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The Annals of Applied Probability 
1992, Vol. 2, No. 2, 294-313 

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 

BY DAVE BAYER1 AND PERSI DIACONIS2 

Columbia University and Harvard University 

We analyze the most commonly used method for shuffling cards. The 
main result is a simple expression for the chance of any arrangement after 
any number of shuffles. This is used to give sharp bounds on the approach 
to randomness: 3 10g2 n + 0 shuffles are necessary and sufficient to mix up 
n cards. 

Key ingredients are the analysis of a card trick and the determination of 
the idempotents of a natural commutative subalgebra in the symmetric 
group algebra. 

1. Introduction. The dovetail, or riffle shuffle is the most commonly 
used method of shuffling cards. Roughly, a deck of cards is cut about in half 
and then the two halves are riffled together. Figure 1 gives an example of a 
riffle shuffle for a deck of 13 cards. 

A mathematically precise model of shuffling was introduced by Gilbert and 
Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of n 
cards is cut into two portions according to a binomial distribution; thus, the 
chance that k cards are cut off is ()/2n for 0 < k < n. The two packets are 
then riffled together in such a way that cards drop from the left or right heaps 
with probability proportional to the number of cards in each heap. Thus, if 
there are A and B cards remaining in the left and right heaps, then the 
chance that the next card will drop from the left heap is A/(A + B). Such 
shuffles are easily described backwards: Each card has an equal and indepen- 
dent chance of being pulled back into the left or right heap. An inverse riffle 
shuffle is illustrated in Figure 2. 

Experiments reported in Diaconis (1988) show that the Gilbert-Shannon- 
Reeds (GSR) model is a good description of the way real people shuffle real 
cards. It is natural to ask how many times a deck must be shuffled to mix it 
up. In Section 3 we prove: 

THEOREM 1. If n cards are shuffled m times, then the chance that the deck 
is in arrangement v is (2 +n - r)/2mn, where r is the number of rising 
sequences in Tr. 

Rising sequences are defined and illustrated in Section 2 through the 
analysis of a card trick. Section 3 develops several equivalent interpretations of 
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TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 295 

a A 2 3 4 X 6 7 1 9 10 1 K 

b 
A 23 56 78 1 

;ffi 
K 

d 
A 7 2 8 9 3 10 4 J 6 

FIG. 1. A riffle shuffle. (a) We begin with an ordered deck. (b) The deck is divided into two 
packets of similar size. (c) The two packets are riffled together. (d) The two packets can still be 
identified in the shuffled deck as two distinct "rising sequences" of face values. 

the GSR distribution for riffle shuffles, including a geometric description as 
the motion of n points dropped at random into the unit interval under the 
baker's transformation x -> 2x (mod 1). This leads to a proof of Theorem 1. 

Section 3 also relates shuffling to some developments in algebra. A permuta- 
tion 7 has a descent at i if r(i) > w(i + 1). A permutation 7 has r rising 
sequences if and only if 7r1 has r - 1 descents. Let 

Ak= E Tr 
ir has k descents 

cl A234 
1J J K 

b Afi1[1 l 3 6 8 

c A m m 3 89 45 1 

d A 3 6 X 91 X1 2X 4T 5T 7 101 K4X 

FIG. 2. An inverse riffle shuffle. (a) We begin with a sorted deck. (b) Each card is moved one way 
or the other uniformly at random, to "pull apart" a riffle shuffle and retrieve two packets. (c) The 
two packets are placed in sequence. (d) The two packets can still be identified in the shuffled deck; 
they are separated by a "descent" in the face values. This shuffle is inverse to the shuffle 
diagrammed in Figure 1. 
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296 D. BAYER AND P. DIACONIS 

TABLE 1 
Total variation distance for m shuffles of 52 cards 

m 1 2 3 4 5 6 7 8 9 10 
IIQm - UII 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043 

be defined as a formal linear combination in the group algebra. Following work 
by Solomon (1976), Gessel (1988) has shown that the Ak generate a commuta- 
tive algebra. Theorem 1 gives a novel proof for an explicit expression of the 
primitive idempotents of this algebra, showing that it is generated by a formal 
sum corresponding to a GSR shuffle. This is related to recent work by Garsia 
and Reutenauer (1989) on free lie algebras, by Gerstenhaber-Schack (1987), 
Loday (1989) and Hanlon (1990) on Hodge decompositions of Hochschild 
homology. 

In Section 4 we derive approximations to the total variation distance 
between the distribution after m shuffles and the uniform distribution. Here, 
if Sn is the symmetric group, U the uniform probability [so U(r) = 1/n!] and 
Qm the Gilbert-Shannon-Reeds probability after m shuffles, then the total 
variation distance is defined as 

IlQm - UII = max IQn(A) - U(A)I, 
AcSn 

where, for example, U(A) = E veAU(7). Table 1 gives the total variation 
distance for 52 cards. 

Table 1 shows that the total variation distance stays essentially at its 
maximum of 1 up to 5 shuffles, when it begins to decrease sharply by factors of 
2 each time. This is an example of the cutoff phenomena described by Aldous 
and Diaconis (1986). Our analysis permits a sharp quantification of this: 

THEOREM 2. If n cards are shuffled m times with m = 2 10g2 n + 0, then 
for large n, 

IIQM - Ull = 1 - 2F( 28) + 0 

with 
x 

l t2 /2d 

Thus, the variation distance tends to 1 with 0 small and to 0 with 0 large. 
A partial version of Theorem 2 has been proved by very different arguments 

in Aldous (1983). Thorp (1973) gives further references to the analysis of 
shuffling. 

2. A card trick. Rising sequences, the basic invariant of riffle shuffling, 
were discovered by magicians Williams and Jordan at the beginning of this 
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TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 297 

century. A rising sequence is a maximal subset of an arrangement of cards, 
consisting of successive face values displayed in order. Rising sequences do not 
intersect, so each arrangement of a deck of cards is uniquely the union of its 
rising sequences. For example, the arrangement A, 5, 2, 3, 6, 7, 4 consists of the 
two rising sequences A, 2, 3, 4, and 5, 6, 7, interleaved together. 

Suppose that a deck consists of n cards, arranged 1, 2, ... , n. If a riffle 
shuffle divides the deck into packets of k and n - k cards, then riffling 
together these packets interleaves cards 1, 2, . .., k with cards k + 1, . .. , n. 
This creates two rising sequences: Cards 1, 2, . . ., k remain in relative order 
within the deck, as do cards k + 1, k + 2,. ., n. Successive shuffles tend to 
double the number of rising sequences (until the capacity of the deck is 
approached), so shuffling a 52 card deck three times usually creates eight 
rising sequences. From these eight rising sequences, one can reconstruct 
exactly how the deck was shuffled. 

This analysis of shuffling is the basis for a terrific card trick called " Premo" 
by Jordan. The performer removes a deck of cards from its case, hands it to a 
spectator and turns away from the spectators: "Give the deck a cut and a riffle 
shuffle. Give it another cut and another shuffle. Give it a final cut. I'm sure 
you'll agree that no living human could know the name of the top card. 
Remove this card, note its value, and insert it into the pack. Give the pack a 
further cut, a final shuffle, and a final cut." 

Now the performer takes back the pack, spreads it in a wide arc on the 
table, and, after staring intensely, names the selected card. 

To explain, consider what happens instead if the deck is never cut and the 
card is moved after the final shuffle. After three shuffles, the deck will usually 
have eight rising sequences, each consisting of an average of six and-a-half 
cards. Moving a card from the top to the middle of the deck usually creates a 
ninth rising sequence consisting of only the moved card, which is easily 
spotted. 

What effect do cuts have on this analysis? Cuts respect the cyclic order of a 
deck, where card 1 follows card n. If we imagine the deck to be arranged in a 
loop, then cutting the deck rotates the loop. Thus, by allowing a spectator to 
cut the deck as often as desired, the performer merely gives up knowing where 
the loop starts. A riffle shuffle doubles this loop onto itself, analogous to the 
way that squaring doubles the unit circle in the complex plane onto itself. A 
search for successive face values in cyclic order winds once through an 
unshuffled deck and twice through a once shuffled deck. Depending on where 
the deck is taken to begin, this winding sequence could break up into two or 
three rising sequences. 

If we view both the positions and face values of cards as having a cyclic 
order, then we can graph arrangements of cards on a torus, viewed as the 
product of two cycles. An unshuffled deck embeds as a (1, 1)-cycle and a once 
shuffled deck embeds as a (2, 1)-cycle. One sees that rising sequences are an 
artifact of where the torus is cut to make a square. 

Define the winding number of a deck to be the number of laps required to 
cycle through the deck by successive face values. A deck begins with winding 
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298 D. BAYER AND P. DIACONIS 

number 1; each of the first few shuffles of a deck doubles its winding number. 
Moving a card usually increases the winding number by 1. We can identify the 
moved card by associating a count with each card, giving the total number of 
cards between its predecessor and successor, as we follow the winding se- 
quence through the deck: Let a(i) give the position of card i, and let d(i, j) be 
the least positive integer so d(i, j) = o(j) - o-(i) (mod n). Then we associate 
with each card i the count d(i - 1, i) + d(i, i + 1) - 1. Ideally, the moved 
card will sit on its own lap of the winding sequence and its count will be the 
only count greater than n. 

The trick as described is not sure-fire. To investigate, we performed various 
Monte Carlo experiments. As expected, the trick is most successful when the 
card is moved after the final shuffle. We programmed a computer to shuffle the 
cards m times according to the GSR distribution, cut the deck uniformly at 
random, move the top card to a binomially distributed position and then cut 
the deck again. From here, the computer made and scored its guesses as to 
which card was moved, using the strategy described above: Given k guesses, it 
chose the k cards with highest counts, breaking ties at random (see Table 2). 

With three shuffles, the trick succeeded in 84% of 1,000,000 trials. With two 
guesses allowed, the success rate went up to 94%. This is a reasonable rate to 
aspire to in practice; if the performer suspects two cards, a leading question 
like "your card was a red card" will resolve the ambiguity. Table 2 gives 
results for m shuffles, 2 < m < 12, and k guesses at the card, k = 

1, 2, 3,13,26. 
In studying these numbers, we were most struck by the results for many 

shuffles. Already at four shuffles, this trick is terrible magic, but even at eight 
shuffles, it can still make a great bet: Betting even money on being able to pick 
the moved card with 26 guesses, one enjoys nearly a 10% advantage. This is 
startling, considering that people rarely shuffle eight times in practice. 

Observe also that the advantage halves after each shuffle, in the limit. 
Trying to explain this effect lead us to the results in the remainder of this 
paper. 

We conclude this section with a brief history of the magical use of riffle 
shuffles. The earliest clear application of rising sequences that we know of is 
due to C. 0. Williams, a respected inventor of magic who worked at the turn of 

TABLE 2 
Probability of success in Jordan's card trick with 52 cards shuffled m times, and 1, 2, 3, 13 or 26 

guesses allowed. Each entry is based on 1,000,000 Monte Carlo trials. 
All entries are given in thousandths 

m 2 3 4 5 6 7 8 9 10 11 12 Xc 

1 997 839 288 088 042 028 023 021 020 020 019 019 
2 1000 943 471 168 083 057 047 042 040 039 039 038 
3 1000 965 590 238 123 085 070 063 061 059 058 058 

13 1000 998 884 617 427 334 290 270 260 254 252 250 
26 1000 999 975 835 688 596 548 524 513 505 503 500 
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TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 299 

the century. Williams allowed a prearranged deck to be shuffled once. The deck 
also had its backs aligned all in the same direction. When shuffled, one half 
was turned end for end so the two rising sequences could be clearly identified 
and a "card reading" was performed. See Williams (1912). 

A much more sophisticated set of applications was invented by the Ameri- 
can Jordan, who was an inventor of magic, designer of radios, professional 
contest winner and chicken farmer. The first mention of his work appears in 
Jordan (1916). This contains a description of a trick called "long distance 
mindreading." In effect, "you mail an ordinary pack of cards to anyone, 
requesting them to shuffle and select a card. He shuffles again and returns 
only half the pack to you, not intimating whether or not it contains his card. 
By return mail you name the card he selected." 

Further information on the mathematics of shuffling can be found in 
Gardner (1966, 1977). 

3. Shuffles and their generalizations. The Gilbert-Shannon-Reeds 
model for shuffling has alternate descriptions, and a natural generalization to 
shuffles that begin with the deck being cut into a packets, with a ? 2; the 
various packets are then riffled together. 

GEOMETRIC DESCRIPTION. The geometric model begins by placing n points 
uniformly and independently in the unit interval. The points are labeled in the 
order x1 < x2 < ... < xn. For positive integral a, the map x -- ax (mod 1) 
maps [0, 1] onto itself and preserves measure. This map rearranges the points 
xi and so gives a measure on the symmetric group which will be called an 
a-shuffle. 

A 2-shuffle is like an ordinary riffle shuffle: Points in [0, 2] and [1, 1] are 
stretched out and interlaced. 

MAXIMUM ENTROPY DESCRIPTION. All possible ways of cutting a deck into a 
packets and then interleaving the packets are equally likely. Empty packets are 
allowed. 

INVERSE DESCRIPTION. All possible ways of pulling a shuffled deck back 
apart into a packets are equally likely. Empty packets are allowed. 

The following generates an inverse a-shuffle with the correct probability: A 
deck of n cards is held face down. Successive cards are turned face up and 
dealt into one of a piles uniformly and independently. After all cards have 
been distributed, the piles are assembled from left to right and the deck is 
turned face down. 

An example of an inverse 2-shuffle was illustrated in Figure 2. 

SEQUENTIAL DESCRIPTION. Choose integers ilj, J2.*, ja according to the 
multinomial distribution 

P( jl ia) ='l 
( .. ja)+ 
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300 D. BAYER AND P. DIACONIS 

Thus, 0 ? ji < n, lji = n and the ji have the same distribution as the 
number of balls in each box i if n balls are dropped at random into a boxes. 

Given ji, cut off the top j1 cards, the next j2 cards and so on, producing a 
or fewer packets. Shuffle the first two packets using the GSR shuffle described 
in Section 1. Then shuffle this combined packet with packet 3, and so forth. 
This is equivalent to riffling all a packets together at once, where if there are 
Ai cards remaining in each heap, the chance that the next card will drop from 
heap i is Ai/(A1 + -.. +Aa). 

Shuffles of this type are performed by casinos to mix several decks. For 
example, 104 cards are sometimes mixed by cutting into four piles, shuffling 
packets 1 and 2 together, then packets 3 and 4 together and finally 1 and 2 
into 3 and 4. This is equivalent to a 4-shuffle. 

LEMMA 1. The four descriptions generate the same permutation distribu- 
tion. Moreover, in each model an a-shuffle followed by a b-shuffle is equivalent 
to an ab-shuffle. 

PROOF. Each description results in a multinomial number of cards in each 
packet. This holds by decree for the sequential description and is clear for the 
inverse description. For the geometric description, the packet sizes are deter- 
mined by how many points are chosen in each interval [(i - 1)/a, (i/a)], 
which is also multinomial. For the maximum entropy description, the number 
of possible interleavings starting from a given cut is multinomial; they are in 
1: 1 correspondence with the ways of dividing a deck into a subsets with the 
corresponding packet sizes. 

Given the packet sizes, the maximum entropy description asserts that all 
possible interleavings are equally likely. This also clearly holds for the inverse 
description. For the sequential description, observe that when the first two 
piles of size j1, i2 are shuffled, the chance of any specific sequence of left-right 
drops is 

j(J1 - 1) 
... 

1 *j2(J2 - 1) 
... 

1 =j + j2 

(jl + j2)( Jl + j2 - 1) * * * 1 

When these cards are shuffled into the third packet of size j3, all (il +j2 +i3) 

positions for its cards are equally likely. This continues to hold for each 
successive packet. 

No state information is retained between shuffles in these three models, so 
the product rule for a sequence of shuffles holds in each model once it is 
established for one. This easily follows from the inverse description: Lexico- 
graphically combining the pile assignments from an inverse a-shuffle and an 
inverse b-shuffle yields uniform and independent pile assignments for an 
inverse ab-shuffle. 

For the geometric description, the lemma follows from the independence of 
base a digits of points picked uniformly in [0, 1]: Choosing n points in [0, 1], 
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TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 301 

labeling them with their leading digits and applying the map x -- ax (mod 1), 
is the same as choosing n points in [0, 1] and labeling them arbitrarily with 
integers from 0, ... , a - 1}. Thus, all interleavings are equally likely for a 
given set of packet sizes. Moreover, the sets of n points which yield a given 
shuffle map to sets of n points distributed uniformly in [0, 1]. Thus, successive 
shuffles can reuse the points xi without first having to reposition them at 
random in [0, 1], so the product rule follows from the identity 

b( ax (mod 1)) (mod 1) = abx (mod 1). D 

The main result of this section gives an explicit description of a-shuffles. To 
state it, we need to specify how we are associating shuffles with permutations. 
If a shuffle transforms an arrangement 1, 2, 3, 4, 5 of cards into the arrange- 
ment 2,3,4,5, 1, then we associate this shuffle with the permutation 

{1 2 3 4 58 
7r 2 3 4 5 1 

THEOREM 3. The probability that an a-shuffle will result in the permutation 
v is 

{a + n - rl 
~t 

n 
' J where r is the number of rising sequences in Tr. 

PROOF. Using the maximum entropy description, this probability is deter- 
mined by the number of ways of cutting an ordered deck into a packets, so v 

is a possible interleaving. Because each packet stays in order as the cards are 
riffled together, each rising sequence in the shuffled deck is a union of packets. 
Thus, we want to count the number of ways of refining r rising sequences into 
a packets. 

We emulate the classical stars and bars argument, counting arrangements 
of cuts on the ordered deck before shuffling: At least one cut must fall between 
each successive pair of rising sequences of n, but the remaining cuts can be 
located arbitrarily. Thus, the n cards form dividers creating n + 1 bins, into 
which the a - r spare cuts are allocated. There are a + ) - r ways of doing 
this. There are an possible a-shuffles in all, giving the stated probability. Ol 

One could keep track of the packet structure of a shuffle by coloring the 
packets before they are riffled together. Then the above enumeration counts 
colorings of 7r which look like they came from a shuffle. This interpretation of 
the proof of Theorem 3 is illustrated in Figures 3 and 4. 

We first proved this theorem via the geometric description of a-shuffles, 
viewing them as baker's transformations on the n-cube. With Laurie Beckett's 
help, we were able to isolate from this proof the purely combinatorial argu- 
ment given above. 
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A 2 

FIG. 3. Six 3-colorings of the arrangement A, 4,2, 3,5. Dye the packets of a 3-shuffle a sequence 
of distinct colors, before the packets are riffl7ed together. Because the relative order of the cards in 
each packet is preserved by shuffling, such colorings refine the decomposition of the deck into 
rising sequences. Each 3-coloring with this property arises from a 3-shuffle, so the probability of 
any arrangement is determined by the number of ways it can be so colored. 

Summing the formula of Theorem 3 over all permutations Tr gives 1. There 
are An,, permutations with r rising sequences, where the An,, are the 
Eulerian numbers. Thus, multiplying this sum by an gives 

an= L An,Jr n L) 
r=1 

which is Worpitzky's identity. Conversely, a proof of Theorem 3 can be 
inferred from the proof of Theorem 4.5.14 in Stanley (1986), by considering 
the trivial poset consisting only of incomparable elements. Stanley's result is 
an extension of Worpitzky's identity to partially ordered sets, which may have 
interesting shuffling interpretations. 

FIG. 4. Counting the possible 3-colorings of A, 4, 2, 3, 5. Use two pencils to mark where the deck 
A) 2, 3, 4, 5 is going to be cut into packets for 3-shuffling and dye the cards accordingly. The 
arrangement A, 4, 2, 3, 5 consists of the two rising sequences A, 2, 3 and 4, 5. Cuts which can 
produce this arrangement are enumerated b placing one pencil between the two rising sequences 
and placing the other pencil arbitrarily. 
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COROLLARY 1. If a deck of cards is given a sequence of m shuffles of types 
a,, a2, ... , am, then the chance that the deck is in arrangement 7T is given by 

n + a - r 

anX 

where a = a,, a2 ... ak and r is the number of rising sequences in -r. 

PROOF. Combine Lemma 1 with Theorem 3. C1 

Theorem 1 of the Introduction follows immediately as a corollary. 
Theorem 3 generalizes earlier work of Shannon, who showed that if n cards 

are 2-shuffled m times, with m < log2 n, then all arrangements with 2m 
rising sequences have the same probability. The corollary is used in Section 4 
to give exact results and asymptotics for total variation convergence to the 
uniform measure. 

The next corollary shows that the number of rising sequences forms a 
Markov chain. As motivation, note that a function of a Markov chain is not 
usually Markov. Heller (1965) gives a complicated necessary and sufficient 
condition and Rogers and Pitman (1981) give a sufficient condition which is 
easy to check in the present case. 

COROLLARY 2. Let a Markov chain on the symmetric group begin at the 
identity and proceed by successive independent a-shuffles chosen from the 
Gilbert-Shannon-Reeds measure. Then R(nr), the number of rising sequences, 
forms a Markov chain. 

PROOF. From Theorem 3, the conditional law of rr given R(-nr) is uniform. 
Rogers and Pitman [(1981), Lemma 1] show that this, coupled with a complete- 
ness condition on the induced family of distributions for the process of rising 
sequences, is sufficient. In the present setting, completeness amounts to 
showing 

E (m n -r)f(r). E (a +n r)g(r) form=0,1,2,.... 

implies f = g. The left side is the polynomial 

-[(x + n - 1)(x + n - 2) ... xf(1) 

+(x + n-2)(x + n-3) ... (x-1) f(2) 

+ e u d x a +x(xE-l1) at . (xi-g(ni-s1)) f(n)], 

evaluated at x =am. Evaluating at x = i gives f(i). r[1 
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In unpublished work, Gessel has derived formulas for the transition matrix 
of the induced chain. Of course, the first row of the matrix is given by 
Theorem 3. The other rows are not as simple to write out. 

The final corollary connects shuffling to results in algebra. To describe 
things, defirLe the group algebra L(Sn) as the set of all functions from Sn into 
the rational numbers Q. Elements of L may be thought of as formal linear 
combinations of permutations with rational coefficients. Multiplication is given 
by formally multiplying the linear expressions using the multiplication on S,. 
This is the same as convolving together the associated functions. In L(Sn) let 

Ai = E w, i=1,2,...,n. 
R ()= i 

COROLLARY 3. Let v be the subalgebra of L(Sn) generated by A1,..., An. 
Then v is a commutative, semisimple algebra of dimension n. A basis of 
primitive idempotents is given by en(l) = Er1u1(n - r,... 1 - r)Ar, with o 
the Ith elementary symmetric function. 

PROOF. Using the theorem, an a-shuffle can be represented in v as 

1 n a + - )Ar 
r=1 

Now B 2 is a positive linear combination of A1 = Id, A2 and A 2. Theorem 3 
gives B 2 = B4 E X. Thus A2 is in X. Next, B2B3 is a positive linear 
combination of A2A3, A 2, A2, A3 and A1. It follows that A2A3 E v and, 
from B2B3 = B3B2 = B6, A2A3 = A3A2. From here A 2 and then AiA3 = 

A3Ai are in S. Continuing inductively proves that v is a commutative 
algebra. 

To complete the proof, consider successive powers of B2: 

B2 B2m = 1 E (n+ n r)A 
r=1 

in-1l n 

n ! Eo 2m 1l( n - r,* * , 1 - r)Ar . 

From this it follows that the linear map - V given by multiplying by B2 
has distinct eigenvalues 1, 1/2, 1/22,...,1/2n-l. It is thus diagonalizable 
with the e(l) as eigenvectors. 

Left multiplication on itself gives a faithful representation of v as a 
commutative matrix algebra which we have shown contains an element B2 
with distinct eigenvalues. It follows that the set of matrices that commute with 
B2 is all polynomials in B2. Thus B2 generates v (since elements of v 
commute with B2). Thus, the e(l) simultaneously diagonalize v which is 
therefore semisimple. U 
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The algebra v has appeared in various areas of mathematics. We describe 
some of these briefly. 

HOCHSCHILD COHOMOLOGY. The homomorphism sgn(-) extends to an auto- 
morphism of L(Sn) by linearity: E a,7r - - E ) a,7. The image of v under 
sgn figures prominently in the work of Barr (1968), Gerstenhaber and Schack 
(1987), Loday (1989) and Hanlon (1990). These authors are concerned with 
Hodge-type decompositions of a complex made by tensoring commutative 
algebras with boundary maps typified by a, X a2 X a3 - aja2 X a3 - a, ? 
a2a3. If sn = sgn(A2), they show that 9sn = Sn-ld and split the usual 
Hochschild cohomology using this action. They show that the indempotents of 
the algebra v give a basis for all such decompositions. Fix an idempotent 
en(j) and consider en(j)L(Sn) as a representation of Sn. Hanlon (1990) 
determines the dimensions and other properties of these representations. 

COXETER GROUPS. Solomon (1976) has introduced related algebras for gen- 
eral Coxeter groups. Specializing to the symmetric group Sn, say that a 
permutation 7i has a descent at i if 7n(i) > r(i + 1). This agrees with the 
definition we have been using for arrangements of decks of cards. Permuta- 
tions can have descents at positions 1, 2,. . ., n - 1. Observe that v has r - 1 
descents if and only if w-1 has r rising sequences: the ith entry of v gives the 
position of the letter i in r-1 and is a descent whenever i + 1 begins a new 
rising sequence of 7--1. Thus, the algebra v studied in Corollary 3 could, up 
to isomorphism, have been defined in terms of descents. More generally, let 
D(7) be the descent set of 7T. Define 

As= E 7T 

D(r) =S 

Solomon showed that As forms a noncommutative algebra with a natural 
geometric interpretation. 

The word AM11 has a natural shuffle interpretation: remove a card at 
random and put it back on top. This generates a probability on Sn represented 
as (l/n)(id + AM11) in the group algebra. Aldous and Diaconis (1986) show that 
it takes n log n + cn iterations to get close to uniform. Diaconis and Pitman 
(1991) give arguments entirely analogous to the ones in the present paper, for 
a generalization of these shuffles. 

Descents and rising sequences can be defined for any Coexter group. For 
example, the hyperoctahedral group Bn of symmetries of an n-dimensional 
cube can be represented as the group of all n by n signed permutation 
matrices. If we write these matrices as signed permutations and order the 
letters so - n < * * - 1 < 1 < ... < n, then descents and rising sequences 
can be defined as usual. There is a card shuffling interpretation to the descent 
algebra: If a packet of k cards is cut off, flipped over and riffled face up into the 
remaining n - k cards according to the GSR distribution, then the resulting 
distribution can be represented as a linear combination of the identity and 
group elements with one rising sequence. Section 5 develops this further. 
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4. The approach to uniformity. This section analyzes the approach to 
uniformity. We derive approximations when n is large after m shuffles, with 
m = 32 1g2 n + 0. For notational convenience, write m = log2(n3/2c), so c = 20 
satisfies 0 < c < oo. The arguments use the asymptotics of Eulerian numbers. 
Asymptotics and exact results are compared at the end of this section. 

We first develop a local limit theorem. This gives a tractable approximation 
for the probability that m shuffles will result in a given permutation. 

PROPOSITION 1. Let Qm(r) = (2m +n - r)/2mn be the probability of a per- 
mutation with r rising sequences after m shuffles from the GSR distribution. 
Let r = n/2 + h, -n/2 + 1 < h < n/2. Let m = log2(n3/2c) with 0 < c < oo 

fixed. Then 

Qmn(r) ~,exp ~I-h + -+ 0 
() n! (c( h+ 2 + (n) 

(4.1) 1 h 2 1 

24C2 - 1(h)2 + n4=} 

PROOF. 

1 Q2m + n-nr 2m + 1-r 
Q() n!1 2m 2 . 

1 
nki=1 (n/2)-h -i 

n! ( lo ( cn /2 

The logarithmic terms can be upper and lower bounded using 

X2 X3 X2 X3 

x - - + - - x4 < log(1 + x) <x - -+ - -<x < 1. 
2 3 - 2 3' 2 

Standard summation formulas give 

1 n_ 1 n -h + 1/2 

22n3 : -- (-2) = 24c+-(cn)+?(n)' 

3c3n9/2 - h - i= OC(3h) 

Cnu-10n 2!3 \n 

c4 6 E (2 -h -i) = ?c( 

The probabilities Q m(r) are monotone decreasing in r for fixed m. The next 
proposition determines when they cross the point 1/n!. This is crucial for 
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analyzing total variation, because it determines the set on which the total 
variation is achieved. 

PROPOSITION 2. With notation as in Proposition 1, let h* be an integer such 
that Qm(n/2 + h) ? 1/n! < h < h*. Then, for any fixed c, as n -> oo, 

- F 111 
(4.2) h*= + + B +Oc 24c 12n 

where -1 < B < 1. 

PROOF. Qm(n/2 + h) 2 1/n! if and only if the exponent in (4.1) is non- 
negative. Setting the exponent equal to 0 and collecting terms gives 
(4.2). n 

The next result is the main theorem of this section, combining the estimates 
above to give the asymptotics of the total variation. The argument uses 
standard results about sums of independent variables; see Feller (1971) for 
background. 

THEOREM 4. Let Qm be the Gilbert-Shannon-Reeds distribution on the 
symmetric group Sn. Let U be the uniform distribution. For m = log2(n3/2c), 
with 0 < c < o fixed, as n tends to oo, 

IlQm - Ull = 1 - 2F (jP ) +OC( /4) 

with ?(x) = flx.e-t2/2 dt/ 62i. 

PROOF. With notation as in Propositions 1 and 2 above, IIQm - Ull equals 

(4.3) E( /2<h<h* (2 + h) n 

where Rnh is the number of permutations with n/2 + h rising sequences. 
This uses the fact that the number of rising sequences is a sufficient statistic 
for both Qm and U as explained in Section 3 and that total variation between 
two probabilities equals the total variation between the induced laws of any 
sufficient statistic [see, e.g., Diaconis and Zabell (1982), Lemma 6.1]. 

A permutation has r rising sequences if and only if 1r- 1 has r - 1 descents; 
see Section 3 for further discussion. The number of permutations with j 
descents is called the Eulerian number an ; see Tanny (1973), Stanley (1977) 
and other papers in the latter volume. Tanny and Stanley show that ani/n! 
equals the chance that the sum of n random variables uniform on [0, 1] is 
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between j and j + 1. Thus a nj/n! and Rnh/n! obey the central limit 
theorem as in Tanny (1973). In particular if xn = h/ vn/12, the local limit 
theorem gives 

Rnh e (1/2) n 1)) (4.4) 
Rfh-e12x 1+0 ( 

~ uniformly in h. 
n 2w~rn~/12 Fn 

The usual form of the central limit theorem for the distribution function of 
anj/n! and Rnh/n! gives 

1 h* -1 1 
In! Rhn2 h= ( j J( 1 + ,- uniformly. 

The sum (4.3) can be broken into two zones. Recall from Proposition 2 that 
h*= - /24c + 0(1): 

lO -1 3/4A 
zone 1: { - ? h < h*} =Il 

(n - 10n33/4 
zone 2: -2 <?h< J=I2. 

As will be shown, only zone 1 contributes. 
From (4.4) and Proposition 1, E I,R nhQm(n/2 + h) equals 

e/1 lexp -- h ___) - +?(-)4I(1+oI 4I) 

ee 1/24C2 + o ( 2)) 

= ____+gC )(1 + O( 214)). 

In zone 2, Qm(n/2 + h) ? Qm(1) ? eV/f /2c/n!. The standard large devia- 
tions bound as in Feller [(1971), Chapter 16] applied to the sum of n uniforms 
shows 

00h 11 0/nl/4 2 

RD h 1 ex[0 0Tn~ 

C i u c l tnlh4 pof _ tiombns n boundas in omplert17es Catr 6ppidt the proof ofnclfom 
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TABLE 3 
Total variation distance for m shuffles of 25, 32, 52, 78, 104, 208 or 312 distinct cards 

m 1 2 3 4 5 6 7 8 9 10 

25 1.000 1.000 0.999 0.775 0.437 0.231 0.114 0.056 0.028 0.014 
32 1.000 1.000 1.000 0.929 0.597 0.322 0.164 0.084 0.042 0.021 
52 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043 
78 1.000 1.000 1.000 1.000 1.000 0.893 0.571 0.307 0.153 0.078 

104 1.000 1.000 1.000 1.000 1.000 0.988 0.772 0.454 0.237 0.119 
208 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.914 0.603 0.329 
312 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.883 0.565 

Theorem 2 of the Introduction follows immediately as a corollary. 

REMARK 1. The function 1 - 2CF(- 1/4cV3) has the following asymptotic 
behavior: 

-- 1 1 
1- 2 as c 00, 

4cVF 2c 67-r 

/ -1 _4c__ 1(-1 1 2 

4cF/) 2 2 e [ 4cFJ as c 0. 

Note that m = log2(n3/2c) has c inside the logarithm, so c = 2' where j is the 
number of shuffles beyond 32 1g2 n that have been performed. It follows that 
the variation distance tends to 0 exponentially in j for j positive. It tends to 1 
doubly exponentially in j for j negative. 

REMARK 2. The asymptotics show that about 3 1og2 n shuffles are needed 
to mix up n cards. Table 3 gives exact computations of variation distance for a 
number of popular deck sizes. Each deck size shows the cutoff phenomenon. 
Variation distance decreases by a factor of 2 after each shuffle following the 
cutoff. For comparison, Table 4 gives 2 10g2 n for these deck sizes. 

REMARK 3. The appearance of the normal distribution in the asymptotics 
for total variation is not an accident; see Diaconis, Graham and Morrison 
(1990). With m shuffles, the number of rising sequences is normally dis- 
tributed as it is under the uniform distribution. Variation distance equals the 
distance between the two limiting normal distributions. 

TABLE 4 
Shuffles needed to mix 25, 32, 52, 78, 104, 208 or 312 cards 

n 25 32 52 78 104 208 312 
3 10g2 n 6.97 7.50 8.55 9.43 10.05 11.55 12.43 
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5. Three developments. 

5.1. A different distance. The total variation distance, while standard in 
probability theory, can be difficult to explain to nonspecialists. The following 
alternative distance has proved useful and is of interest on its own. 

Consider the following problem: A deck of cards is face down on the table. A 
guesser tries to guess at the cards one at a time. After each guess, the current 
top card is turned over to reveal its value and then discarded. If the guesser 
believes that the deck is well mixed, the optimal strategy is to guess any card 
first (chance 1/52 of being correct) and thereafter guess a card known to be in 
the deck. The expected number of correct guesses is 

1 1 
-5+ - + ++1=4.54. 
52 51 

With n cards, the number correct is asymptotically normal with mean log n 
and variance log n. 

Suppose that the deck has been riffle shuffled k times, where k is unknown. 
The starting assignment is assumed known. We do not know the optimal 
strategy. A conjectural optimal strategy was used to produce Table 5. 

The table shows the result of a Monte Carlo experiment. Each cell is based 
on 100,000 trials. A cell shows the average number of correct guesses. The first 
row shows results for k shuffles alone. The second row shows results for k 
shuffles followed by a binomial (52, 2) cut. 

With or without a cut, after five shuffles, the strategy gives two extra cards 
correct on average. After six shuffles, this goes down to about one, then it 
decreases by a factor of roughly two. 

The strategy used is simple to describe and conjectured to be optimal for 
each k. If the deck has not been cut, guess the original top card as the first 
guess. As successive guesses are made and successive cards are revealed, check 
these cards off on a list of the deck in its original order. In general, such a list 
will have checked off cards and possible cards. Take a longest block of 
consecutive possible cards and guess the topmost card. 

If the deck has been cut, the first card guessed is random and thereafter the 
above strategy is used starting with the first revealed card cycled to the top of 
the list. Both strategies are based on ideas of Michael McGrath. 

5.2. Analysis of shuffles with a random cut. Michael McGrath has derived 
a simple closed form expression for the chance that a deck of n cards is in final 

TABLE 5 
Number of cards guessed correctly after k shuffles of 52 cards 

k 1 2 3 4 5 6 7 8 9 10 
No cut 31.17 19.69 12.92 8.80 6.56 5.51 5.01 4.76 4.65 4.60 
Cut 29.45 19.09 12.69 8.70 6.50 5.46 4.97 4.73 4.63 4.57 
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arrangement 7n after k shuffles followed by a uniformly distributed cut. This 
chance is 

aQ 2)(k + nrl) +- b r)(2k + n-r2) 

n2kn 

where r1 is the number of rising sequences in w when 1 is cut to top, r2 is the 
number of rising sequences in w7 when 1 is cut to bottom, a(v) is the distance 
from n to 1 counted forward and cyclically, b(7G) is n - a(7r). For example, 
with n = 6, v = 5, 2, 3, 1, 6,4 has chance 

5(2k +n -3) +12 +n -4) 

n 2kn 

5.3. Face up, face down shuffling. As explained at the end of Section 3, 
similar analysis can be undertaken for some other groups. For the hyperocta- 
hedral group, the shuffling operation has a simple interpretation: Cut the deck 
into two parts according to a binomial distribution. Turn the original top part 
face up and shuffle the two parts together by the Gilbert-Shannon-Reeds 
model. This basic shuffle is repeated k times. One is interested in the order of 
the cards becoming random as well as their face up, face down pattern 
becoming random. There are 2n n! possibilities. The set of all such signed 
permutations forms a group usually denoted Bn. This is isomorphic to the 
group of symmetries of an n-dimensional cube. 

Robert Beals has shown an elegant way in which analyses of such face up, 
face down shuffles reduces to the analysis of the Gilbert-Shannon-Reeds 
measure. 

THEOREM 5. Let Q denote the analog of the Gilbert-Shannon-Reeds mea- 
sure on the group Bn, with U the associated uniform distribution. Let Q and U 
denote the GSR and uniform distribution on Sn. Then for k = 1, 2, 3,. .. 

IIQk - UIIB = IIQkl - UIISn. 

At the heart of Beal's argument is the following combinatorial fact: After 
two GSR shuffles of a deck of n cards, imagine straightening the cards out by 
removing the face up cards, keeping them in the same relative order, and 
placing them face down on top. The resulting random permutation has a GSR 
distribution. 

A practical application arises in shuffling cards with oriented backs. There, 
one wants the arrangement of faces as well as the up-down pattern of the 
backs to be random. These orientations are significant for Tarot cards. 

An analog of the algebraic results in Section 3 has been developed for Bn by 
Bergeron (1990) and Bergeron and Bergeron (1990, 1991). 

This content downloaded from 128.32.135.128 on Wed, 29 Oct 2014 16:38:48 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


312 D. BAYER AND P. DIACONIS 

Acknowledgments. Jim Pitman, Jim Reeds, David Aldous and Sophie 
Yancopoulos have spent hours discussing shuffling with us. Bob Beals, David 
Gay, Michael McGrath and Dan Rockmore all contributed results in Section 5. 
The geometric model of Section 3 was developed in conversations with Izzy 
Katznelson. Ira Gessel, Phil Hanlon and Richard Stanley have provided crucial 
links to combinatorical theory and commutative algebra. Laurie Beckett helped 
us simplify the proof of Theorem 1. 

Note added in proof. Diaconis, McGrath and Pitman (1991) have found 
closed form expressions for a variety of events after an a shuffle. For example, 
the expected number of fixed points is 1 + 1/a + 1/a2 + . .. + 1/an-l. The 
chance that m- has n1 fixed points, n2 transpositions ... in its cycle decomposi- 
tion is 

1 f (fi(a) + ni1) with f (a) E (d)a i/d 

__ ~~~~~~~~~~~~dli 

where ,u is the Mobius function of elementary number theory. 
These results show that the approach to randomness has a rather delicate 

structure. The present paper shows that it takes 3 1og2 n shuffles to mix up n 
cards. The new results show that functions of m- that only depend on cycles 
have approximately the right distribution after c(n) steps, where c(n) / so 

arbitrarily slowly. Preliminary computations indicate that functions which 
depend on large cycles (such as the length of the longest cycle) have the right 
distribution after 1 shuffle. 

It is also worth noting that the algebraic results of Corollary 3 in Section 3 
yield the eigenvalues of the basic Markov chain. The eigenvalues are 
1, 1/2, 1/4, .. ., 1/2n-1, with 1/2i having multiplicity the number of permu- 
tations in Sn with n - i cycles. This follows from Corollary 3: The expression 
for B' only involves m through these powers of 2. From results in Hanlon 
(1990), the multiplicity of an eigenvalue equals the coefficient of the identity in 
the associated idempotent. Using the explicit expression for the idempotents 
completes the proof. 
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