ pri ðtÞ; [5]

that interpolates between the extremes of γ = 0 (recent-activity
rule) and γ = 1 (cumulative rule). The model ignores externalities

between apps, an assumption that is supported by the results
of ref. 15.
To explore our model, we start by considering the case γ = 1,

in which agents consider only cumulative information. In Fig. 1
D–F, we compare the results of stochastic simulations with the
data (Fig. 1 A–C) using a history window of H = 168 h (i.e.,
1 wk). Clearly, the cumulative model does not match the data
well. Although the app popularity distributions at t = tmax are
reasonably similar (Fig. 1E), the largest popularities are over-
predicted by the model. By contrast, the popularity of the LES
apps—which include many of the less popular apps—is under-
predicted. In particular, their mean scaled age-shifted growth
rate has a lower long-term mean than that of the data (Fig. 1D).
Recall from Eq. 2 that each app’s increments are scaled by their
temporal average ~μi before ensemble averaging to calculate r(a).
As a result, any error in predicting the value of ~μi has an effect on
the entire r(a) curve. This explains why, for example, the values
of r(a) for a < H are overpredicted in Fig. 1D, despite the fact
that the increments in this regime are copied from the data. The
corresponding temporal averages are too low, so the scaled in-
crement values are too high. In Fig. 1F, we illustrate that the
ordering among the top-five apps does not change in time for this
model, so it does not produce realistic levels of app-popularity
turnover (Fig. 1C and SI Appendix, Fig. S7). In SI Appendix, sections
SI6 and SI7, we demonstrate that several alternative models
based on cumulative information also match the data poorly.
We next consider the case in which γ is small, so recent infor-

mation dominates (5, 24). In Fig. 3, we show results for stochastic
simulations using an exponential response-time distribution PðtÞ=
ð1=TÞe−t=T to determine the weights W(t) assigned to activity
from t hours earlier for varying history-window lengths H and
response-time parameters T. The colors in the (H, T) parameter
plane represent the L2 error, which is given by the L2 norm of the
difference between the simulated r(a) curve and the r(a) curve
from the data. A value of 3.11 is representative of inherent fluc-
tuations in the data (SI Appendix, section SI3), and the bright
colors in Fig. 3 represent parameter values for which the differ-
ence between the model’s mean growth rate and the empirically
observed growth rate is less than the magnitude of fluctuations
present in the data. Observe that the model requires a history
window of approximately 1 wk (i.e., H ≈ 168 h) to match the
data. As γ increases, cumulative information is weighted more
heavily, and the region of “good-fit” parameters moves toward
larger T and larger H (SI Appendix, section SI3). As noted
previously, large-H models trivially provide good fits (because
they mostly copy directly from data), but the γ = 0 case provides
a good fit to the data even with a relatively short history
window H.
In Fig. 1 G–I, we compare model results with data for param-

eter values H = 168, T = 5, and γ = 0 (i.e., the “recent-activity,
short-memory” case). This reproduces the app popularity distri-
butions of the data rather well, but the mean scaled age-shifted
growth rates are markedly different. In contrast, Fig. 1 J–L

Fig. 3. Parameter planes showing the L2 error (SI Appendix, section SI3) for the r(a) curve for the recent-activity–dominated model described in the text. The
parameter H is the length of the history window, and T is the mean of the exponential response-time distribution. For each point in the plane, we average
values of the L2 error over 24 realizations. We show all values above 3.11 as dark red.
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compare model results with data for parameter values H = 168,
T = 50, and γ = 0 (i.e., the “recent-activity, long-memory” case).
These parameters are just inside the good-fit region of Fig. 3A,
so the r(a) curve in Fig. 1J matches the data well. Moreover, the
popularity distributions at t = tmax and at age tLES (Fig. 1K) are
both reasonably matched by the model, which also allows re-
alistic turnover in the top-10 list (Fig. 1L and SI Appendix, Fig.
S7). These considerations highlight the importance of using
temporal data to develop and fit models of complex systems.
Distributions at single times can be insensitive to model dif-
ferences, and the r(a) curves are crucial for distinguishing
between competing models. In SI Appendix, section SI4, we
show that the recent-activity (γ = 0) case still gives good fits
to the data if the exponential response-time distribution is
replaced by a lognormal, gamma, or uniform distribution.
Another noteworthy feature of the recent-activity case is its

ability to produce heavy-tailed popularity distributions in
stochastic simulations even if no history is copied from the data
(H = 0). Even if all apps initially have the same number of in-
stallations, random fluctuations lead to some apps becoming
more popular than others, and the aggregate popularity dis-
tribution becomes heavy-tailed (10, 23, 24, 31). In SI Appendix,
section SI5, we show that this situation is described by a near-
critical branching process, for which power-law popularity dis-
tributions are expected (32–36).
Our model suggests that app adoption among Facebook users

was guided more by recent popularity of apps (as reflected in
installations by friends within 2 days) than by cumulative popu-
larity. The fact that the model is a near-critical branching process
might help to explain the prevalence of heavy-tailed popularity
distributions that have been observed in information cascades on
social networks, such as the spreading of retweets on Twitter (4, 17,
18) or news stories on Digg (37). The branching-process analysis is
also applicable to the random-copying models of Bentley et al. (5,
23, 24). Although most random-copying models consider only short
(e.g., single time-step) memory (5, 23), the simulation study of ref.

24 includes a uniform response-time distribution and demonstrates
the role of memory effects in generating turnover. As shown in Fig.
1 and detailed in SI Appendix, section SI7, generating realistic
turnover of rank order in the top-10 apps is a significant challenge
for all models based on cumulative information, even those that
include a time-dependent decay of novelty (38, 39). In SI Ap-
pendix, section SI9, we show that our model can also explain the
results of the fluctuation-scaling analysis of the Facebook apps
data in ref. 15 that highlighted the existence of distinct scaling
regimes (depending on app popularity).
Our approach also highlights the need to address temporal

dynamics when modeling complex social systems. Online experi-
ments have been used successfully in computational social sci-
ence (1), but it is challenging to run experiments in online
environments that people actually use (as opposed to creating
new online environments with potentially distinct behaviors). If
longitudinal data are available, as in the present case, it is pos-
sible to evaluate a model’s fit based not only on long-time be-
havior but also on dynamical behavior. Given that several models
successfully produce similar long-time behavior, the investigation
of temporal dynamics is critical for distinguishing between com-
peting models. As more observational data with high temporal
resolution from online social networks become available, we believe
that this modeling strategy, which leverages temporal dynamics,
will become increasingly essential.
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