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Abstract 
 While most empirical analysis of prediction markets treats prices of binary 
options as predictions of the probability of future events, it has recently been argued that 
there is little existing theory supporting this practice.  We provide relevant analytic 
foundations, describing sufficient conditions under which prediction markets prices 
correspond with mean beliefs.  Beyond these specific sufficient conditions, we show that 
for a broader class of models prediction market prices are usually close to the mean 
beliefs of traders.  The key parameters driving trading behavior in prediction markets are 
the degree of risk aversion and the distribution on beliefs, and we provide some novel 
data on the distribution of beliefs in a couple of interesting contexts.  We find that 
prediction markets prices typically provide useful (albeit sometimes biased) estimates of 
average beliefs about the probability an event occurs. 
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1. Introduction 

Prediction markets are an increasingly widely used information aggregation 

device in academic research and public policy discussions, and the prices of contracts tied 

to events as diverse as the re-election of President Bush, the ouster of Saddam Hussein, 

next month’s non-farm payrolls number, or the success of specific products have been 

interpreted as though interchangeable with “the market’s beliefs”.  In these markets one 

typically trades a security that pays $1 if a specified event occurs, and so the convention 

of treating the price of this security as a market-generated probability estimate has some 

intuitive appeal.  Yet, as Manski (2006) notes, there exists very little theory describing 

the link from the underlying distribution of beliefs about the event to the equilibrium 

prediction market price. 

This paper presents some simple theory, calibration results, and field evidence on 

the mapping from the distribution of beliefs to equilibrium prediction market prices.  Our 

analytic results yield sufficient conditions for prediction market prices to equal mean 

beliefs.1  Yet when relaxing some of our restrictive assumptions, we find that the prices 

may diverge from mean beliefs.  Thus we turn to a quantitative exercise, keeping our 

baseline model simple enough that it is amenable to calibration.  We find that empirically 

relevant parameterizations of beliefs and trading behavior,yield prediction market prices 

that approximately equal the average belief among traders. 

The question we seek to answer is how prices relate to subjective beliefs about 

probabilities.  This question is important for interpreting studies that use a prediction 

market as an indicator of the beliefs that are impounded in other asset market prices.2  It 

is subtly different from a related question:  do prediction market prices provide accurate 

estimates of event probabilities?  This latter question is addressed by numerous recent 

empirical studies that examine whether the likelihood of a binary prediction market 

                                                 
1 In concurrent work, Steven Gjerstad (2005) derives a number of related results. 
2  Examples include Slemrod and Greimel’s (1999) analysis of the effect on municipal bond prices of 
changes in Steve Forbes’ election probability; Leigh, Wolfers and Zitzewitz (2003) on the equity market 
consequences of changes in the probability of an Iraq war; Knight (2006) or Snowberg, Wolfers, and 
Zitzewitz (2007) on the equity market consequences of shocks to the likelihood of Republican Presidential 
election victories; and Fisman, Fisman, Galef and Khurana (2006) analyzing the effects on Cheney-
connected firms of various political shocks. 
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contract paying off is equal to its price, which have in general concluded that they are.3  

Naturally, our analysis of belief aggregation in prediction markets can help one better 

understand their predictive performance. 

We proceed as follows.  The next section sketches a simple model in which 

prediction market prices do coincide exactly with the mean of the belief among traders.  

The following section generalizes the model, showing that prediction market prices can 

deviate from mean beliefs, but that this deviation is typically small.  The extent of the 

deviation depends crucially on how widely dispersed beliefs are, and so in the final 

section we present field evidence on this point.  To preview, our results suggest that 

while prediction market prices and mean beliefs may diverge, they are typically very 

close.  We interpret our results as providing a microfoundation for the claim that 

prediction markets (approximately) efficiently aggregate beliefs. 

 

2. A Simple Model 

We consider a simple prediction market in which traders buy and sell an all-or-

nothing contract (a binary option) paying $1 if a specific event occurs, and nothing 

otherwise.  There is heterogeneity in beliefs among the trading population, and we denote 

trader j’s belief that the event will occur as qj.  

These beliefs are uncorrelated with wealth levels (y~G(y)), and are drawn from a 

distribution, F(q).  Individuals are price-takers and trade so as to maximize their 

subjectively expected utility.  Wealth is only affected by the event via the prediction 

market, so there is no hedging motive for trading the contract. 

We first consider the case where traders have log utility.  In deciding how many 

contracts, x, to buy at a price π, traders solve the following problem: 

                                                 
3  Analyses of prediction market unbiasedness include Berg, et. al. (2003) for the Iowa Market’s vote share 
markets, Wolfers and Zitzewitz (2006) for their binary winner-take-all markets, Wolfers and Zitzewitz 
(2004) for the Hollywood Stock Exchange’s markets, Gürkaynak and Wolfers (2005) for Economic 
Derivatives, and Tetlock (2004), Borghesi (2006), and Zitzewitz (2006) for TradeSports’ sports and 
financial markets.  In addition, Thaler and Ziemba (1994) and Snowberg and Wolfers (2006) provide 
evidence for horse racing markets , and Zitzewitz (2006) provides evidence for CBOE option spreads that 
approximate binary options.  Some of these studies report evidence of a “favorite-longshot bias”, in which 
securities probabilities close to the extremes are mispriced.  Chen et. al. (2006) and Fair (2006) both 
provide interesting model-based interpretations of Tradesports-generated probabilities.  
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Thus, individual demand is: 

• Zero when prices equal beliefs:  When traders believe that the event is more 

likely than the price (q>π) they have positive demand, and they are net 

suppliers if q<π. 

• Linear in beliefs: For traders with a given wealth level (y), demand increases 

linearly with their beliefs. 

• Decreasing in risk:  For a given expected return (q – π), greater risk (π close 

to ½) yields smaller demand. 

• Homothetic: Demand for these contracts rises proportionately with initial 

wealth, y. 

• Unique: Only for prices between 0 or 1.  (We will confine our attention to 

interior solutions.) 

The prediction market is in equilibrium when supply equals demand: 

( ) ( ) ( ) ( )
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If beliefs (q) and wealth (y) are uncorrelated, then this implies: 
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π π
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and hence: ( )qf q dq qπ
∞

−∞

= =∫       (4) 

The monotonicity of demand in expected returns (q – π) implies that this is the 

only price for which aggregate demand will be zero for the given set of beliefs. 

Thus, in this simple model, market prices are equal to the mean belief among 

traders.  It is worth noting then that prices depend on the beliefs of all traders, and not 

simply an unspecified “marginal trader.”  To see the relevant intuition, note that when all 
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traders optimally determine the size of their investment, they must all be marginal with 

respect to the last contract purchased. 

The source of the heterogeneity in beliefs merits some attention.  To be clear: the 

beliefs we analyze in our theoretical model motivate trading at the market price, and 

hence must be posterior beliefs after observing price.  We do not explicitly model any 

learning, including learning from the trading process, through which traders arrive at 

these posteriors, but instead seek to identify the market price that is consistent with a 

given set of posterior beliefs.  We restrict attention to the price-posterior belief 

relationship because our goal is to assess the appropriateness of using prediction market 

prices as proxies for beliefs impounded in other asset prices.  In addition, when we 

calibrate our model, it will be using field data on beliefs that are likely to be posterior.  

It is worth noting the possible sources of belief heterogeneity.  One possibility is 

that trade is motivated by uncommon priors, and Morris (1995) argues that this is 

particularly likely when the event has been observed with insufficient frequency to 

suggest a common frequentist prior.  This seems a useful interpretation for the types of 

events often traded in prediction markets.4  An alternative would be differences in 

information that motivate heterogeneous beliefs, but as Sebenius and Geanakoplos (1983) 

and other no-trade results show, these information asymmetries cannot induce two 

individuals to bet against each other: As each trader indicates a willingness to bet, she 

reveals some of her information, leading beliefs to converge to a degenerate distribution 

(at the market price).  Given the active trade that we observe in many prediction and 

betting markets and the fact that this trade seems unlikely to be fully explained by 

liquidity, hedging, or entertainment motives, one might be skeptical that full convergence 

occurs in reality.  Aumann (1976) suggests that a behavioral bias—such as anchoring—

may lead traders to update their beliefs insufficiently in light of disconfirming evidence, 

such as the willingness of others to bet.  Under this hypothesis, differences in beliefs 

among imperfect Bayesians persist.5  This is consistent not only with the trade we 

observe, but also anecdotal evidence that many prediction market participants expect to 

                                                 
4  For instance, Morris (1995, p.248) suggests “some safe generalizations about where individuals are more 
likely to agree… and where they are less likely to (political prospects in Iraq…)”. 
5 Relatedly, Harris and Raviv (1993) suggest that even under common priors with common information, if 
traders differ in how they interpret news, this yields uncommon posteriors that motivate trade. 
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earn money, and data we discuss below that reveal substantial heterogeneity of beliefs, 

even in settings where one is reasonably certain that respondents have observed market 

prices.6 

 

3. Generalizing the Model 

We now turn to relaxing some of the assumptions made above.  To preview, 

relaxing the assumption that budgets are independent of beliefs yields the intuitively 

plausible result that prediction market prices are a wealth-weighted average of beliefs 

among market traders.  And second, the result that the equilibrium price is exactly equal 

to the (weighted) mean of beliefs reflects the fact that demand for the prediction security 

is linear in beliefs, which is itself a byproduct of assuming log utility.  Calibrating 

alternative utility functions, we find that prices can systematically diverge from mean 

beliefs, but that this divergence is typically small.  (The advantage of our very simple 

model is that it is easily amenable to calibration exercises.)  

 

What if Beliefs and Wealth are Correlated? 

Consider traders drawn from a distribution F(q,y), where E[q,y]≠0.  Thus, 

equation (1) continues to describe the demand of individual traders, given their beliefs 

and wealth levels.  However, our equilibrium condition now changes, as traders with 

specific beliefs will have greater weight in the market.  As before, equilibrium requires 

that supply equals demand: 

( , ) ( , )
(1 ) (1 )
q qy dF q y y dF q yπ ππ π

π π π π
− −

≤ = ≥
− −∫ ∫  and hence: ( , )yq F q y

y
π = ∫  (5) 

                                                 
6  Two subsequent papers model learning explicitly and provide further useful results.  Adams (2006) 
provides a multiperiod version of our model in which agents update their beliefs based on prices revealed in 
earlier periods; he shows that this leads prices to eventually converge to the mean of prior beliefs.  
Ottaviani and Sorensen (2006) analyze a fully-revealing rational expectations equilibrium, showing that if 
traders share similar priors, beliefs converge to the Bayesian posterior aggregating all private signals, and 
the market price equals this shared posterior.  With heterogeneous priors, beliefs no longer converge, but 
the market price remains a generalized average of the Bayesian posteriors of market participants.  Under 
CARA preferences, this generalized average corresponds to the rational posterior that aggregates all private 
information, given a “market prior” which in turn is a weighted average of the priors of traders 
(specifically, the log-likelihood ratios of the market prior are a risk-tolerance-weighted average of the log-
likelihoods of individual traders).  The interaction of heterogeneous priors and DARA or IARA preferences 
yields a wealth effect that confounds these neat results, although the quantitative significance of this 
channel remains unclear. 
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Thus, as before, the market equilibrium price is an average of beliefs in the 

trading population, although each belief is weighted according to the average wealth of 

traders holding that belief, relative to the average wealth level ( y ). 

If long-run market forces lead those with a history of accurate evaluation to 

become wealthier, then this wealth-weighted average may be a more accurate predictor 

than an unweighted average.  Furthermore, if we are interested in using the prediction 

market price as a proxy for the beliefs of the marginal investor in other asset markets and 

if the wealthy trade more in these other markets, then the wealth-weighted average may 

again be closer to the object of interest. 

 

 Alternative Utility Functions 

 The key to the analytic simplicity of the above results is that individual demands 

in equation (1) are linear functions of each agent’s beliefs.  This, in turn, reflects the 

convenient assumption of log utility.  As we relax this assumption, simple analytic results 

will be less easy to obtain. 

Before analyzing the general case, it is worth analyzing an interesting special 

case, involving demand functions and distributions of beliefs that are symmetric.  If: 

i) Individual demand for the prediction security is a function of the difference 

between beliefs and market prices and symmetric around zero: 

x(q- )=-x( -q))π π . 

ii) The distribution of beliefs is symmetric: ( ) ( )f q q f q q− = −  

then f(q)x(q) will be symmetric and supply will equal demand if and only if price is the 

mean of beliefs. 

These dual symmetry assumptions are sufficient to imply that equilibrium prices 

are equal to the mean beliefs of traders.  Thus, the assumption of log utility is sufficient, 

but not necessary for this result.  These dual symmetry conditions are likely to be met for 

distributions of beliefs symmetric around q =½, as long as traders are not affected by 
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framing issues.7  This suggests that we might generally expect prediction markets to be 

particularly accurate for prices close to ½.  (We illustrate this in section 3.) 

 Beyond these special assumptions though, different utility functions and 

distributions of beliefs will yield less analytically neat expressions, and raise the 

possibility that market prices diverge from mean beliefs.  Our aim is to evaluate the 

extent to which plausible parameters yield important divergence. 

 In the general case, the trader’s utility maximization problem becomes:  

 

( (1 )) (1 ) ( )

'( )
:

'( ) 1

j

j j j j j
{x }

j j

j

Max EU =q U y x q U y x

U y x x (1-q)FOC    
U y x q

π π

π π
π π

+ − + − −

+ −
=

− −

    (6) 

which yields an interior solution when the trader is risk averse and a corner solution of 

betting one’s entire wealth when the trader is risk neutral or risk loving.  Specific 

functional forms allow us to solve for individual demand functions, and by specifying the 

distribution of beliefs, to solve for the relationship between equilibrium prices and mean 

beliefs.  Table 1 shows the individual demand functions for a few widely used functional 

forms. 

Figure 1 plots demand as a function of beliefs for π = $0.33 for a range of 

interesting utility functions.  Four features are evident in the chart.  First, all involve 

investors increasing their demand as the divergence between their beliefs and the market 

price increase.  Second, the aggressiveness with which traders respond to perceived profit 

opportunities is dictated by their risk aversion.  Third, all functions involve traders 

investing nearly all of their wealth as the investment approaches a perceived “sure thing”.  

Fourth, while only log utility yields an exactly linear demand function, almost all of these 

functions are approximately linear over the range in which beliefs are within about 

10-20 percentage points of the price.  This suggests that for distributions of beliefs that 

are not too disperse, market prices will be quite close to the mean belief across traders.8 

                                                 
7 That is, we assume that investors are indifferent between economically equivalent long and short trades, 
such as buying a security at π with belief q, and shorting at 1-π with belief 1-q, so that x(π,q)=-x(1-π,1-q).  
At a price of ½, this implies  x(½,q)=-x(½,1-q) and hence demand is symmetric. 
8  As Manski notes, given that we are analyzing posterior beliefs, partial updating of priors in light of the 
market price would lead the distribution of beliefs to become less disperse. 



8 

The only exception to this approximate local linearity is the risk-neutral investor, 

who always invests her entire wealth whenever market prices diverge from her beliefs.  

Interestingly, this is the only case considered by Manski (2006), adapting the example in 

Ali (1977).9  Not surprisingly, these strong assumptions yield strong implications.  

Specifically for $0.33 to be an equilibrium requires twice as many sellers as buyers at this 

price (because risking one’s entire wealth allows each buyer to purchase twice as many 

contracts as a seller).  Noting that a risk-neutral investor switches from buying to selling 

when the price falls below her belief, this implies that a price of $0.33 corresponds to the 

67th percentile of the distribution of beliefs.  Manski shows that this logic extends through 

the price distribution, and hence in that case, the equilibrium price corresponds not with 

the mean of beliefs, but rather with the 100(1-π)th percentile of the distribution of beliefs. 

 As noted, mean beliefs and prices exactly coincide for the log utility case.  While 

we will solve for equilibrium prices below, we can first use the demand curves shown in 

Figure 1 to provide some intuition about the sign of any divergence between prices and 

mean beliefs.  Specifically, the chart shows that traders with low risk aversion (γ<1) trade 

particularly aggressively on longshots.  This suggest that if beliefs are distributed 

symmetrically that prices will be biased toward ½.  Further, if the mean beliefs are 

accurate predictors, this implies a “favorite-longshot bias”, in which longshots are priced 

above their objective probability.  Analogously, the demand functions for more risk-

averse investors (γ>1) suggest that investors with extreme beliefs have a greater effect on 

prices than in the log utility case.  As such, prices will tend to be biased toward zero or 

one, and a “reverse favorite-longshot bias” may occur. 

 

Mapping Prices to Probabilities 

Given the individual demand functions derived above, all that is required to solve 

for equilibrium prices is a distribution of beliefs.  We start by assuming that beliefs are 

drawn from a uniform distribution with a range of 10 percentage points, and solve for the 

mapping between mean beliefs and prices implied by each of the utility functions shown 

in Figure 1.  (We rescale beliefs outside the (0,1) range to 0 or 1.)  

                                                 
9 Similarly, risk-loving investors also invest their entire wealth, although given that they value the 
opportunity to gamble, the discontinuity in their demand function can occur at a different point. 
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Figure 2 shows that for moderately dispersed beliefs, prediction market prices 

tend to coincide fairly closely with the mean beliefs.  While there is some divergence, it 

is typically within a percentage point, although the risk neutral model yields larger 

differences.  Greater risk-aversion leads to a bias toward more extreme prices, while 

lesser risk aversion leads prices to be biased toward $0.50.  The divergence between 

prices and average beliefs is greatest for prices closest to $0 and $1, although behavior at 

the extremes partly reflects the distribution of beliefs becoming increasingly skewed as 

the mass point at 0 or 1 grows. 

Figure 3 shows the mapping from prices to probabilities when beliefs are more 

disperse (in this case the standard deviation and range were doubled).  As the dispersion 

of beliefs widens, the number of traders with extreme beliefs increases, and hence the 

non-linear response to the divergence between beliefs and prices is increasingly 

important.  As such, the biases evident in Figure 2 become even more evident as the 

distribution of beliefs widens.  Even so, for utility functions with standard levels of risk-

aversion, these biases are small. 

Finally, in Figure 4 we show that alternative utility functions yield similar 

implications.  We have also experimented with uniform, beta and log-normal 

distributions of beliefs, and these results are also similar. 

Cumulatively, figures 2-4 show six main patterns.  First, under all conditions, log 

utility yields prices that coincide exactly with mean beliefs.  Second, for other utility 

functions the divergence between prices and mean beliefs is generally quite small.  Third, 

this divergence is zero when beliefs are symmetric around a 50% probability10 and 

generally very small when prices are in the $0.20-$0.80 range.11  Fourth, the sign of the 

deviation between prices and beliefs varies with the assumed utility function.  Fifth, 

increasingly disperse beliefs yield a larger gap between prices and mean beliefs.  And 

sixth, the extent of the divergence between prices and mean beliefs depends on the 

specific assumptions adopted about the utility function of traders, and the distribution of 

                                                 
10 For a formal proof, see theorem 2 in Gjerstad (2004). 
11 This generalization may not hold for particularly disperse beliefs, and especially when beliefs are 
bimodal.  For instance, Manski considers maximally disperse distributions so as to establish bounds on 
mean beliefs implied by a price.  Appendix A expands on this analysis.  
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beliefs (particularly when beliefs are close to zero or one).  Manski’s model consistently 

delivers the most extreme results. 

We now turn to trying to extract some empirical evidence on the most relevant 

parameters, from field data. 

 

4. Field Evidence on the Distribution of Beliefs 

We begin with a very simple, but salient, example.  Throughout 2003 and 2004, 

TradeSports ran a prediction market in a security that paid $1 if President Bush were re-

elected, and nothing otherwise.  The price of this security on Election eve was $0.55.  At 

the same time, pre-election polls suggested that 62 percent of the population thought that 

President Bush was more likely to win than John Kerry.12,13 

The prediction market price and the poll result place restrictions on the 

distribution of beliefs.  For these data to be useful, we must assume that these survey data 

are representative of beliefs among traders, and specifically their posterior beliefs in light 

of the information embodied in prediction market prices.  For different utility and belief 

distribution functional forms, we can derive the belief distribution that matches these two 

facts and examine how the observed prediction market price relates to central moments of 

the implied belief distribution.  (In the absence of contrary evidence, we continue to 

assume that wealth is uncorrelated with beliefs.)  

If the perceived probability of a Bush victory is q, then the poll result and the 

prediction market price respectively imply that: 

                                                 
12  We draw this number from various polls.  Specifically, the following proportions thought Bush more 
likely to win in the final pre-election poll: CBS/NYT: 60% (n=920 adults polled 10/28-10/30); 
Gallup/CNN/USA Today: 61% (n=1013 adults polled 10/14-10/16); ABC: 62% (n=3617 adults polled 
10/27-10/30); Marist: 60% (n=1300 registered voters polled 10/31); Pew: 64% (n=2804 registered voters 
polled 10/27-10/30); Princeton: 64% (n=1117 registered voters polled 10/27-10/39); Fox: 61% (n=1000 
likely voters polled 10/17-10/18).  Allocating non-respondents 50-50 (instead of dropping them) yields 
proportions predicting Bush that are usually around 2 percentage points lower.  The Gallup question is 
roughly representative, asking: “Regardless of whom you support, and trying to be as objective as possible, 
who do you think will win the (presidential) election in November (2004) – John Kerry or George W. 
Bush?”  The only real divergence was Fox, who asked: “Imagine you were given $100 dollars to place a 
bet on the outcome of the upcoming (2004) presidential election. Which candidate – (George W.) Bush or 
(John) Kerry--would you put your money on to win this November?” 
13 While we focus on jointly explaining prediction market prices and polling data on voter forecasts, 
Fair (2006) describes instead how to rationalize prediction market prices with polling data on voter 
intentions. 
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In Table 2, we examine various two-parameter functions for the distribution of 

beliefs, and a range of utility functions, and solve for the implied mean belief.   We report 

the mean of the implied distribution of beliefs (and display the parameters underlying 

these two-parameter distributions in parentheses). 

Recalling that the market price of this security was $0.55, Table 2 shows that this 

price is a good approximation to the mean belief under any of the specific assumptions 

that we examined.14  Note that this occurs despite the fact that in some cases the belief 

distributions needed to reconcile the market price and poll results are highly asymmetric.  

Naturally this robustness partly reflects the tendency hinted at earlier that prices close to 

$0.50 are typically fairly accurate.15 

Deriving distributions of beliefs from two data points and a distributional 

assumption may not be particularly satisfying, so we would like a setting where we 

observe beliefs directly.  Unfortunately data surveying expectations about the likelihood 

of specific events for which there are prediction or other financial market prices is rather 

rare. 

For this reason we turn to two rather unique datasets.  The first was provided to us 

by Probability Football, an advertising-supported free contest that requires players to 

estimate the probability of victory in every NFL game in a season.16  Including the pre-

season and playoffs, this yields 259 games in the 2000 and 2001 seasons and 267 in 2002 

and 2003.  On average we observe the probability assessments of 1320 players in each 

game, for a total sample size of 1.4 million observations.  Contestants are scored using a 

                                                 
14  Note from Table 1 that with CARA utility, risk aversion does not affect the shape of the demand 
function, just its slope.  The same is true of quadratic utility and ymax.  Since aggregate supply is zero, 
multiplying all trader’s demand by a constant does not affect market prices, we report results for only one 
parameter value for CARA and quadratic utility.  Likewise, HARA utility and CRRA utility yield betting 
functions of the same shape (again, allowing for a difference in slope), so we do not report results 
separately for HARA. 
15 Interestingly, the table also shows that – for a given set of assumptions – market prices can also reveal 
the dispersion of beliefs in the population.  That said, unlike the inferences about the mean beliefs, 
inferences about the underlying dispersion of beliefs are quite sensitive to the specific assumptions adopted. 
16  Levitt (2004) analyzes a related sample from a different source.  The advantage of our data is that they 
also include a measure of participants’ beliefs.  We are grateful to Brian Galebach for sharing these data. 
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quadratic scoring rule; they receive 100 - 400(w - q)2, points where w is an indicator 

variable for whether the team wins and q is the stated probability assessment.  Truthfully 

reporting probabilities yields the greatest expected points, a fact that is explicitly 

explained to contestants. 

The top three players receive cash prizes.  While these rank-order incentives 

potentially provide an incentive to add variance to one’s true beliefs, it turns out that 

given the number of games in a season, this incentive is small.  For instance, in 2003, two 

mock entrants to this contest that simply used prices from TradeSports and the Sports 

Exchange (a sports-oriented play-money prediction market run by NewsFutures.com) as 

their probabilities placed seventh and ninth out of almost 2,000 entrants.17  We simulated 

strategies that took these prediction market prices and added or subtracted noise, finding 

that adding or subtracting 1 percentage point to the market price yielded the highest 

probability of winning a prize.  Even so, quite a few players appear to believe that more 

variance is optimal; and about 40 percent of players report zero or one for at least ten 

percent of their games.  This is a losing strategy, despite comprising 40 percent of 

players, they account for only 5 percent of those who make the top 5 percent.18  Since we 

are interested in learning about the distribution of beliefs, we drop all probability reports 

from these players. (Qualitatively this doesn’t much affect our results.) 

Figure 5 reports the distribution of all probability for games in which prediction 

market prices are close to $0.33.  Even after cleaning the data, there are still mass points 

at zero and one and some clustering at focal numbers.  Beyond this, the distribution 

appears roughly normal. 

Figure 6 examines how this distribution of beliefs varies with the (real-money) 

prediction market price.  In general, prices closely approximate the mean (the dashed 

line) or median of beliefs.  To the extent there is divergence, prices diverge away from 

$0.50.  This relationship is more consistent with what one would expect under high risk 

aversion (CRRA > 1).  Recall that under log utility (CRRA=1), betting functions are 

linear, and the equilibrium price is the mean of beliefs.  In contrast, with greater risk 

aversion, traders respond aggressively only when prices deviate substantially from their 

                                                 
17  Servan-Schreiber, Wolfers, Pennock and Galebach (2004) used the data collected from this to compare 
the predictive power of real and play-money markets, finding that they were roughly equal. 
18  Probability Football has added strategy advice to its website that makes this point to players. 
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beliefs.  As such, those with extreme beliefs have the most significant effect on prices 

(and indeed in the limit as risk aversion approaches infinity, prediction market prices are 

determined by the numbers of traders who are certain that the event will occur relative to 

those certain it will not).  These forces push prices away from mean beliefs, towards zero 

for longshots, and one for favorites, as seen in Figure 6. 

Figure 7 formalizes this intuition.  Specifically we apply our model to our 

empirical data on beliefs, varying parameters of the utility functions.  The figure plots the 

implied equilibrium prediction market price against the actual mapping.  From this graph, 

it appears that predicted prediction market prices most closely approximate actual 

prediction market prices for a utility function with CRRA = 5. 

Our second dataset of probability beliefs that can be matched with prices comes 

from the Michigan Survey of Consumers, which asks respondents for the probability a 

$1000 investment in a diversified stock mutual fund will increase by 10 percent or more 

in the next year.19  The security corresponding to this event would be a binary equity 

index option with an expiry date one year from today and a strike price 10 percent above 

the current index level.  While this exact option usually does not exist, we can estimate its 

price using the prices of related options.20 

Figure 8 plots our estimated binary option price along with prediction market 

prices that we simulate using beliefs from the Michigan survey and different assumptions 

about preferences.21  Beliefs in the Michigan survey are quite disperse, with a mean of 31 

                                                 
19  We are grateful to Charles Manski for providing this data.  The survey is described in more detail in 
Dominitz and Manski (2004). 
20  For the purposes of this exercise, we interpret the pre-dividend returns of the S&P 500 as a proxy for the 
returns on a “diversified mutual fund.” This implicitly assumes that the dividend yield and mutual expense 
ratios are roughly equal, which they are for our time period (the average S&P 500 dividend yield was 
1.78% per the Ivy OptionMetrics dataset and the average diversified stock fund expense ratio was 1.53% 
for year-end 2002 per the CRSP Mutual Funds dataset).  For each day in our sample, we estimate the price 
of a binary option paying $1 if the S&P 500 is more than 10 percent above its current level in one year.  We 
do so by interpolating an estimated implied volatility for our hypothetical option using the implied 
volatilities for the CBOE S&P 500 index options with the nearest strike prices and expiry dates (obtained 
from the OptionMetrics dataset).  We then calculate the binary option price using the derivative of Black’s 
(1976) pricing formula for options on futures with respect to strike price.    
21  In simulating the prediction market prices, we correct for the fact that risk averse investors will have 
higher marginal utility in low-wealth states of the world.  From 1980-2005, conditional on returning more 
than 10 percent in twelve consecutive calendar months, the S&P 500 has returned 22.6 percent on average.  
Conditional on returning less than +10 percent, it has returned -3.2 percent.  This implies that an investor 
with a portfolio-average beta of 0.5 would have wealth that is 13 percent higher if our “S&P 500 up 10% or 
more” security pays off.  If such an investor had log utility, she would value a security with an objective 
payoff probability of 0.3 at approximately 0.275.  For each level of risk aversion, we account for this 
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percent and a standard deviation of 25 percent.  Risk preferences therefore have a 

significant effect on our simulated prediction market price.  The graph suggests that a 

CRRA of approximately 1 best reconciles beliefs and binary option prices.22 

While these results are interesting, they are obviously not a particularly robust 

way to measure risk aversion.  Rather, we take the results as simply suggesting that 

models with moderate risk aversion are roughly consistent with our data on prediction 

market prices and the distribution of beliefs. 

 

5. Conclusion 

An old joke about academics suggests that we are often led to ask: “We know it 

works in practice, but does it work in theory?”  This paper arguably follows that model.  

As discussed above, a variety of field evidence across several domains suggests that 

prediction market prices appear to be quite accurate predictors of probabilities.  This 

paper suggests that this evidence is easily reconcilable with a theory in which traders 

have heterogeneous beliefs that are correct on average. 

All of the models we have explored yield a monotonic mapping between prediction 

market prices and the mean of beliefs.  Moreover, we have provided several sets of 

sufficient conditions under which prediction market prices exactly coincide with the 

mean of beliefs.  More generally there can be a wedge between the two, but for most 

practical purposes, our simulations suggest that it is likely to be small.  As such, we 

believe that this provides a logical rationale for our earlier assertion that “markets 

aggregate opinions” (Leigh, Wolfers and Zitzewitz, 2003). 

Manski (2006) presented a specific example “under special assumptions that may 

constitute a best-case scenario” in which this wedge between prices and average beliefs 

was large.  By contrast, our analysis endogenizes the decision as to whether and how 

much to trade, and we find that Manski’s special case is in fact a worst-case scenario.  

                                                                                                                                                 
difference when simulating the prediction market prices in Figure 8, although making the correction only 
materially affects the curves for CRRAs greater than 2.  Given the much lower correlation between 
outcomes and wealth for the political or football prediction markets discussed above, we do not make this 
adjustment for those markets.       
22  The Michigan Survey also asks respondents for a probability that the mutual fund will increase in value 
in general.  For this question, beliefs are distributed roughly symmetrically around 50 percent, and the 
binary option price we calculate is also close to 50 percent.  As a result, simulated prediction market prices 
approximate binary option prices for a wide range of risk preferences.  
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Moreover, while his worst-case scenario is at odds with observed field data, our model is 

consistent with observed data on the distribution of beliefs and prediction market prices. 

Finally, we conclude with some guidance for practitioners.  In most cases we find 

that prediction market prices aggregate beliefs very well.  Thus, if traders are typically 

well-informed, prediction market prices will aggregate information into useful forecasts.  

The efficacy of these forecasts may however be undermined somewhat for prices close to 

$0 or $1, when the distribution of beliefs is either especially disperse, or when trading 

volumes are somehow constrained, or motivated by an unusual degree of risk-acceptance. 
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Appendix A: Bounds on Mean Beliefs 
 

 Manski considers the bounds on mean beliefs implied by a market price based on 
his fixed bet size model.  Specifically, recall the result that the market price, π coincides 
with the 1-πth

 percentile of the distribution of beliefs.  Thus this price is consistent with 
many different distributions of beliefs: the lower bound reflects the two-point distribution 
f(0)=1-π and f(π+ε)=π; the upper bound is generated by the distribution f(π-ε)=π and 
f(1)=1-π (for ε→0).  As such, mean beliefs are bounded by (π2, 2π-π2).  These bounds are 
shown as solid lines in Figure A1. 
 

Figure A1: Bounds Analysis in Four Models 
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We extend the spirit of Manski’s bounds analysis to our other models.  That is, we solve: 

1 1

0 0{f(q)} {f(q)}

p 1

0 p

Lower bound= Min  qf(q)dq   Upper bound= Max  qf(q)dq

subject  to prediction market equilibrium: x(q)f(q)dq x(q)f(q)dq= −

∫ ∫

∫ ∫
  

It is easy to show that these bounds must be generated by two-point distributions.  We 
map these bounds for each prediction market price between $0 and $1, for each utility 
function.  Log utility yields prices that always coincide with mean beliefs.  For other 
utility functions these two-point distributions yield some divergence between prices and 
probabilities, but the divergence is typically smaller than in the fixed bet size model.  
(Increasing risk aversion substantially makes extreme prices somewhat less informative.)  
By construction these bounds reflect extreme bimodal distributions of beliefs; for results 
with more standard distributions, see Figures 2-4. 
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Table 1: Utility Functions and Demand for Prediction Securities 
Utility Function Utility Demand 
Log utility 
(CRRA with γ = 1) 
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* The HARA utility function nests the others as special cases.  (For log utility γ→0; risk 
neutral: γ→1; quadratic: γ = 2; CRRA: γ < 1 and b=0; CARA: γ → -∞ and b > 0). 
 
 
 
Table 2.  Distribution of beliefs about the probability that Republicans would win 
the 2004 election consistent with market price and poll results under different utility 
functions and distributional assumptions 

 Normal 
[μ,σ] 

Beta 
(α,β) 

Uniform 
(qL,qH) 

Implied Distribution of Beliefs 
Fixed bet size 
(Limit; γ→0) 

0.578 
[0.584,0.278] 

0.571 
[2.112,1.589] 

0.586 
[0.229,0.942] 

CRRA; γ=⅓ 0.560 
[0.561,0.201] 

0.558 
[3.370,2.675] 

0.575 
[0.252,0.897] 

Log Utility (γ=1) 0.550 
[0.550, 0.163] 

0.550 
[4.640, 3.804] 

0.550 
[0.342,0.758] 

CRRA; γ=3 0.546 
[0.546,0.149] 

0.547 
[5.337,4.432] 

0.549 
[0.343,0.755] 

CRRA; γ=20 0.544 
[0.544,0.144] 

0.546 
[5.640,4.707] 

0.548 
[0.345,0.752] 

CARA; ρ=3 .544 
[0.544,.0144] 

0.545 
[5.692,4.754] 

0.547 
[0.351,0.743] 

Quadratic; ymax=3 .542 
[0.542,0.138] 

0.542 
[6.568,5.553] 

0.546 
[0.351,0.742] 

Notes: Table shows mean of distribution.  [Parameters of the belief distribution shown in parentheses] 
Source: Authors’ calculations.  Note that beliefs outside (0,1) were treated as lim. q→0 or 1, respectively. 
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Figure 1: Individual Demands Under Alternative Utility Functions 
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Figure 2: Mapping Prices to Probabilities 

Lower Panel: Difference Between Price and Average Belief (Right axis)
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Figure 3: Increasing Dispersion in Beliefs 

Lower Panel:
Difference Between Price and Average Belief (Right axis)
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Figure 4: Alternative Utility Functions 

Lower Panel:
Difference Between Price and Average Belief (Right axis)
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Figure 5: Distribution of Beliefs 
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Figure 6: Distribution of Beliefs and Prediction Market Prices 
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Figure 7: Predicting Prediction Market Prices: Different Models 
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Figure 8:  Probability of a 10 percent Stock Market Rise 
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