
To Buy or Not to Buy: Mining Airfare Data to Minimize
Ticket Purchase Price

Oren Etzioni
Dept. Computer Science
University of Washington

Seattle, Washington 98195

etzioni@cs.washington.edu

Craig A. Knoblock
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

knoblock@isi.edu

Rattapoom Tuchinda
Dept. of Computer Science

University of Southern California
Los Angeles, CA 90089

pipet@isi.edu

Alexander Yates
Dept. Computer Science
University of Washington

Seattle, Washington 98195

ayates@cs.washington.edu

ABSTRACT
As product prices become increasingly available on the
World Wide Web, consumers attempt to understand how
corporations vary these prices over time. However, corpora-
tions change prices based on proprietary algorithms and hid-
den variables (e.g., the number of unsold seats on a flight).
Is it possible to develop data mining techniques that will
enable consumers to predict price changes under these con-
ditions?

This paper reports on a pilot study in the domain of air-
line ticket prices where we recorded over 12,000 price obser-
vations over a 41 day period. When trained on this data,
Hamlet — our multi-strategy data mining algorithm — gen-
erated a predictive model that saved 341 simulated passen-
gers $198,074 by advising them when to buy and when to
postpone ticket purchases. Remarkably, a clairvoyant algo-
rithm with complete knowledge of future prices could save
at most $320,572 in our simulation, thus Hamlet’s savings
were 61.8% of optimal. The algorithm’s savings of $198,074
represents an average savings of 23.8% for the 341 passen-
gers for whom savings are possible. Overall, Hamlet saved
4.4% of the ticket price averaged over the entire set of 4,488
simulated passengers. Our pilot study suggests that mining
of price data available over the web has the potential to save
consumers substantial sums of money per annum.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

Keywords
price mining, Internet, web mining, airline price prediction

1. INTRODUCTION AND MOTIVATION
Corporations often use complex policies to vary product

prices over time. The airline industry is one of the most
sophisticated in its use of dynamic pricing strategies in an
attempt to maximize its revenue. Airlines have many fare
classes for seats on the same flight, use different sales chan-
nels (e.g., travel agents, priceline.com, consolidators), and
frequently vary the price per seat over time based on a slew
of factors including seasonality, availability of seats, compet-
itive moves by other airlines, and more. The airlines are said
to use proprietary software to compute ticket prices on any
given day, but the algorithms used are jealously guarded
trade secrets [19]. Hotels, rental car agencies, and other
vendors with a “standing” inventory are increasingly using
similar techniques.

As product prices become increasingly available on the
World Wide Web, consumers have the opportunity to be-
come more sophisticated shoppers. They are able to com-
parison shop efficiently and to track prices over time; they
can attempt to identify pricing patterns and rush or delay
purchases based on anticipated price changes (e.g., “I’ll wait
to buy because they always have a big sale in the spring...”).
In this paper we describe the use of data mining methods to
help consumers with this task. We report on a pilot study
in the domain of airfares where an automatically learned
model, based on price information available on the Web,
was able to save consumers a substantial sum of money in
simulation.

The paper addresses the following central questions:

• What is the behavior of airline ticket prices
over time? Do airfares change frequently? Do they
move in small increments or in large jumps? Do they
tend to go up or down over time? Our pilot study en-
ables us to begin to characterize the complex behavior
of airfares.

119

• What data mining methods are able to detect
patterns in price data? In this paper we consider
reinforcement learning, rule learning, time series meth-
ods, and combinations of the above.

• Can Web price tracking coupled with data min-
ing save consumers money in practice? Vendors
vary prices based on numerous variables whose values
are not available on the Web. For example, an air-
line may discount seats on a flight if the number of
unsold seats, on a particular date, is high relative to
the airline’s model. However, consumers do not have
access to the airline’s model or to the number of avail-
able seats on the flights. Thus, a priori, price changes
could appear to be unpredictable to a consumer track-
ing prices over the Web. In fact, we have found price
changes to be surprisingly predictable in some cases.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our data collection mechanism and analyzes
the basic characteristics of airline pricing in our data. Sec-
tion 3 considers related work in the areas of computational
finance and time series analysis. Section 4 introduces our
data mining methods and describes how each method was
tailored to our domain. We investigated rule learning [8], Q-
learning [25], moving average models [13], and the combina-
tion of these methods via stacked generalization [28]. Next,
Section 5 describes our simulation and the performance of
each of the methods on our test data. The section also re-
ports on a sensitivity analysis to assess the robustness of
our results to changes in the simulation. We conclude with
a discussion of future work and a summary of the paper’s
contributions.

2. DATA COLLECTION
We collected airfare data directly from a major travel web

site. In order to extract the large amount of data required
for our machine learning algorithms, we built a flight data
collection agent that runs at a scheduled interval, extracts
the pricing data, and stores the result in a database.

We built our flight data collection agent using Agent-
Builder1 for wrapping web sites and Theseus for executing
the agent [3]. AgentBuilder exploits machine learning tech-
nology [15] that enables the system to automatically learn
extraction rules that reliably convert information presented
on web pages into XML. Once the system has learned the
extraction rules, AgentBuilder compiles this into a Theseus
plan. Theseus is a streaming dataflow execution system that
supports highly optimized execution of a plan in a network
environment. The system maximizes the parallelism across
different operators and streams data between operations to
support the efficient execution of plans with complex navi-
gation paths and extraction from multiple pages.

For the purpose of our pilot study, we restricted our-
selves to collecting data on non-stop, round-trip flights for
two routes: Los Angeles (LAX) to Boston (BOS) and Seat-
tle (SEA) to Washington, DC (IAD). Our departure dates
spanned January 2003 with the return flight 7 days after de-
parture. For each departure date, we began collecting pric-
ing data 21 days in advance at three-hour intervals; data

1www.fetch.com

for each departure date was collected 8 times a day.2 Over-
all, we collected over 12,000 fare observations over a 41 day
period for six different airlines including American, United,
etc. We used three-hour intervals to limit the number of
http requests to the web site. For each flight, we recorded
the lowest fare available for an economy ticket. We also
recorded when economy tickets were no longer available; we
refer to such flights as sold out.

2.1 Pricing Behavior in Our Data
We found that the price of tickets on a particular flight

can change as often as seven times in a single day. We cate-
gorize price change into two types: dependent price changes
and independent price changes. Dependent changes occur
when prices of similar flights (i.e. having the same origin
and destination) from the same airline change at the same
time. This type of change can happen as often as once or
twice a day when airlines adjust their prices to maximize
their overall revenue or “yield”. Independent changes occur
when the price of a particular flight changes independently
of similar flights from the same airline. We speculate that
this type of change results from the change in the seat avail-
ability of the particular flight. Table 1 shows the average
number of changes per flight aggregated over all airlines for
each route. Overall, 762 price changes occurred across all
the flights in our data. 63% of the changes can be classified
as dependent changes based on the behavior of other flights
by the same airline.

Route Avg. number of price changes

LAX-BOS 6.8

SEA-IAD 5.4

Table 1: Average number of price changes per route.

We found that the round-trip ticket price for flights can
vary significantly over time. Table 2 shows the minimum
price, maximum price, and the maximum difference in prices
that can occur for flights on each route.

Route Min Price Max Price Max Price Change

LAX-BOS 275 2524 2249

SEA-IAD 281 1668 1387

Table 2: Minimum price, maximum price, and max-
imum change in ticket price per route. All prices in
this paper refer to the lowest economy airfare avail-
able for purchase.

For many flights there are easily discernible price tiers
where ticket prices fall into a relatively small price range.
The number of tiers typically varies from two to four, de-
pending on the airline and the particular flight. Even flights
from the same airline with the same schedule (but with dif-
ferent departure dates) can have different numbers of tiers.
For example, there are two price tiers for the flight in Figure
1, four price tiers in Figure 4 and three price tiers in Figure
2 and Figure 3.

2We expected to record 168 (21 ∗ 8) price observations for
each flight. In fact, we found that on average each flight was
missing 25 observations due to problems during data collec-
tion including remote server failures, site changes, wrapper
bugs, etc.

120

250

750

1250

1750

2250

2750

12/18/2002 12/23/2002 12/28/2002 1/2/2003 1/7/2003 1/12/2003 1/17/2003

Date

P
ri

ce

Figure 1: Price change over time for United Air-
lines roundtrip flight#168:169 LAX-BOS departing
on Jan 12. This figure is an example of two price
tiers and how consumers might benefit from the
price drop.

250

750

1250

1750

2250

12/8/2002 12/13/2002 12/18/2002 12/23/2002 12/28/2002 1/2/2003 1/7/2003

Date

P
ri

ce

Figure 2: Price change over time for American Air-
lines roundtrip flight#192:223, LAX-BOS departing
on Jan 2. This figure shows an example of rapid
price fluctuation in the days priori to the New Year.

Price matching plays an important role in airline pricing
structure. Airlines use sophisticated software to track their
competitors’ pricing history and propose adjustments that
optimize their overall revenue. To change the price, airlines

250

750

1250

1750

2250

2750

12/8/2002 12/13/2002 12/18/2002 12/23/2002 12/28/2002 1/2/2003 1/7/2003

Date

P
ri

ce

Figure 3: Price change over time for American Air-
lines roundtrip flight#192:223, LAX-BOS departing
on Jan 7. This figure shows an example of three
price tiers and low price fluctuation

250

450

650

850

1050

1250

12/8/2002 12/13/2002 12/18/2002 12/23/2002 12/28/2002 1/2/2003 1/7/2003

Date

P
ri

ce

Figure 4: Price change over time for Alaska Airlines
roundtrip flight#6:3, SEA-IAD departing on Jan 4.
This figure shows an example of four price tiers.

need to submit the change to the Airline Tariff Publish-
ing Company(ATPCO),3 the organization formed by leading
airlines around the world that collects and distributes airline
pricing data. The whole process of detecting competitors’
fare changes, deciding whether or not to match competitors’
prices, and submitting the price update at ATPCO can take
up to one day [19].

Price changes appear to be fairly orderly on some flights
(e.g., Figure 3), and we see evidence of the well-known 7
and 14 day “advance purchase” fares. However, we also
see plenty of surprising price changes. For example, flights
that depart around holidays appear to fluctuate more (e.g.,
Figure 2. Figure 2 and Figure 3 show how pricing strategies
differ between two flights from American Airlines that have
the same schedule but fly on different dates. Figure 2 shows
a flight that departs around the new year, while Figure 3
shows the flight that departs one week after the first flight.
Both flights have the tier structure that we described earlier
in this section, but ticket prices in the first flight fluctuate
more often.

In terms of pricing strategy, we can divide the airlines
into two categories. The first category covers airlines that
are big players in the industry, such as United Airlines, and
American Airlines. The second category covers smaller air-
lines that concentrate on selling low-price tickets, such as
Air Trans and Southwest. We have found that pricing poli-
cies tend to be similar for airlines that belong to the same
category. Fares for airlines in the first category are expen-
sive and fluctuate often, while fares for airlines in the second
category are moderate and appear relatively stable. How-
ever, there are some policies that every airline seems to use.
For example, airlines usually increase ticket prices two weeks
before departure dates and ticket prices are at a maximum
on departure dates.

3. RELATED WORK
Previous work in the AI community on the problem of

predicting product prices over time has been limited to the
Trading Agent Competition (TAC) [27]. In 2002, TAC fo-
cused on the travel domain. TAC relies on a simulator of
airline, hotel, and ticket prices and the competitors build
agents to bid on these. The problem is different from ours
since the competition works as an auction (similar to Price-

3see http://www.atpco.net.

121

line.com). Whereas we gathered actual flight price data from
the web, TAC simulates flight prices using a stochastic pro-
cess that follows a random walk with an increasingly upward
bias. Also, the TAC auction of airline tickets assumes that
the supply of airline tickets is unlimited. Several TAC com-
petitors have explored a range of methods for price predic-
tion including historical averaging, neural nets, and boost-
ing. It is difficult to know how these methods would perform
if reconfigured for our price mining task.

There has been some recent interest in temporal data min-
ing (see [23] for a survey). However, the problems studied
under this heading are often quite different from our own
(e.g., [1]). There has also been algorithmic work on time se-
ries methods within the data mining community (e.g., [4]).
We discuss time series methods below.

Problems that are closely related to price prediction over
time have been studied in statistics under the heading of
“time series analysis” [7, 13, 9] and in computational fi-
nance [20, 22, 21] under the heading of “optimal stopping
problems”. However, these techniques have not been used
to predict price changes for consumer goods based on data
available over the web. Moreover, we combine these tech-
niques with rule learning techniques to improve their per-
formance.

Computational finance is concerned with predicting prices
and making buying decisions in markets for stock, options,
and commodities. Prices in such markets are not determined
by a hidden algorithm, as in the product pricing case, but
rather by supply and demand as determined by the actions
of a large number of buyers and sellers. Thus, for example,
stock prices tend to move in small incremental steps rather
than in the large, tiered jumps observed in the airline data.

Nevertheless, there are well known problems in options
trading that are related to ours. First, there is the early ex-
ercise of American Calls on stocks that pay dividends. The
second problem is the exercise of American Puts on stocks
that don’t pay dividends. These problems are described in
sections 11.12 and 7.6 respectively of [14]. In both cases,
there may be a time before the expiration of an option at
which its exercise is optimal. Reinforcement learning meth-
ods have been applied to both problems, and that is one
reason we consider reinforcement learning for our problem.

Time series analysis is a large body of statistical tech-
niques that apply to a sequence of values of a variable that
varies over time due to some underlying process or structure
[7, 13, 9]. The observations of product prices over time are
naturally viewed as time series data. Standard data mining
techniques are “trained” on a set of data to produce a pre-
dictive model based on that data, which is then tested on a
separate set of test data. In contrast, time series techniques
would attempt to predict the value of a variable based on
its own history. For example, our moving average model at-
tempts to predict the future changes in the price of a ticket
on a flight from that flight’s own price history.

There is also significant interest in bidding and pricing
strategies for online auctions. For example, in [24] Harshit et
al. use cluster analysis techniques to categorize the bidding
strategies being used by the bidders. And in [17], Lucking-
Reiley et al. explore the various factors that determine the
final price paid in an online auction, such as the length of
the auction, whether there is a reserve price, and the reputa-
tion of the seller. However, these techniques are not readily
applicable to our price mining problem.

Comparison shopping “bots” gather price data available
on the web for a wide range of products.4 These are de-
scendants of the Shopbot [11] which automatically learned
to extract product and price information from online mer-
chants’ web sites. None of these services attempts to analyze
and predict the behavior of product prices over time. Thus,
the data mining methods in this paper complement the body
of work on shopbots.

4. DATA MINING METHODS
In this section we explain how we generated training data,

and then describe the various data mining methods we in-
vestigated: Ripper [8], Q-learning [25], and time series [13,
9]. We then explain how our data mining algorithm, Ham-

let, combines the results of these methods using a variant
of stacked generalization [26, 28].

Our data consists of price observations recorded every 3
hours over a 41 day period. Our goal is to learn whether to
buy a ticket or wait at a particular time point, for a particu-
lar flight, given the price history that we have recorded. All
of our experiments enforce the following essential temporal
constraint: all the information used to make a decision at
particular time point was recorded before that time point.
In this way, we ensure that we rely on the past to predict
the future, but not vice versa.

4.1 Rule Learning
Our first step was to run the popular Ripper rule learning

system [8] on our training data. Ripper is an efficient sep-
arate and conquer rule learner. We represented each price
observation to Ripper as a vector of the following features:

• Flight number.

• Number of hours until departure (denoted as hours-
before-takeoff).

• Current price.

• Airline.

• Route (LAX-BOS or SEA-IAD).

The class labels on each training instance were ‘buy’ or
‘wait’.

We considered a host of additional features derived from
the data, but they did not improve Ripper’s performance.
We did not represent key variables like the number of unsold
seats on a flight, whether an airline is running a promotion,
or seasonal variables because Hamlet did not have access
to this information. However, see Section 6 for a discussion
of how Hamlet might be able to obtain this information in
the future.

Some sample rules generated by Ripper are shown in Fig-
ure 5.

In our domain, classification accuracy is not the best met-
ric to optimize because the cost of misclassified examples
is highly variable. For example, misclassifying a single ex-
ample can cost from nothing to upwards of $2,000. Meta-
Cost [10] is a well-known general method for training cost-
sensitive classifiers. In our domain, MetaCost will make a
learned classifier either more conservative or more aggres-
sive about waiting for a better price, depending on the cost

4See, for example, froogle.google.com and mysimon.com.

122

IF hours-before-takeoff >= 252 AND price >= 2223
AND route = LAX-BOS THEN wait

IF airline = United AND price >= 360
AND hours-before-takeoff >= 438 THEN wait

Figure 5: Sample Ripper rules.

of misclassifying a ‘buy’ as a ‘wait’ compared with the cost
of misclassifying a ‘wait’ as a ‘buy’. We implemented Meta-
Cost with mixed results.

We found that MetaCost improves Ripper’s performance
by 14 percent, but that MetaCost hurts Hamlet’s overall
performance by 29 percent. As a result, we did not use
MetaCost in Hamlet.

4.2 Q-learning
As our next step we considered Q-learning, a species of

reinforcement learning [25]. Reinforcement learning seems
like a natural fit because after making each new price ob-
servation Hamlet has to decide whether to buy or to wait.
Yet the reward (or penalty) associated with the decision is
only determined later, when Hamlet determines whether it
saved or lost money through its buying policy. Reinforce-
ment learning is also a popular technique in computational
finance [20, 22, 21].

The standard Q-learning formula is:

Q(a, s) = R(s, a) + γmaxa′(Q(a′, s′))

Here, R(s, a) is the immediate reward, γ is the discount
factor for future rewards, and s′ is the state resulting from
taking action a in state s. We use the notion of state to
model the state of the world after each price observation
(represented by the price, flight number, departure date,
and number of hours prior to takeoff). Thus, there are two
possible actions in each state: b for ‘buy’ and w for ‘wait’.

Of course, the particular reward function used is critical
to the success (or failure) of Q-learning. In our study, the
reward associated with b is the negative of the ticket price
at that state, and the state resulting from b is a terminal
state so there is no future reward. The immediate reward
associated with w is zero as long as economy tickets on the
flight do not sell out in the next time step. We set γ = 1,
so we do not discount future rewards.

To discourage the algorithm from learning a model that
waits until flights sell out, we introduce a “penalty” for such
flights in the reward function. Specifically, in the case where
the flight does sell out at the next time point, we make
the immediate reward for waiting a negative constant whose
absolute value is substantially greater than the price for any
flight. We set the reward for reaching a sold-out state to be
−300, 000. This setting can best be explained below, after
we introduce a notion of equivalence classes among states.

In short, we define the Q function by

Q(b, s) = −price(s)

Q(w, s) =

{

−300000 if flight sells out after s.
max(Q(b, s′), Q(w, s′)) otherwise.

To generalize from the training data we used a variant
of the averaging step described in [18]. More specifically,
we defined an equivalence class over states, which enabled
the algorithm to train on a limited set of observations of the

class and then use the learned model to generate predictions
for other states in the class.

To define our equivalence class we need to introduce some
notation. Airlines typically use the same flight number (e.g.,
UA 168) to refer to multiple flights with the same route
that depart at the same time on different dates. Thus,
United flight 168 departs once daily from LAX to Boston at
10:15pm. We refer to a particular flight by a combination of
its flight number and date. For example, UA168-Jan7 refers
to flight 168 which departs on January 7th, 2003. Since we
observe the price of each flight eight times in every 24 hour
period, there are many price observations for each flight. We
distinguish among them by recording the time (number of
hours) until the flight departs. Thus, UA168-Jan7-120 is the
price observation for flight UA168, departing on January 7,
which was recorded on January 2nd (120 hours before the
flight departs on the 7th). Our equivalence class is the set of
states with the same flight number and the same hours be-
fore takeoff, but different departure dates. Thus, the states
denoted UA168-Jan7-120 and UA168-Jan10-120 are in the
same equivalence class, but the state UA168-Jan7-117 is not.
We denote that s and s∗ are in the same equivalence class
by s ∼ s∗.

Thus, our revised Q-learning formula is:

Q(a, s) = Avgs∗∼s(R(s∗, a) + maxa′(Q(a′, s′)))

The reason for choosing -300,000 is now more apparent:
the large penalty can tilt the average toward a low value,
even when many Q values are being averaged together. Sup-
pose, for example, that there are ten training examples in
the same equivalence class, and each has a current price of
$2,500. Suppose now that in nine of the ten examples the
price drops to $2,000 at some point in the future, but the
flight in the tenth example sells out in the next state. The Q
value for waiting in any state in this equivalence class will be
(−300, 000−2, 000∗9)/10 = −31, 800, or still much less then
the Q value for any equivalence class where no flight sells
out in the next state. Thus the choice of reward for a flight
that sells out will determine how willing the Q-Learning al-
gorithm will be to risk waiting when there’s a chance a flight
may sell out. Using a hill climbing search in the space of
penalties, we found -300,000 to be locally optimal.

Q-learning can be very slow, but we were able to ex-
ploit the structure of the problem and the close relationship
between dynamic programming and reinforcement learning
(see [25]) to complete the learning in one pass over the train-
ing set. Specifically, the reinforcement learning problem we
face has a particularly nice structure, in which the value
of Q(b, s) depends only on the price in state s, and the
value of Q(w, s) depends only on the Q values of exactly
one other state: the state containing the same flight num-
ber and departure date but with three hours less time left
until departure. Applying dynamic programming is thus
straightforward, and the initial training step requires only
a single pass over the data. In order to compute averages
over states in the same equivalence class, we keep a running
total and a count of the Q values in each equivalence class.
Thus, the reinforcement learning algorithm just makes a sin-
gle pass over the training data, which bodes well for scaling
the algorithm to much larger data sets.

The output of Q-learning is the learned policy, which de-
termines whether to buy or wait in unseen states by mapping
them to the appropriate equivalence class and choosing the

123

action with the lowest learned cost.

4.3 Time Series
Time series analysis is a large and diverse subfield of

statistics whose goal is to detect and predict trends. In this
paper, we investigated a first order moving average model.
At time step t, the model predicts the price one step into the
future, pt+1, based on a weighted average of prices already
seen. Thus, whereas Q-learning and Ripper attempt to gen-
eralize from the behavior of a set of flights in the training
data to the behavior of future flights, the moving average
model attempts to predict the price behavior of a flight in
the test data based on its own history.

At time t, we predict the next price using a fixed window
of price observations, pt−k+1, . . . , pt. (In Hamlet, we found
that setting k to one week’s worth of price observations was
locally optimal.) We take a weighted average of these prices,
weighting the more recent prices more and more heavily.
Formally, we predict that pt+1 will be

∑

k

i=1
α(i)pt−k+i

∑

k

i=1
α(i)

where α(i) is some increasing function of i. We experi-
mented with different α functions and chose a simple linearly
increasing function.

Given the time series prediction, Hamlet relies on the
following simple decision rule: if the model predicts that
pt+1 > pt, then buy, otherwise wait. Thus, our time series
model makes its decisions based on a one-step prediction
of the ticket price change. The decision rule ignores the
magnitude of the difference between pt+1 and pt, which is
overly simplistic, and indeed the time series prediction does
not do very well on its own (see Table 3). However, Hamlet

uses the time series predictions extensively in its rules. In
effect, the time series prediction provides information about
how the current price compares to a local average, and that
turns out to be valuable information for Hamlet.

4.4 Stacked Generalization
Ensemble-based learning techniques such as bagging [5],

boosting [12], and stacking [26, 28], which combine the re-
sults of multiple generalizers, have been shown to improve
generalizer accuracy on many data sets. In our study, we
investigated multiple data mining methods with very differ-
ent characteristics (Ripper, Q-learning, and time series) so
it makes sense to combine their outputs.

We preferred stacking to voting algorithms such as
weighted majority [16] or bagging [5] because we believed
that there were identifiable conditions under which one
method’s model would be more successful than another. See,
for example, the sample rule in Figure 6.

Standard stacking methods separate the original vec-
tor representation of training examples (level-0 data in
Wolpert’s terminology), and use the class labels from each
level-0 generalizer, along with the example’s true classifi-
cation as input to a meta-level (or level-1) generalizer. To
avoid over-fitting, “care is taken to ensure that the mod-
els are formed from a batch of training data that does not
include the instance in question” [26].

In our implementation of stacking, we collapsed level-0
and level-1 features. Specifically, we used the feature repre-
sentation described in Section 4.1 but added three additional
features corresponding to the class labels (buy or wait) com-

Let TS be the output of the Time Series algorithm,
and let QL be the output of Q-Learning.

IF hours-before-takeoff >= 480 AND airline = United
AND price >= 360 AND TS = buy AND QL = wait
THEN wait

Figure 6: A sample rule generated by Hamlet.

puted for each training example by our level-0 generalizers.
To add our three level-1 features to the data, we applied
the model produced by each base-level generalizer (Ripper,
Q-learning, and time series) to each instance in the training
data and labeled it with ‘buy’ or ‘wait’. Thus, we added
features of the form TS = buy (time series says to buy) and
QL = wait (Q-learning says to wait).

We then used Ripper as our level-1 generalizer, running
it over this augmented training data. We omitted leave-
one-out cross validation because of the temporal nature of
our data. Although a form of cross validation is possible
on temporal data, it was not necessary because each of our
base learners did not appear to overfit the training data.

Our stacked generalizer was our most successful data min-
ing method as shown in Table 3 and we refer to it as Ham-

let.

4.5 Hand-Crafted Rule
After we studied the data in depth and consulted with

travel agents, we were able to come up with a fairly simple
policy “by hand”. We describe it below, and include it in our
results as a baseline for comparison with the more complex
models produced by our data mining algorithms.

The intuition underlying the hand-crafted rules is as fol-
lows. First, to avoid sell outs we do not want to wait too
long. By inspection of the data, we decided to buy if the
price has not dropped within 7 days of the departure date.
We can compute an expectation for the lowest price of the
flight in the future based on similar flights in the training
data.5 If the current price is higher than the expected min-
imum then it is best to wait. Otherwise, we buy.

More formally, let MinPrice(s, t) of a flight in the train-
ing set denote the minimum price of that flight over the
interval starting from s days before departure up until
time t (or until the flight sells out). Let ExpPrice(s, t)
for a particular flight number denote the average over all
MinPrice(s, t) for flights in the training set with that flight
number. Suppose a passenger asks at time t0 to buy a ticket
that leaves in s0 days, and whose current price is CurPrice.
The hand-crafted rule is shown in Figure 7.

IF ExpPrice(s0, t0) < CurPrice
AND s0 > 7 days THEN wait
ELSE buy

Figure 7: Hand-crafted rule for deciding whether to
wait or buy.

We also considered simpler decision rules of the form “if
the current time is less than K days before the flight’s de-
parture then buy.” In our simulation (described below) we

5For “similar” flights we used flights with the same airline
and flight number.

124

tested such rules for K ranging from 1 to 22, but none of
these rules resulted in savings and some resulted in sub-
stantial losses.

5. EXPERIMENTAL RESULTS
In this section we describe the simulation we used to as-

sess the savings due to each of the data mining methods
described earlier. We then compare the methods in Table 3,
perform a sensitivity analysis of the comparison along sev-
eral dimensions, and consider the implications of our pilot
study.

5.1 Ticket Purchasing Simulation
The most natural way to assess the quality of the predic-

tive models generated by the data mining methods described
in Section 4 is to quantify the savings that each model would
generate for a population of passengers. For us, a passenger
is a person wanting to buy a ticket on a particular flight
at a particular date and time. It is easy to imagine that
an online travel agent such as Expedia or Travelocity could
offer discounted fares to passengers on its web site, and use
Hamlet to appropriately time ticket purchases behind the
scenes. For example, if Hamlet anticipates that a fare will
drop by $500, the agent could offer a $300 discount and keep
$200 as compensation and to offset losses due prediction er-
rors by Hamlet.

Since Hamlet is not yet ready for use by real passengers,
we simulated passengers by generating a uniform distribu-
tion of passengers wanting to purchase tickets on various
flights as a function of time. Specifically, the simulation
generated one passenger for each fare observation in our set
of test data. The total number of passengers was 4,488.
Thus, each simulated passenger has a particular flight for
which they need to buy a ticket and an earliest time point
at which they could purchase that ticket (called the “earliest
purchase point”). The earliest purchase points, for different
simulated passengers, varied from 21 days before the flight
to the day of the flight.

At each subsequent time point, Hamlet decides whether
to buy a ticket immediately or to wait. This process con-
tinues until either the passenger buys a ticket or economy
seats on the flight sell out, in which case Hamlet will buy
a higher priced business-class ticket for the flight.6 We de-
fined upgrade costs as the difference between the cost of a
business class ticket and the cost of an economy ticket at
the earliest purchase point. In our simulation, Hamlet was
forced to “upgrade” passengers to business class only 0.42%
of the time, but the total cost of these upgrades was quite
high ($38,743 in Table 3).7

We recorded for each simulated passenger, and for each
predictive model considered, the price of the ticket pur-
chased and the optimal price for that passenger given their
earliest time point and the subsequent price behavior for
that flight. The savings (or loss) that a predictive model
yields for a simulated passenger is the difference between the
price of a ticket at the earliest purchase point and the price

6It’s possible, of course, for business class to sell out as well,
in which case Hamlet would have to buy a first-class ticket
or re-book the passenger on a different flight. However, busi-
ness class did not sell out in our simulation.
7Since we did not collect upgrade costs for all flights, our
upgrade costs are approximate but always positive and often
as high as $1,000 or more.

of the ticket at the point when the predictive model recom-
mends buying. Net savings is savings net of both losses and
upgrade costs.

5.2 Savings
Table 3 shows the savings, losses, upgrade costs, and net

savings achieved in our simulation by each predictive model
we generated. We also report on the frequency of upgrades
as a percentage of the total passenger population, the net
savings as a percent of the total ticket price, and the perfor-
mance of each model as a percent of the maximal possible
savings.

The models we used are the following:

• Optimal: This model represents the maximal possi-
ble savings, which are computed by a “clairvoyant” al-
gorithm with perfect information about future prices,
and which obtained the best possible purchase price
for each passenger.

• By hand: This model was hand-crafted by one of
the authors after consulting with travel agents and
throughly analyzing our training data (see Figure 7).

• Time series: This model was generated by the mov-
ing average method described earlier.

• Ripper: This model was generated by Ripper.

• Q-learning: This model was generated by our Q-
learning method.

• Hamlet: This model was generated by our stacking
generalizer which combined the results of Ripper, Q-
learning, and Time series.

Table 3 shows a comparison of the different methods. Note
that the savings measure we focus on is savings net of losses
and upgrade costs. We see that Hamlet outperformed each
of the learning methods as well as the hand-crafted model
to achieve a net savings of $198,074. Furthermore, despite
the fact that Hamlet had access to a very limited price
history and no information about the number of unsold seats
on the flight, its net savings were a remarkable 61.8% of
optimal. Finally, while an average net savings of 4.4% may
not seem like much, passengers spend billions of dollars on
air travel each year so 4.4% amounts to a substantial number
of dollars.

We believe that our simulation understates the savings
that Hamlet would achieve in practice. For close to 75% of
the passengers in our test set, savings were not possible be-
cause prices never dropped from the earliest purchase point
until the flight departed. We report the percent savings in
ticket prices over the set of flights where savings was possible
(“feasible flights”) in Table 4. These savings figures are of
interest because of the unrealistic distribution of passengers
in our simulation. Because we only gathered data for 21
days before each flight in our test set, passengers “arrived”
at most 21 days before a flight. Furthermore, due to the
uniform distribution of passengers, 33% of the passengers
arrived at most 7 days before the flight’s departure, when
savings are hard to come by. In fact, on our test data, Ham-

let lost money for passengers who “arrived” in the last 7
days prior to the flight. We believe that in practice we would
find additional opportunities to save money for the bulk of
passengers who buy their tickets more than 7 days before
the flight date.

125

Method Savings Losses Upgrade Cost % Upgrades Net Savings % Savings % of Optimal

Optimal $320,572 $0 $0 0% $320,572 7.0% 100%
By hand $228,318 $35,329 $22,472 0.36% $170,517 3.8% 53.2%
Ripper $211,031 $4,689 $33,340 0.45% $173,002 3.8% 54.0%
Time Series $269,879 $6,138 $693,105 33.0% -$429,364 -9.5% -134%
Q-learning $228,663 $46,873 $29,444 0.49% $152,364 3.4% 47.5%
Hamlet $244,868 $8,051 $38,743 0.42% $198,074 4.4% 61.8%

Table 3: Savings by Method.

Method Net Savings

Optimal 30.6%
By hand 21.8%
Ripper 20.1%
Time Series 25.8%
Q-learning 21.8%
Hamlet 23.8%

Table 4: Comparison of Net Savings (as a percent
of total ticket price) on Feasible Flights.

5.3 Sensitivity Analysis
To test the robustness of our results to changes in our sim-

ulation, we varied two key parameters. First, we changed
the distribution of passengers requesting flight tickets. Sec-
ond, we changed the model of a passenger from one where
a passenger wants to purchase a ticket on a particular flight
to one where a passenger wants to fly at any time during
a three hour interval. The interval model is similar to the
interface offered at many travel web sites where a potential
buyer specifies if they want to fly in the morning, afternoon,
or evening.

We used the following distributions to model the earliest
purchase point (i.e., the first time point at which passengers
“arrive” and need to decide whether to buy a ticket or to
wait):

• Uniform: a uniform distribution of simulated pas-
sengers over the 21 days before the flight’s departure
date;

• Linear Decrease: a distribution in which the number
of passengers arriving at the system decreased linearly
as the amount of time left before departure decreased;

• Quadratic Decrease: a distribution like Linear De-
crease, but with a quadratic relationship;

• Square Root Decrease: a distribution like Linear
Decrease, but with a square root relationship;

• Linear Increase: a distribution like Linear Decrease,
except that the number of passengers increase as the
amount of time left before departure decreased;

• Quadratic Increase: a distribution like Linear In-
crease, but with a quadratic relationship;

• Square Root Increase: a distribution like Linear
Increase, but with a square root relationship.

Table 6 reports the net savings, as a percentage of the to-
tal ticket price, under the different distributions. Hamlet

saved more than 2.5% of the ticket price in all cases, and

it saved more than any other method on all distributions
except the Quadratic Decrease distribution, where it per-
formed slightly worse than the hand-crafted decision rule.
Hamlet’s savings were above 38% of optimal in all cases.

Table 5 reports on the performance of the different meth-
ods under the modified model where a passenger requests a
ticket on a non-stop flight that departs at any time during a
particular three hour interval (e.g., morning). This different
model does not change our results qualitatively. Hamlet

still achieves a substantial percentage of the optimal sav-
ings (59.2%) and its percentage of upgrades drops to only
0.1%. Finally, Hamlet still substantially outperforms the
other data mining methods.

Method Net Savings % of Optimal % upgrades

Optimal $323,802 100% 0%
By hand $163,523 55.5% 0%
Ripper $173,234 53.5% 0%
Time Series -$262,749 -81.1% 6.3%
Q-Learning $149,587 46.2% 0.2%
Hamlet $191,647 59.2% 0.1%

Table 5: Performance of algorithms on multiple
flights over three hour interval.

Overall, our analysis confirms that Hamlet’s perfor-
mance on the test data is robust to the parameters we varied.

6. FUTURE WORK
There are several promising directions for future work on

price mining. We plan to perform a more comprehensive
study on airline pricing with data collected over a longer
period of time and over more routes. We plan to include
multi-leg flights in this new data set. The pricing behavior
of multi-leg flights is different than that of non-stop flights
because each leg in the flight can cause a change in the price,
and because pricing through airline hubs appears to behave
differently as well.

We also plan to exploit other sources of information to
further improve Hamlet’s predictions. We do not currently
have access to a key variable — the number of unsold seats
on a flight. However, on-line travel agents and centralized
reservation systems such as Sabre or Galileo do have this
information. If we had access to the number of unsold seats
on a flight, Hamlet could all but eliminate the need to
upgrade passengers, which is a major cost.

To use the methods in this paper on the full set of domes-
tic and international flights on any given day would require
collecting vast amounts of data. One possible way to address
this problem is to build agents on demand that collect the
required data to make price predictions for on a particular
future flight on a particular day. The agents would still need

126

Distribution By hand Q-Learn Time Series Ripper Hamlet

Quadratic Decrease 4.07% 3.77% -24.96% 2.46% 3.96%
Linear Decrease 4.70% 4.30% -26.76% 4.13% 5.17%
Sqrt Decrease 4.47% 4.04% -29.05% 4.23% 5.03%
Uniform 3.77% 3.37% -32.55% 3.83% 4.38%
Sqrt Increase 3.66% 3.24% -34.63% 4.05% 4.39%
Linear Increase 3.13% 2.72% -36.55% 3.62% 3.85%
Quadratic Increase 2.10% 1.74% -39.90% 2.48% 2.60%

Table 6: Sensitivity of Methods to Distribution of Passengers’ Earliest Purchase Points. The numbers
reported are the savings, as a percentage of total ticket price, achieved by each algorithm under each distri-
bution. We see that Hamlet outperforms Q-learning, time series, and Ripper on all distributions.

to collect data for multiple flights, but the amount of data
would be much smaller. This type of agent would fit well
within the Electric Elves system [6, 2], which deploys a set
of personalized agents to monitor various aspects of a trip.
For example, Elves can notify you if your flight is delayed
or canceled or let you know if there is an earlier connecting
flight to your destination.

Beyond airline pricing, we believe that the techniques de-
scribed in this paper will apply to other product categories.
In the travel industry, hotels and car rental agencies employ
many of the same pricing strategies as the airlines and it
would be interesting to see how much Hamlet can save in
these product categories. Similarly, online shopping sites
such as Amazon and Wal-mart are beginning to explore
more sophisticated pricing strategies and Hamlet will al-
low consumers to make more informed decisions. Finally,
reverse auction sites, such as half.com, also provide an op-
portunity for Hamlet to learn about pricing over time and
make recommendations about purchasing an item right away
or waiting to buy it. In general, price mining over time pro-
vides a new dimension for comparison shopping engines to
exploit.

We recognize that if a progeny of Hamlet would achieve
wide spread use it could start to impact the airlines’ (already
slim) profit margins. Could the airlines introduce noise into
their pricing patterns in an attempt to fool a price miner?
While we have not studied this question in depth, the ob-
vious problem is that changing fares on a flight in order to
fool a price miner would impact all consumers considering
buying tickets on that flight. If the price of a ticket moves
up substantially, then consumers are likely to buy tickets
on different flights resulting in a revenue loss for the airline.
Similarly, if the price moves down substantially, consumers
will be buying tickets at a discount resulting in a revenue
loss again. Thus, to avoid these distortions, the airlines are
forced to show the prices that they actually want to charge
for tickets. Of course, there are more prosaic methods of
trying to block a price miner such as placing prices inside
GIF files or blocking the IP address of the price miner. How-
ever, an “industrial strength” price miner would not rely on
“scraping” information from web sites, but would access a
fare database directly.

7. CONCLUSION
This paper reported on a pilot study in “price mining”

over the web. We gathered airfare data from the web and
showed that it is feasible to predict price changes for flights
based on historical fare data. Despite the complex algo-
rithms used by the airlines, and the absence of informa-

tion on key variables such as the number of seats available
on a flight, our data mining algorithms performed surpris-
ingly well. Most notably, our Hamlet data mining method
achieved 61.8% of the possible savings by appropriately tim-
ing ticket purchases.

Our algorithms were drawn from statistics (time series
methods), computational finance (reinforcement learning)
and classical machine learning (Ripper rule learning). Each
algorithm was tailored to the problem at hand (e.g., we
devised an appropriate reward function for reinforcement
learning), and the algorithms were combined using a vari-
ant of stacking to improve their predictive accuracy.

Additional experiments on larger airfare data sets and in
other domains (e.g., hotels, reverse auctions) are essential,
but this initial pilot study provides the first demonstration of
the potential of price mining algorithms to save consumers
substantial amounts of money using data available on the
Internet. We believe that price mining of this sort is a fertile
area for future research.

8. ACKNOWLEDGMENTS
We thank Haym Hirsh, John Moody, and Pedro Domingos

for helpful suggestions. This paper is based upon work sup-
ported in part by the Air Force Office of Scientific Research
under grant number F49620-01-1-0053 to USC. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of any of the above organizations or any person connected
with them.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In P. S. Yu and A. S. P. Chen, editors,
Eleventh International Conference on Data
Engineering, pages 3–14, Taipei, Taiwan, 1995. IEEE
Computer Society Press.

[2] J. L. Ambite, G. Barish, C. A. Knoblock, M. Muslea,
J. Oh, and S. Minton. Getting from here to there:
Interactive planning and agent execution for
optimizing travel. In Proceedings of the Fourteenth
Conference on Innovative Applications of Artificial
Intelligence (IAAI-2002), pages 862–869, AAAI Press,
Menlo Park, CA, 2002.

[3] G. Barish and C. A. Knoblock. An efficient and
expressive language for information gathering on the
web. In Proceedings of the AIPS-2002 Workshop on Is
there life after operator sequencing? – Exploring real
world planning, pages 5–12, Tolouse, France, 2002.

127

[4] D. Berndt and J. Clifford. Finding patterns in time
series: a dynamic programming approach. In
U. Fayyad, G. Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data
Mining. AAAI Press, 1996.

[5] L. Breiman. Bagging predictors. Machine Learning,
24:123–140, 1996.

[6] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman,
J. Oh, D. V. Pynadath, T. A. Russ, and M. Tambe.
Electric elves: Applying agent technology to support
human organizations. In Proceedings of the Conference
on Innovative Applications of Artificial Intelligence,
2001.

[7] C. Chatfield. The Analysis of Time Series: An
Introduction. Chapman and Hall, London, UK, 1989.

[8] W. W. Cohen. Fast effective rule induction. In
A. Prieditis and S. Russell, editors, Proc. of the 12th
International Conference on Machine Learning, pages
115–123, Tahoe City, CA, July 9–12, 1995. Morgan
Kaufmann.

[9] F. Diebold. Elements of Forecasting. South-Western
College Publishing, 2nd edition, 2000.

[10] P. Domingos. MetaCost: A general method for making
classifiers cost-sensitive. In Proceedings of the Fifth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
155–164, San Diego, CA, 1999. ACM Press.

[11] R. Doorenbos, O. Etzioni, and D. Weld. A scalable
comparison-shopping agent for the World-Wide Web.
In Proc. First Intl. Conf. Autonomous Agents, pages
39–48, 1997.

[12] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In Proceedings of the
Thirteenth International Conference on Machine
Learning, pages 148–156, Bari, Italy, 1996. Morgan
Kaufmann.

[13] C. W. J. Granger. Forecasting in Business and
Economics. Harcourt Brace, second edition, 1989.

[14] J. C. Hull. Options, Futures, and Other Derivatives.
Prentice Hall College Div, 5th edition, 2002.

[15] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea.
Accurately and reliably extracting data from the web:
A machine learning approach. In P. S. Szczepaniak,
J. Segovia, J. Kacprzyk, and L. A. Zadeh, editors,
Intelligent Exploration of the Web, pages 275–287.
Springer-Verlag, Berkeley, CA, 2003.

[16] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212–261, February 1994.

[17] D. Lucking-Reiley, D. Bryan, N. Prasad, and
D. Reeves. Pennies from ebay: The determinants of
price in online auctions. Technical report, University
of Arizona, 2000.

[18] S. Mahadevan. Average reward reinforcement
learning: Foundations, algorithms, and empirical
results. Machine Learning, 22(1-3):159–195, 1996.

[19] S. McCartney. Airlines Rely on Technology To
Manipuate Fare Structure. Wall Street Journal,
November 3 1997.

[20] J. Moody and M. Saffell. Reinforcement learning for
trading systems and portfolios. In KDD, pages
279–283, 1998.

[21] J. Moody and M. Saffell. Minimizing downside risk via
stochastic dynamic programming. In Y. S.
Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S.
Weigend, editors, Computational Finance 1999,
Cambridge, MA, 2000. MIT Press.

[22] J. Moody and M. Saffell. Learning to trade via direct
reinforcement. In IEEE Transactions on Neural
Networks, Vol. 12, No. 4, 2001.

[23] J. F. Roddick and M. Spiliopoulou. A bibliography of
temporal, spatial and spatio-temporal data mining
research. SIGKDD Explorations, 1(1):34–38, 1999.

[24] H. S. Shah, N. R. Joshi, A. Sureka, and P. R. Wurman.
Mining for bidding strategies on ebay. In Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2003.

[25] R. S. Sutton and A. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[26] K. M. Ting and I. H. Witten. Issues in stacked
generalization. Journal of Artificial Intelligence
Research, 10:271–289, 1999.

[27] M. P. Wellman, D. M. Reeves, K. M. Lochner, and
Y. Vorobeychik. Price prediction in a trading agent
competition. Technical report, University of Michigan,
2002.

[28] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

128

