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Early Round Bluffing in Poker

California Jack Cassidy

Abstract. Using a simplified form of the Von Neumann and Morgenstern poker calculations,
the author explores the effect of hand volatility on bluffing strategy, and shows that one should
never bluff in the first round of Texas Hold’Em.

1. INTRODUCTION. The phrase “the mathematics of bluffing” often brings a
puzzled response from nonmathematicians. “Isn’t that an oxymoron? Bluffing is psy-
chological,” they might say, or, “Bluffing doesn’t work in online poker. You can’t see
people’s faces.” There is a definite psychological aspect to bluffing in poker, as there
is in any competitive game. But first and foremost it is a mathematical technique.

The basic mathematics of bluffing in the final betting round has been known for
years. We’ll recap some of that in this paper. What has not been known previously is
how to apply mathematics to bluffing in the early rounds. This paper presents tech-
niques to calculate bluffing strategy for any round of betting in poker. We use these
techniques to demonstrate a useful fact—that it is not profitable to bluff in the first
round of Texas Hold’Em poker.

2. VON NEUMANN AND MORGENSTERN. The mathematical study of bluffing
has its roots in papers published in the early 20th century by Emile Borel and John
Von Neumann. The biggest influence came from Von Neumann’s article, which he
originally published in German [6]. He translated the article to English for his book
with Oskar Morgenstern, Theory of Games and Economic Behavior [7], which we
will refer to as VNM. In order to talk about poker mathematically, the authors made a
number of simplifications.

Their game can be described by the extensive form diagram in Figure 1. At the start
of the game, there is one unit in the pot. The first move is a move of Nature, assigning a
random number from [0, 1] to each player. In our description, the lower hand is better,
that is, zero is the best possible hand. Player 1 (we’ll refer to Player 1 as “him” and
Player 2 as “her”) then makes a decision to Bet or to Check. If he checks, there is
an immediate showdown, which is to say that the hands are exposed and compared.
Whoever has the lowest hand wins the one-unit pot.

If Player 1 bets, putting one unit into the pot, then there is a move for Player 2. She
decides to call or drop. If she drops, then Player 1 gets the pot, +1 for him. If she calls,
adding one unit to the pot, there is a showdown with the lowest hand winning the three
unit pot. This makes a win of 2 units or a loss of 1 unit, depending on the values of the
hands.

VNM showed that this game has a pure strategy solution. (They also show a mixed
strategy solution, and multiple pure strategy solutions. We will use only the simplest
pure strategy.) The strategy is that Player 2 selects a threshold c, such that she will call
whenever her hand is better (lower) than c, and drop if her hand is worse. The Player 1
strategy that we will analyze has two parameters, b (bet) and d (deceive). He will bet
if his hand is better than b. He will also bet (that is to say bluff ) if his hand is worse
than d.
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Figure 1. Extensive form of the VNM poker game
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Figure 2. Payoff square for Player 1 in the VNM game

A complete strategy for the game is given by s1 = (b, d) and s2 = (c). We want
a Nash Equilibrium, which you will recall is a strategy in which neither player can
benefit from unilaterally changing their own strategy. When we say equilibrium, we
mean Nash Equilibrium. Following Zhang’s example [9], in Figure (2) we present a
“payoff square” giving the payoffs of the game.

VNM calculated the equilibrium strategy for this game to be s1 = ( 2
9 ,

8
9 ), s2 = ( 4

9 ).
Player 1 always bets with a hand better than 2

9 , and always bluffs with a hand worse
than 8

9 . Player 2 always calls with a hand better than 4
9 . (Note that for these calculations,

and all the others we discuss, the players behave hyper-rationally. They are aware of
all the odds and assume that their opponent is, too.)

The value of the game, which is the amount Player 1 can expect to win on average
using the equilibrium strategy, is 5

9 .
Note that in this solution 0 < b < c < d < 1.
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Definition 2.1. A bluff is a bet made with a hand in the range [d, 1].

Our definition of bluffing involves betting with your worst hands. This does not
include aggressive betting with hands almost good enough for a normal bet (see dis-
cussion of a semibluff in Section 11). Nor does it include betting with every hand
(b = d). We say there is no bluffing without the strict inequality b < d < 1.

The VNM game may seem very simple, but at the time it was published, it was a
major breakthrough. For one thing, it established the bluff as a mathematical strategy.
VNM shows that the bluff is a profitable strategy, even if your opponent knows exactly
which hands you use for bluffing.

In the equilibrium solution, each player’s strategy makes their opponent indifferent
to which strategy they choose for their marginal hands. That is to say that the values
b, c, and d will satisfy equations (1) below. The function u is the utility, or expected
return for a player. It has two arguments, the hand that the player holds, and the action
that they take. The equations say that at the margin between betting and checking b,
Player 1 gets an equal return whether he bets or checks. The same is true for the margin
between checking and bluffing, and the margin between calling and dropping.

Consider the equations

u1(b, bet) = u1(b, check),

u1(d, bet) = u1(d, check),

u2(c, call) = u2(c, drop). (1)

A published remark by poker theorist Norman Zadeh [8] led us to use such indifference
equations to calculate poker strategies in a previous paper [2]. This technique was
refined by Ferguson et al. [4], who introduced the term “indifference equation.”

3. INDIFFERENCE EQUATIONS. We’d like to justify the use of indifference
equations and demonstrate their usefulness in poker calculations. We begin with a
graphical, visual presentation of Player 1’s expectation in the VNM game using two
simple strategies.

In Figure 3 (left), he uses the strategy b = 1 (bet with any hand less than 1, which
is to say always), and d = 1 (never bluff). Player 2 is using the equilibrium strategy
discussed in Section 2, which is to call with hands lower than 4

9 , and fold otherwise.
When Player 1 uses this all-bet strategy, his expectation for the best possible hand
(zero) is two units when Player 2 calls, and one unit when she drops, for an expectation
of 2 · 4

9 + 1 · 5
9 = 13

9 . His expectation decreases linearly for higher hand values, until it
reaches Player 2’s calling threshold of 4

9 . For hands worse than that, he loses one unit
when she calls, and wins one unit when she drops, for a constant expectation of 1

9 .
In Figure 3 (right), Player 1 is using the strategy b = 0 and d = 1. He never bets.

His expectation is just what he gets from a showdown for the 1 unit in the pot.
Figure 4 is a superposition of the other two. It illustrates that for hands between 0

and 2
9 , Player 1 has a higher expectation from betting. For hands between 2

9 and 8
9 ,

he has a higher expectation from checking. And for hands between 8
9 and 1, he has

a higher expectation from betting. These values are in fact the ones found by Von
Neumann, as discussed in Section 2.

Ferguson et al. [4] provide a proof of the validity of indifference equations for
some games with no volatility. We cannot prove the general case, but do provide some
discussion in Section 7, and make the following Claim.
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Claim 3.1. A solution to indifference equations is a Nash equilibrium.

Once we accept indifference equations as a tool, poker calculations become much
simpler. We can easily calculate the VNM result in just a few lines.
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1 0 1
S1 = (1,1) , bet S1 = (0,1) , check

4
9

Figure 3. Player 1 pure strategy payoffs vs value of hand
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Figure 4. Superposition of simple strategies
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The final line of (1) comes into play only if Player 1 has a hand in [0, b] or [d, 1],
which causes him to make some kind of bet. The left side of the equation is Player
2’s cost (−1) plus her possible win (3) times the conditional probability that Player 1
was bluffing, given that he bet. The right side of the equation is what Player 2 gets by
dropping, which is zero. This gives us

− 1 + 3(1 − d)

(b + 1 − d)
= 0. (2)

This simplifies to b + 2d = 2.
Switching to Player 1’s indifference equations, the top two lines of (1), we note

that if he checks any arbitrary hand h, his expectation is one (the pot size) times the
probability that the opponent has a worse hand. Since his opponent’s hand is uniformly
distributed in [0, 1], that means u1(h, check) = 1 − h, where h is Player 1’s hand. His
betting expectation is the cost of the bet (−1), plus 2 units if Player 2 drops, plus 3
units if she calls with a worse hand,

u1(h, bet) =
{ −1 + 2(1 − c) + 3(c − h) if h ≤ c,

−1 + 2(1 − c) if h > c.
(3)

Using our knowledge that b < c < d, and letting h = b and h = d in the above, we
obtain two more equations in b, c, and d,

−1 + 2(1 − c) + 3(c − b) = 1 − b,

−1 + 2(1 − c) = 1 − d. (4)

Equations (2) and (4) are three equations with three unknowns. Solving these equations
gives us the VNM solution.

With a small adjustment, these equations can give us the equilibrium solution for
different bet sizes. They also let us solve the problem of different hand distributions
for the two players, for example if Player 1’s hand is dealt from U (0.05, 0.9), and
Player 2’s hand is dealt from U (0, 0.85). With more elaboration, they can be used to
solve a two-person game where both players have the option of betting, as in normal
poker [2].

In this paper we will use the simplicity of indifference equations to allow us to
examine betting strategies for other forms of poker.

4. ADDING VOLATILITY. Our main topic in this paper is the effect of hand volatil-
ity on betting strategy. In the VNM game, each player already has their final hand—
it’s not going to change. But in real poker, most of the betting takes place in the early
rounds, when there are still more cards to be dealt.

There are many ways that hand values can change. More cards can be added to the
hand (stud poker); you can exchange some cards for others (draw poker); community
cards can be dealt (Texas Hold’em, which we will call Holdem, as well as Omaha);
or cards can suddenly become wild (Follow the Queen). The net effect is that relative
hand value changes over the course of the game. An elegant paper by Bernasconi et al.
[1] addresses volatility by adding a step in which the hand values are reversed some of
the time. We’ll discuss the Bernasconi paper further in Section 8.

We model these changes by enriching the VNM model to make a game we call
VNMplus. In VNMplus, before any showdown, there is an additional move of Nature.
Each player gets a random number between 0 and r . This is added to their original
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U (0, 1) number. The player with the lowest total wins the pot. Neither player knows
their final hand during the betting round. If we set r = 0, we get the original VNM
game. There is more volatility when r is larger, so we call r the “relative volatility”
number.

Definition 4.1. VNMplus is the VNM game, with the addition of a random U (0, r)

deal before the showdown. We call r the “relative volatility.”

To illustrate how this can affect bluffing, we start with a case of very large r . The
extreme case of r = 100 is similar to r = ∞, but can more easily be dealt with numer-
ically.

We switch terminology now, referring to Player X and Player Y. It’s not important
for this example, but later we’ll use Player X for the player whose exact hand x is
known, and Player Y for the player whose hand is known to occupy a range [0, y].

For this example, Player X begins with known hand x and at showdown time has
a hand represented by the probability density function X (t) corresponding to the uni-
form distribution U (x, x + 100). Player Y begins with known hand y and at show-
down time has a hand represented by the probability density function Y (s) for the uni-
form distribution U (y, y + 100). These functions for the case x < y are illustrated in
Figure 5.

The probability of Player X getting a hand better than or equal to a particular hand
h is

∫ h
−∞ X (t) dt . The probability of Player Y getting a hand better than Player X is

given by the double integral

∫ ∞

−∞
X (t)

∫ t

−∞
Y (s) ds dt . (5)

0

0.01

y

Y (s )

y + 100

x x + 100
0

0.01
X (t )

Figure 5. X(t) and Y(s) for the very high volatility game

For the Y (s) we’re looking at, assuming t ≤ y + 100, the inner integral is
∫ t

−∞ Y (s) ds =∫ t
y 0.01 ds = 0.01(t − y). The outer integral, when x < y, becomes

∫ x+100

y
(0.01)(0.01)(t − y) dt

which is

1

2
+ 0.01(x − y) + 1

2
(0.01)(0.01)(x − y)2.

The worst case for Player Y is when y = 1 and x = 0, which gives Player Y winning
chances of 0.49005. Therefore, each player, X or Y, has a probability of winning a
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showdown that is slightly more or slightly less than 1
2 , depending on who has the

better starting hand.

Theorem 4.2. For the equilibrium solution of VNMplus with r = 100, there is no
bluffing.

Proof. For Player 2’s strategy, we observe that calling is always better than dropping,

u2(h2, call) = −1 + 3P[h2 wins showdown] ≥ 0.47015,

u2(h2, drop) = 0.

For Player 1’s strategy, we see that betting is better than calling when his chance of
winning the showdown is greater than 50%, i.e., when his hand is less than 0.5,

u1(h1, check) = 1P[h1 wins showdown],

u1(h1, bet) = −1 + 3P[h1 wins showdown].

The strategy when r = 100 is

s1 = (1)

s2 = (0.5, 1).

In other words, Player 1 has no motivation to bluff with a bad hand, because there
is no chance that Player 2 will drop.

5. REALISTIC VOLATILITY. With no volatility, r = 0, bluffing is a key part of
Player 1’s strategy. With extremely high volatility, r = 100, bluffing should be avoided
altogether. There must be some point, 0 < r < 100, where the strategy of bluffing
disappears. We call this special value R the volatility threshold. This value is useful
in practical terms. For a game situation with volatility greater than R, we know not
to bluff with bad hands. For situations with volatility less than R, bluffing adds to our
return.

Definition 5.1. R threshold. For VNMplus, there must be some value between r = 0
and r = 100 where bluffing disappears from Player 1’s strategy. We call this value R.

We can use indifference equations to calculate R. We introduce the notation
p1(h1, h2) to represent the probability that Player 1 wins a showdown when he has
starting hand h1 and Player 2 has starting hand h2. When Player 1 bets with hand b,
and Player 2 calls, we know that Player 2 has a hand in the range [0, c]. We use the
notation p1(b, [0, c]) to represent the probability of Player 1 winning, conditional on
h1 = b and h2 ∈ [0, c]. With this notation, equations (1) become

−1 + 2(1 − c) + 3p1(b, [0, c]) = p1(b, [0, 1]),

−1 + 2(1 − c) + 3p1(d, [0, c]) = p1(d, [0, 1]),

−1 + 3

b + 1 − d
(b(1 − p1([0, b], c)) + (1 − d)(1 − p1([d, 1], c))) = 0. (6)
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We’ll come back to these equations, or their equivalent using the py notation intro-
duced below, throughout the paper. In Sections 5 and 6 we find the volatility threshold
R. In Section 7 we move on to other values of r , and in Sections 8 through 11 we
discuss various applications to real life poker games.

For our first task, finding the threshold R, we’re looking for the point where d,
Player 1’s marginal bluff, equals exactly 1. So d is a constant. The variables are b, c,
and r . The indifference equations are

−1 + 2(1 − c) + 3p1(b, [0, c]) = p1(b, [0, 1]),

−1 + 2(1 − c) + 3p1(1, [0, c]) = p1(1, [0, 1]),

−1 + 3(1 − p1([0, b], c)) = 0. (7)

Note that r does not appear in these equations. It arises from the calculation of p1.
At this point we need to bring back our Player X, Player Y terminology. In each of the
p1 functions, one of the players has a fixed hand x , while the other player has a hand in
the range [0, y]. In the first two equations, Player 1 is Player X. In the third equation,
he is Player Y.

This leads us to introduce a new notation, py(x, [0, y], r). This function represents
the probability that Player Y will win a VNMplus showdown when Player X has hand
x , Player Y has a hand in the range [0, y], and the relative volatility is r . Using py , the
indifference equations are

−1 + 2(1 − c) + 3(1 − py(b, [0, c], r)) = 1 − py(b, [0, 1], r),

−1 + 2(1 − c) + 3(1 − py(1, [0, c], r)) = 1 − py(1, [0, 1], r),

−1 + 3(1 − py(c, [0, b], r)) = 0. (8)

To calculate py , we begin with the double integral (5) we used for the high volatility
case. Restricting the integrals to their nonzero ranges gives us the integral

py(x, [0, y], r) =
∫ x+r

x
X (t)

∫ t

0
Y (s) ds dt . (9)

As in the high volatility case, X (t) is the probability distribution of U (x, x + r).
Y (s) is more interesting. It is the probability distribution of a convolution of U (0, y)

and U (0, r). These distribution functions are illustrated in Figures 6 and 7.

X (t)

0 x x + r

Figure 6. X(t) probability density function

October 2015] EARLY ROUND BLUFFING IN POKER 733

This content downloaded from 128.32.135.128 on Wed, 23 Dec 2015 19:20:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Y (s)

y r y + r0

Figure 7. Y(s) probability density function

Unfortunately, the evaluation of this double integral is dependent on the relative
values of x , y, and r . Different situations give rise to fourteen different integrations.
We enumerate these cases and show how to evaluate two of them in the Appendix. The
two cases we need for discovering the R threshold are y < x < r , which we refer to as
pylo, and x < y < r , which we refer to as pyhi . Once again restating the indifference
equations, we get

−1 + 2(1 − c) + 3(1 − pylo(b, [0, c], r)) = 1 − pyhi (b, [0, 1], r),

−1 + 2(1 − c) + 3(1 − pylo(1, [0, c], r)) = 1 − pylo(1, [0, 1], r),

−1 + 3(1 − pyhi (c, [0, b], r)) = 0. (10)

The evaluation of pylo and pyhi in the Appendix gives

pylo(x, [0, y], r) = 1

2r 2
(r 2 − x2 + xy + 2xr − yr) − y2

6r 2
,

pyhi (x, [0, y], r) = (2x + r − y)

2r
+ (y − x)3 − x3

6yr 2
. (11)

A simple sanity check for these equations is to look at the limit as r approaches
infinity, when each player should have an equal chance of winning a showdown. In
this limit, we indeed find pylo(x, [0, y], r) = pyhi (x, [0, y], r) = 1

2 .
Another sanity check is when x = y. For that case, pylo(x, [0, y], r)

= pyhi (x, [0, y], r) = (3r 2 + 3xr − x2)/6r 2. To verify that this makes sense, we
can set x = y = 0. Both players start with a fixed hand of 0, and so both should have
an equal chance of winning. The equation evaluates to 1

2 .

6. SOLVING THE EQUATIONS. Plugging (11) into (10) gives us three equations
with three unknowns, b, c, and r . Unfortunately the equations are too cumbersome
for an analytical solution, as far as we can see. The alternative is to find a numerical
solution. Spreadsheets such as Excel and Open Office Calc (and packages like Matlab)
have algorithmic solvers that can be used to solve such problems. It is important to use
a nonlinear solver for these nonlinear equations, and to put appropriate limits on the
variables. The Excel spreadsheet that we used to solve for the volatility threshold R is
available online as Supplemental Material.

By entering equations (11) and (10) into the nonlinear solver, and setting the limits
0 ≤ c ≤ b ≤ 1 and b ≤ r we get the solution
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b = 0.462,

c = 0.440,

r = 1.084, (12)

which is unique.

Claim 6.1. The R threshold, at which bluffing disappears (for a bet size equal to the
pot), is at r = 1.084. You should have bluffing as part of your strategy when r is less,
and never bluff when r is greater than this value.

This is the solution we’ve been looking for. But it’s not obvious how to make use of
it. We’ll discuss in Section 8 what this means for real life games such as Holdem.

7. OPTIMAL/EQUILIBRIUM STRATEGIES FOR OTHER VALUES OF R.
We have calculated the R threshold. In so doing, we developed techniques that can be
used to calculate equilibrium strategies for any value of r . We can solve any game of
VNMplus by making r a constant and using our spreadsheet solver to determine b, c,
and d.

For example, if you have a practical poker case where r = 0.71, you can solve
VNMplus to find the strategy s1 = (0.268, 0.933), and s2 = (0.431). Rather than fol-
lowing this exact strategy, you would use it to diagnose your opponent’s weaknesses,
and take advantage. If your opponent was following this equilibrium strategy, they
would be calling about 43% of the time. If they call less than that, you can take ad-
vantage by bluffing more than you otherwise would. If, on the other hand, you think
your opponent is bluffing more than 6.7% of the time (100% − 93.3%), you should
call more than the equilibrium amount.1

For calculations such as this, where r �= R, you need various py integrations , shown
in Table A.1 of the Appendix. The procedure is this: choose a value of r , and use a
solver to combine the appropriate py expression with the indifference equations (6).
Let the solver calculate b, c, and d. This is how we calculated the r = 0.71 case, as
well as all the plots and other results in the remainder of this paper. For the plots, we
also use a computer program (available in Supplemental Material) to calculate Player
1’s expected return for any given set of strategies.

Experimenting with a variety of cases shows that for most values of r , the equi-
librium solution has b < c. But for values near the R threshold, b > c. It would be
interesting to know why.

Since we do not have a general proof of 3.1, it would be nice to have the VNMplus
equivalent of Figure 4 to reassure ourselves that our indifference equation solutions
are in fact Nash equilibria.

A reasonable example is the case r = 0.71, discussed above. (Any value of r where
bluffing is useful would serve equally well.) Figure 8 shows Player 1’s expected return
for both of his actions (bet or check) for each starting hand, when Player 2 is using this
strategy. The graph makes it apparent that he does best by betting with hands better
than 0.268 and bluffing with hands worse than 0.933. Conversely, Figure 9 shows that
Player 2 does best by calling with hands better than 0.431 and dropping (for a return
of zero) with worse hands, when she is confronted by Player 1’s strategy.

1There is a difference here between VNM and VNMplus. For a zero volatility game, when your opponent
is bluffing too much, it is profitable to call with any hand that can beat a bluff. For VNMplus, this is not the
case. If, for example, s1 = (0.268, 0.90), it would not be profitable to call with h2 = 0.89.
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8. VOLATILITY AND HOLDEM. It would be useful to find a way to apply this to
real games, like Holdem. We need a way to relate the volatility of community cards to
our abstract VNMplus volatility. Also, unlike VNMplus, Holdem has four rounds of
betting, and the bet size is usually not equal to the pot size.

Holdem terminology and play:

• Two face-down cards dealt to each player (players look at their own cards);
• First round of betting;
• Three face up cards dealt to middle of table, “the flop”;
• Second round of betting;
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• Another face up card;
• Third round of betting;
• Final face up card;
• Fourth round of betting;
• Players make best hand from combination of two face-down cards and five face-up

(community) cards. Best hand wins.

In a subgame perfect Nash equilibrium for Holdem, there would be a continuation
value of the game for each player at the game node just before the flop is dealt. That is
to say that the game has a theoretical value for each player depending on the contents
of their hands and on the amount of money in the pot. The equilibrium strategy for the
first round of betting should depend on these continuation values, and on the amount
of volatility in the rest of the game.

To study real life Holdem, we use a simplified version that we call FlopShowN .

Definition 8.1. FlopShowN (2 ≤ N ≤ 6) is defined as follows:

• 2 face down cards dealt to each player;
• N − 2 face up cards dealt to the middle;
• One round of betting;
• 7 − N face up cards dealt to the middle, “the flop”;
• Players make best hand from combination of two face down cards and five face up

cards. Best hand wins.

FlopShowN is played with a real 52 card deck. It uses the normal hand valuations
for poker (e.g., three-of-a-kind is better than two pair), which we will not enumerate.

FlopShow2 is an approximation of the first round of betting in Holdem. Each player
has two face down cards with five face up cards still to be dealt. FlopShow5 is an
approximation of the second round of betting in Holdem (two face down, three face
up, two to be dealt). FlopShow6 is an approximation of the third round. (FlopShow3

and FlopShow4 would approximate nonexistent states of Holdem, with one or two face
up community cards.) If we can figure out a betting strategy for FlopShowN , it will be
a good guide to betting in Holdem.

The measurement of volatility in VNMplus is simply the value r . For FlopShowN

and Holdem we need a quantitative measure for the amount of change that can be
introduced by cards still to be dealt. A general measure of volatility that is useful for
all three games comes from asking the question, “How often do relative hand values
remain unchanged by the deal?” We call this metric H O M (Hand Order Maintained).
For a small r value, or with few cards to be dealt, hand values usually hold up, so
H O M is a little less than 1. For large r values, or with many cards to be dealt, hand
values change a lot, so H O M is slightly greater than 0.5.

We claim, without proof, that if VNMplus and FlopShowN have the same H O M ,
they have the same equilibrium strategy.

Definition 8.2. H O M (Hand Order Maintained) is the probablity that the best hand
before cards are dealt is still the best hand after cards are dealt.

We calculate H O M for VNMplus in a straightforward way. For any value of r ,
simulate many rounds of VNMplus, and count the number of times that hand order
is maintained. We do this with a short computer program, available as Supplemental
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Material. Having run this for many values, we noticed that the relationship between r
and H O M looks somewhat exponential. We did a curve fitting exercise for the region
of most interest, 0 ≤ r ≤ 4, and found H O M = 0.5628 + 0.4372e−0.8314r . While this
approximation is numerically close, we doubt any analytical accuracy.

Calculation of H O M for FlopShowN is conceptually simple. The most straightfor-
ward technique is to deal out many hands from a physical deck, and count the results.
We began by doing this, but got tired after several hundred hands. To get large amounts
of data, one must resort to computer simulation. Any simulation requires you to deal
with the question of which hand is best before the flop. In this case, “best” means most
likely to win after the flop. You can find tables for this online. They tell you, for ex-
ample, that in a two player game, an Ace-King of the same suit is better than a pair of
sevens, but worse than a pair of eights.

At this point, having assumed a relationship between VNMplus and FlopShowN ,
and a relationship between FlopShowN and Holdem, we can ask questions about Hol-
dem strategy. The question that got us started on this inquiry was, “Is it profitable to
bluff in the first round of betting in Holdem?” This translates to the question, “Does
the equilibrium strategy for FlopShow2 include bluffing?”

Our physical deck dealing and computer simulations of FlopShow2 revealed that
H O M ≈ 61%. That corresponds to VNMplus r = 2.85, which is far greater than the
volatility threshold R = 1.084 where bluffing becomes unprofitable.

Claim 8.3. In Holdem it is unprofitable to bluff in the first round of betting.

If you have an opponent who bluffs in the first round of Holdem, you should call
more often than you otherwise would.

We leave other Holdem questions for the reader to explore. But we’ll mention that
our FlopShow5 simulation yielded an r value close to the R threshold, suggesting that
bluffing is of limited use in the second round of betting. Our FlopShow6 simulation
gave r ≈ 0.65, which says that bluffing is necessary in the third round of betting in
Holdem. For the final round of betting, see our earlier paper [2].

9. BERNASCONI’S COIN FLIP. Bernasconi et al. [1] took an approach that is sim-
ilar to ours. Like us, they add volatility to the original VNM game. They do this by
introducing a biased coin flip that occurs after the betting and before the showdown.
With some probability 0 ≤ q ≤ 1

2 , the values of the hands are reversed. A higher q
value corresponds to more volatility in our scheme. In Section 8 we introduced the
“H O M” (hand order maintained) metric. It is always the case that 1

2 ≤ H O M ≤ 1.
The H O M of Bernasconi’s game equals 1 − q.

Among other things, Bernasconi explores the interesting fact that the value of the
game to Player 1 rises as q rises between zero and 1

3 . At q = 1
3 there is a maximum,

then the game value declines as q increases to 1
2 . In short, a small amount of uncer-

tainty, in their scheme, makes the game better for Player 1.
Surprisingly, under our scheme, the opposite is true. For small amounts of relative

volatility, that is to say when H O M is close to but less than one, the game value to
Player 1 is less. A look at the difference between the r of VNMplus and the q of
Bernasconi’s game explains this. The basic difference is that Bernasconi’s coin flip
q will reverse the value of two hands regardless of their original value. But relative
volatility r is more likely to reverse the hands if their original values are similar. For
widely different hand values, a small r has no effect at all.

For example, in the game with no volatility, as Von Neumann showed, the equi-
librium strategy is s1 = ( 2

9 ,
8
9 ), s2 = ( 4

9 ). For a small q value, say 0.1, the final hand
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Figure 10. VNMplus game value for increasing volatility, as measured by 1 − H O M

values are swapped 10% of the time. This is an advantage to Player 1, because his
bluffing hands, which otherwise have no chance of winning, now become winners
10% of the time. Using our scheme, if we set H O M = 0.9, it corresponds to an r
value of 0.33. This has no effect on Player 1’s bluff hands. They still lose every time,
because d − c is greater than 0.33. However, this r value increases the return for Player
2’s calling hands that are greater than b. With no volatility, these hands would always
lose to legitimate bets h1 < 2

9 . With r = 0.33, they win a fair percentage of the time.
These differences between the coin flip q method and the relative volatility r method

means that relative volatility more closely models standard poker games such as Hol-
dem. However, the coin flip method is probably a better model for games that have
occasional sudden reversals, such as Follow the Queen.

Bernasconi et al. chart the value of their VNM variation for various values of q.
We do the same for VNMplus. Our calculations let us see the value of the game for
the equilibrium strategy at various values of r , see Figure 10. When H O M = 1 (no
volatility) the original game has a value of 5

9 . With H O M = 0.5, infinite volatility, the
value is 0.5. In between, there is a local minimum at H O M ≈ 0.8 (r = 0.74) and a
maximum at H O M ≈ 0.62 (r = 2.5).

10. DIFFERENT BET SIZES. We’d like to review our definition of bluffing. It
means to bet with your worst hands, in the hope that the opponent who has a hand
better than yours will drop, and that the opponent’s drops will bring you more money
than not betting with these hands. (Compare this with the semibluff, discussed below.)
In Holdem terms, this might mean betting or raising with a 7 and 2 of different suits
(a very bad hand) in the first round. Your hope would be that either the opponents will
drop immediately, or they will drop as you continue to bluff in future rounds, or that
the board will fall lucky for you. A large part of your expected value must come from
winning immediately in the first round.

What Claim 8.3 says is that hand values in the first round are so likely to change,
that your opponents probably have a profitable call. But those calculations were made
assuming a pot-size bluff. One might say, “Sure, they won’t be scared off by a pot-size
bluff. But I’m playing no limit. I can represent a better hand with a huge bet, and that
will scare them off.” Or one might surmise that smaller bet sizes will make a bluff
profitable.
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The same spreadsheet solver we used before can be used to factor in the effect of
different size bets. The initial pot size is still 1 but the bet size becomes β. The new
equations are

−β + (1 + β)(1 − c) + (1 + 2β)(1 − pylo(b, [0, c], r)) = 1 − pyhi (b, [0, 1], r),

−β + (1 + β)(1 − c) + (1 + 2β)(1 − pylo(1, [0, c], r)) = 1 − pylo(1, [0, c], r),

−β + (1 + 2β)(1 − pyhi (c, [0, b], r)) = 0. (13)

Putting these equations through the solver gives the interesting result that the no-
bluff threshold value R actually decreases for large bets. When β = 5, representing a
bet five times the size of the pot, R goes down to 0.91.

One case of large β corresponds exactly to a real-world situation that comes up often
in head-to-head (i.e., two player) tournament play. This situation is analyzed by Chen
and Ankenman, in their excellent book The Mathematics of Poker [3]. They discuss a
specific case of tournament poker2 for which the best strategy for both players is what
they call “jam or fold.” This means you should either bet all your money (jam) or drop
out of the hand (fold). The situation they analyze (two player tournament play, where
one player is close to elimination), is different from our situation (two players with
infinite money). Even so, their equilibrium solution says that Player 1 should bet 58%
of the time, with no bluffing. Our equilibrium solution says that with their bet size, and
a volatility of 2.85 (our calculated r for FlopShow2), Player 1 should bet 55% of the
time, with no bluffing.

Significantly smaller bets also lower the R threshold. For β = 0.3, R = 1.03. So
for large or small bets, it takes less volatility to make bluffing unprofitable. The high-
est value of R is not when β = 1 however. The highest threshold value is when
β = 0.784 and R = 1.087. With that bet size, the strategy is nicely symmetrical,
s1 = (0.5, 1), s2 = (0.5). It would be interesting to know why this is.

11. POKER CONCEPTS. The uselessness of bluffing in the first round of Holdem
(and arguably in the second round as well) tells us a lot about how the game should
be played. A successful player has to have a paradoxical mindset: in the early rounds
never bet with bad cards; in the later rounds frequently bet with bad cards. This is the
meaning of the phrase “tight-aggressive,” which is often used by advice books to teach
the proper approach to the game.

Fortunately, removing bluffing from your early round strategy doesn’t mean giving
up deception. Two other techniques, slow play and semibluff, become more important
when true bluffing is ineffective. By its definition, slow play is a mirror of true bluffing.
A slow play is to underbet your very best hands. A true bluff is to overbet your very
worst hands. The idea of slow play is to penalize aggression by the other players,
letting them raise the pot with inferior hands. It can be used effectively at any point in
the hand, early or late.

But in strategic terms the opposite of a true bluff is a semibluff. A semibluff (which
we first encountered in Sklansky [5]), is betting with a hand that is fairly good, but
probably not the best hand in the pot. If your “normal” strategy would be to bet with
all hands better than b, the semibluff has you betting with the best of your normally
nonbetting hands. (Contrast this to a true bluff, which has you betting with the worst
of your normally nonbetting hands.) A semibluff is helpful when a hand has good
potential, such as a strong straight or flush draw, especially when facing a probable

2One player has a stack that’s equal to only 10 times the big blind, or counting the small blind, 6.67 times
the total ante.
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pair. It can pay off in various ways: win the pot outright, build the pot for when you
make your hand, buy a free card for another chance to make your hand, or set the
stage for a true bluff in a later round. The semibluff is most useful in the early rounds
of betting, when there is still a lot of volatility. This is precisely when a true bluff is
useless. The true bluff is most useful in the late rounds of betting, when there is little
or no volatility. This is precisely when a semibluff is useless.

The technique of using VNMplus to calculate a volatility threshold can be used
with other poker games. Sometimes these analyses can have surprising results, which
will be the subject of other papers than this one. But sometimes they just reconfirm
something that experienced players are already aware of. For example, when playing
Holdem with more than two players, you need a better hand to bet or call as the num-
ber of players goes up. Unsurprisingly, VNMplus simulations show that the volatility
threshold is lower when there are more players. This is a corollary to the idea that
when there are more players to be forced out of the pot, a smaller percentage of bluffs
are successful.

12. CONCLUSIONS. VNM provided early insight into poker strategy by establish-
ing that the bluff is a mathematical technique. We discuss a simplified way to repro-
duce their calculations, which enables us to add some variations. We changed the game
by adding a random number draw after the betting round.

When we increase the size of the random number to a certain point, which we call
the relative volatility threshold R, the technique of bluffing becomes unprofitable. We
show how to calculate R for a modified VNM game.

By using a simplified variation of Holdem, we are able to come to some conclusions
about the real-world game. In particular, it’s unprofitable to bluff in the first betting
round of Holdem.

Appendix. The py integral has a different solution depending on the relative values
of x , y, and r . There are fourteen total cases. We give details of the integration for the
cases x < y < r , which we call pyhi , and y < x < r , which we call pylo.

For pyhi , the outer integral can be broken into three integrals

∫ x+r

x
=

∫ y

x
+

∫ r

y
+

∫ x+r

r
.

For each one, we’ll calculate the area under the Y (t) curve using geometry.
For t between x and y the graph of Y (s) is the triangle shown in Figure 11 with a

width of t and a height of 1
r

t
y . Its area is t2

2yr .
For t between y and r the area under the Y (t) graph is the area shown in Figure 12.

It is a triangle with width y and height 1/r plus the rectangle with width t − y and
height 1/r . The result is 2t−y

2r .
For t greater than r the area is one minus that of the triangle at the right of Figure 13.

That has width r + y − t and height ( 1
r )

r+y−t
y which gives us 1 − (r+y−t)2

2yr .

For all values of t between x and x + r , X (t) = 1
r so our first integral

∫ y
x

1
r

t2

2yr dt

evaluates to 1
6yr2 (y3 − x3).

The second integral
∫ r

y
1
r

1
2r (2t − y)dt evaluates to 1

2r (r − y).
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0 y + rt y r

Y (s)

Figure 11. Integral of Y(s) when t < y

0 y + ry t r

Y (s )

Figure 12. Integral of Y(s) when t is between y and r

The third integral
∫ r+x

r
1
r (1 − (r+y−t)2

2yr )dt can be broken into two pieces

∫ r+x

r

1

r
dt −

∫ r+x

r

(r + y − t)2

2yr 2
dt .

The second part benefits from a change of variable u = r + y − t . We end up with
x
r − 1

6yr2 (y3 − (y − x)3).
Adding the three integrals, we get

pyhi (x, [0, y], r) = (2x + r − y)

2r
+ (y − x)3 − x3

6yr 2
. (14)

Similarly, for pylo, we break the integral into three parts:

∫ x+r

x
=

∫ r

x
+

∫ y+r

r
+

∫ x+r

y+r
.

Since x > y, the first Y (s) integral here is the same as the second integral above,
that is, (2t−y)

2r . Then,

∫ r

x

1

r

1

2r
(2y − t)dt = 1

2r 2
(r 2 − x2 + yx − yr).
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Figure 13. When t is greater than r , subtract the triangle from 1

Table A.1. py integrals for various cases.

Case py

x < y < r
(2x + r − y)

2r
+ (y − x)3 − x3

6yr 2

x < r < y < x + r
2x + r − y

2r
+ (y − x)3 − x3

6yr 2

x < r < x + r < y
r 3 − x3 + 3r x2 + 3r 2x

6yr 2

r < x < y < x + r
x + r − y

r
+ (x + y − r)(y − x)

2yr
+ (y − x)3 − r 3

6yr 2

r < x < x + r < y
x

y

y < x < r
1

2r 2
(r 2 − x2 + xy + 2xr − yr) − y2

6r 2

y < r < x < y + r 1 − (y + r − x)3

6yr 2

y < r < y + r < x 1

r < y < x < y + r 1 − (y + r − x)3

6yr 2

r < y < y + r < x left as exercise

x < y0 < y < r
2y3 + y3

0 − 3y2 y0

12r 2(y − y0)
+ (x + r − y)(x + r − y0)

2r 2

x < r < y0 < y < x + r
y3 − y3

0 + 3(x + r)(y − y0)(x + r − y − y0)

6r 2(y − y0)

x < r < y0 < x + r < y
(x + r)3 − y3

0 + 3y2
0 (x + r) − 3y0(x + r)2

6r 2(y − y0)
x + r < y0 0

The second Y (s) integral for the y < x case matches the third integral in the x < y

case, 1 − (r+y−t)2

2yr . Then,

∫ y+r

r

1

r
(1 − (r + y − t)2

2yr
)dt (using the same change of variables) = y

r
− y2

6r 2
.

For the third integral, when x > y + r , the Y (s) integral is the total area under the
curve, i.e., 1. Then,
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∫ x+r

y+r

1

r
dt = 1

r
(x − y).

Adding the three integrals gives

pylo(x, [0, y], r) = 1

2r 2
(r 2 − x2 + xy + 2xr − yr) − y2

6r 2
. (15)

Integrals for the other cases are evaluated similarly. There are five simple cases for
which x < y: one in which r is greater than both x and y, two in which r is between
them, and two in which r is less than either. There are five similar cases for which
y < x . One of these is a low volatility case that is left as an exercise for the reader.

There are four cases for which the bottom of the y range is not zero. These cases
come up when there is bluffing, and we want to evaluate py(c, [d, 1], r)) in the third
line of equations (6). In these cases, the bottom of the y range, y0, appears in the
case specification and in the py result. Please go to www.maa.org/amm supplements
to find an Excel spreadsheet that has examples and directions for the calculation of
equilibrium strategies in games with volatility, and small utility programs written in
Ruby, to calculate some results for the paper.
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