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Abstract

We summarize what we regard as the good and bad properties of the Kelly criterion
and its variants. Additional properties are discussed as observations.

The main advantage of the Kelly criterion, which maximizes the expected value of the
logarithm of wealth period by period, is that it maximizes the limiting exponential growth
rate of wealth. The main disadvantage of the Kelly criterion is that its suggested wagers
may be very large. Hence, the Kelly criterion can be very risky in the short term.

In the one asset two valued payoff case, the optimal Kelly wager is the edge (expected
return) divided by the odds. Chopra and Ziemba (1993), reprinted in Section 2 of this
volume, following earlier studies by Kallberg and Ziemba (1981, 1984) showed for any
asset allocation problem that the mean is much more important than the variances and
co-variances. Errors in means versus errors in variances were about 20:2:1 in importance
as measured by the cash equivalent value of final wealth. Table 1 and Figure 1 show this
and illustrate that the relative importance depends on the degree of risk aversion. The

*Special thanks go to Tom Cover and John Mulvey for helpful comments on an earlier draft of this
paper.
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lower is the Arrow-Pratt risk aversion, R4 = —u//(w)/u/(w), the higher are the relative
errors from incorrect means. Chopra (1993) further shows that portfolio turnover is larger
for errors in means than for variances and for co-variances but the degree of difference in
the size of the errors is much less than the performance as shown in Figure 2.

Table 1: Average Ratio of Certainty Equivalent Loss for Errors in Means, Variances and
Covariances. Source: Chopra and Ziemba (1993)
Errors in Means Errors in Means Errors in Variances

Risk Tolerance* vs Covariances vs Variances vs Covariances
25 5.38 3.22 1.67
50 22.50 10.98 2.05
75 56.84 21.42 2.68
! ! !
20 10 2
Error Mean Error Var Error Covar
20 2 1
*Risk tolerance=Ry(w) = T ng((]w) where Ra(w) = _7;' /'((:;f))
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Figure 1: Mean Percentage Cash Equivalent Loss Due to Errors in Inputs.

Since log has R4 (w) = 1/w, which is close to zero, The Kelly bets may be exceedingly large
and risky for favorable bets. In MacLean, Thorp, Zhao and Ziemba (2009) in this section
of this volume, we present simulations of medium term Kelly, fractional Kelly and propor-
tional betting strategies. The results show that with favorable investment opportunities,
Kelly bettors attain large final wealth most of the time. But, because a long sequence
of bad scenario outcomes is possible, any strategy can lose substantially even if there are
many independent investment opportunities and the chance of losing at each investment
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Figure 2: Average turnover for different percentage changes in means, variances and co-
variances. Source: Based on data from Chopra (1993)

decision point is small. The Kelly and fractional Kelly rules, like all other rules, are never
a sure way of winning for a finite sequence.

In Section 6 of this volume, we describe the use of the Kelly criterion in many applications
and by many great investors. Two of them, Keynes and Buffett, were long term investors
whose wealth paths were quite rocky but with good long term outcomes. Our analyses
suggest that Buffett seems to act similar to a fully Kelly bettor (subject to the constraint
of no borrowing) and Keynes like a 80% Kelly bettor with a negative power utility function
—w™ %25 see Ziemba (2003). See the wealth graphs reprinted in section 6 from Ziemba
(2005).

Graphs such as Figure 3 show that growth is traded off for security with the use of fractional
Kelly strategies and negative power utility functions. Log maximizes the long run growth
rate. Utility functions such as positive power that bet more than Kelly have more risk and
lower growth. One of the properties shown below that is illustrated in the graph is that for
processes which are well approximated by continuous time, the growth rate becomes zero
plus the risk free rate when one bets exactly twice the Kelly wager.

Hence it never pays to bet more than the Kelly strategy because then risk increases (lower
security) and growth decreases, so Kelly dominates all these strategies in geometric risk-
return or mean-variance space. See Ziemba (2009) in this volume.

As you exceed the Kelly bets more and more, risk increases and long term growth falls,
eventually becoming more and more negative. Long Term Capital is one of many real
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Figure 3: Probability of doubling and quadrupling before halving and relative growth
rates versus fraction of wealth wagered for Blackjack (2% advantage, p=0.51 and q=0.49).
Source: MacLean and Ziemba (1999)

world instances in which overbetting led to disaster. See Ziemba and Ziemba (2007) for
additional examples.

Thus long term growth maximizing investors should bet Kelly or less. We call betting
less than Kelly “fractional Kelly,” which is simply a blend of Kelly and cash. Consider
the negative power utility function éw® for § < 0. This utility function is concave and
when § — 0 it converges to log utility. As J becomes more negative, the investor is less
aggressive since his absolute Arrow-Pratt risk aversion index is also higher. For the case
of a stationary lognormal process and a given ¢ for utility function dw® and a = 1/(1 — §)
between 0 and 1, they both will provide the same optimal portfolio when « is invested in
the Kelly portfolio and 1 — « is invested in cash.

This handy formula relating the coefficient of the negative power utility function to the
Kelly fraction is correct for lognormal investments and approximately correct for other
distributed assets; see MacLean, Ziemba and Li (2005). For example, half Kelly is 6 = —1
and quarter Kelly is § = —3. So if you want a less aggressive path than Kelly pick an
appropriate . This formula does not apply more generally. For example, for coin tossing,
where Pr(X =1)=p, Pr(X—-1)=q, p+q¢=1,

1 1 a o
1—5_q1—5 _p —q

fs = 1 1= . a a
=5 4 q1-3 p* +q

A\ S I S

which is not af*, where f* =p —q > 0 is the Kelly bet.
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We now list these and other important Kelly criterion properties, updated from MacLean,
Ziemba and Blazenko (1992), MacLean and Ziemba(1999) and Ziemba and Ziemba (2007).
See also Cover and Thomas (2006, chapter 16).

The Good Properties

Good Maximizing ElogX asymptotically maximizes the rate of asset growth. See Breiman
(1961), Algoet and Cover (1988)

Good The expected time to reach a preassigned goal A is asymptotically least as A in-
creases without limit with a strategy maximizing ElogXy. See Breiman (1961),
Algoet and Cover (1988), Browne (1997a)

Good Under fairly general conditions, maximizing ElogX also asymptotically maximizes
median logX. See Ethier (1987, 2004, 2010)

Good The ElogX bettor never risks ruin. See Hakansson and Miller (1975)
Good The absolute amount bet is monotone increasing in wealth.

Good The ElogX bettor has an optimal myopic policy. He does not have to consider prior
nor subsequent investment opportunities. This is a crucially important result for
practical use. Hakansson (1971) proved that the myopic policy obtains for dependent
investments with the log utility function. For independent investments and any power
utility a myopic policy is optimal, see Mossin (1968). In fact past outcomes can be
taken into account by maximizing the conditional expected logarithm given the past
(Algoet and Cover, 1988)

Good Simulation studies show that the ElogX bettor’s fortune pulls ahead of other “es-
sentially different” strategies’ wealth for most reasonable-sized samples. Essentially
different has a limited meaning. For example g* > g but ¢g* — g = € will not lead to
rapid separation if € is small enough The key again is risk. See Bicksler and Thorp
(1973), Ziemba and Hausch (1986) and MacLean, Thorp, Zhao and Ziemba (2009)
in this volume. General formulas are in Aucamp (1993).

Good If you wish to have higher security by trading it off for lower growth, then use
a negative power utility function, dw?, or fractional Kelly strategy. See MacLean,
Sanegre, Zhao and Ziemba (2004) reprinted in section 3, who show how to compute
the coefficent to stay above a growth path at discrete points in time with given prob-
ability or to be above a given drawdown with a certain confidence limit. MacLean,
Zhao and Ziemba (2009) add the feature that path violations are penalized with a
convex cost function. See also Stutzer (2009) for a related but different model of such
security.
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Good Competitive optimality . Kelly gambling yields wealth X™* such that E(%) <1,
for all other strategies X. This follows from the Kuhn Tucker conditions. Thus by
Markov’s inequality, Pr[X > tX*] < %, for t > 1, and for all other induced wealths
x. Thus an opponent cannot outperform X* by a factor ¢ with probability greater
than % This inequality can be improved when ¢ = 1 by allowing fair randomization
U. Let U be drawn according to a uniform distribution over the interval [0,2], and
let U be independent of X*. Then the result improves to Pr[X > UX*] < 3 for
all portfolios X. Thus fairly randomizing one’s initial wealth and then investing it
according to the Kelly criterion, one obtains a wealth UX™* that can only be beaten
half the time. Since a competing investor can use the same strategy, probability %
is the best competitive performance one can expect. We see that Kelly gambling is
the heart of the solution of this two-person zero sum game of who ends up with the
most money. So we see that X* (actually UX™) is competitively optimal in a single
investment period (Bell and Cover 1980, 1988).

Good If X* is the wealth induced by the log optimal (Kelly) portfolio, then the expected
wealth ratio is no greater than one, i.e., E(%) < 1, for the wealth X induced by any
other portfolio (Bell and Cover, 1980, 1988).

Good Super St Petersburg. Any cost ¢ for the St Petersburg random variable X, Pr [X = 2’“] =
27k is acceptable. But the larger the cost ¢, the less wealth one should invest. The
growth rate G* of wealth resulting from repeated such investments is

G* = max Eln(l—f—i—i
0<s<1 c

X,

where f is the fraction of wealth invested. The maximizing f* is the Kelly proportion
(Cover and Bell, 1980). The Kelly fraction f* can be computed even for a super St

Petersburg random variable Pr [Y = 2216} =27% k=1,2,..., where ElnY = oo,

by maximizing the relative growth rate

This is bounded for all f in [0,1].

Now, although the exponential growth rate of wealth is infinite for all proportions f
and it seems that all f € [0, 1] are equally good, the maximizing f* in the previous
equation guarantees that the f* portfolio will asymptotically exponentially outper-
form any other portfolio f € [0,1]. Both investors’ wealth have super exponential
growth, but the f* investor will exponentially outperform any other essentially dif-
ferent investor.
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The Bad Properties

Bad

Bad

Bad

The bets may be a large fraction of current wealth when the wager is favorable and
the risk of loss is very small. For one such example, see Ziemba and Hausch (1986;
159-160). There, in the inaugural 1984 Breeders Cup Classic $3 million race, the
optimal fractional wager, using the Dr Z place and show system using the win odds
as the probability of winning, on the 3-5 shot Slew of Gold was 64%. (See also
the 74% future bet on the January effect in MacLean, Ziemba and Blazenko (1992)
reprinted in this volume). Thorp and Ziemba actually made this place and show bet
and won with a low fractional Kelly wager. Slew finished third but the second place
horse Gate Dancer was disqualified and placed third. Wild Again won this race; the
first great victory by the masterful jockey Pat Day.

For coin tossing, any fixed fraction strategy has the property that if the number of
wins equals the number of losses then the bettor is behind. For n wins and n losses
and initial wealth Wy we have Wy, = Wy(1 — f?)".

The unweighted average rate of return converges to half the arithmetic rate of return.
Thus you may regularly win less than you expect. This is a consequence of weighting
equally rather than by size of the wager. See Ethier and Tavaré (1983) and Griffin
(1985).

Some Observations

For an i.i.d. process and a myopic policy, which results from maximizing expected
utility in case the utility function is log or a negative power, the result is fixed fraction
betting, hence fractional Kelly includes all these policies.

A betting strategy is “essentially different” from Kelly if S, = " | Elog(1+ f} X;)—
Yo, Elog(1 + f;X;) tends to infinity as n increases. The sequence {f/} denotes
the Kelly betting fractions and the sequence {f;} denotes the corresponding betting
fractions for the essentially different strategy.

The Kelly portfolio does not necessarily lie on the efficient frontier in a mean-variance
model (Thorp, 1971).

Despite its superior long-run growth properties, Kelly, like any other strategy, can
have a poor return outcome. For example, making 700 wagers all of which have a 14%
advantage, the least of which has a 19% chance of winning can turn $1000 into $18.
But with full Kelly 16.6% of the time $1000 turns into at least $100,000, see Ziemba
and Hausch (1996). Half Kelly does not help much as $1000 can become $145 and
the growth is much lower with only $100,000 plus final wealth 0.1% of the time. For
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more such calculations, see Bicksler and Thorp (1973) and MacLean, Thorp, Zhao
and Ziemba (2009) in this volume.

e Fallacy: If maximizing FlogXy almost certainly leads to a better outcome then
the expected utility of its outcome exceeds that of any other rule provided N is
sufficiently large. Counterexample: u(x) = x,1/2 < p < 1, Bernoulli trials f = 1
maximizes EU(z) but f = 2p — 1 < 1 maximizes FlogXy. See Samuelson (1971)
and Thorp (1971, 2006).

e It can take a long time for any strategy, including Kelly, to dominate an essentially
different strategy. For instance, in continuous time with a geometric Wiener process,
suppose fio = 20%, pg = 10%, 0o = 0g = 10%. Then in five years A is ahead of
B with 95% confidence. But if o, = 20%, 03 = 10% with the same means, it takes
157 years for A to beat B with 95% confidence. As another example, in coin tossing
suppose game A has an edge of 1.0% and game B 1.1%. It takes two million trials to
have an 84% chance that game A dominates game B, see Thorp (2006).

The theory and practical application of the Kelly criterion is straightforward when the
underlying probability distributions are fairly accurately known. However, in investment
applications this is usually not the case. Realized future equity returns may be very differ-
ent from what one would expect using estimates based on historical returns. Consequently
practitioners who wish to protect capital above all, sharply reduce risk as their drawdown
increases.

Prospective users of the Kelly Criterion can check our list of good properties, bad properties
and observations to test whether Kelly is well suited to their intended application. Given
the extreme sensitivity of F'log calculations to errors in mean estimates, these estimates
must be accurate and to be on the safe side,the size of the wagers should be reduced.

For long term compounders, the good properties dominate the bad properties of the Kelly
criterion. But the bad properties may dampen the enthusiasm of naive prospective users
of the Kelly criterion. The Kelly and fractional Kelly strategies are very useful if applied
carefully with good data input and proper financial engineering risk control.

Appendix

In continuous time, with a geometric Wiener process, betting exactly double the Kelly
criterion amount leads to a growth rate equal to the risk free rate. This result is due
to Thorp (1997), Stutzer (1998) and Janacek (1998) and possibly others. The following
simple proof, under the further assumption of the Capital Asset Pricing Model, is due to
Harry Markowitz and appears in Ziemba (2003).
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In continuous time 1
9p = Ep — §VI5

E,, V,, gp are the portfolio expected return, variance and expected log, respectively. In
the CAPM
E,=ro+ (Em—10)X

V, = o3, X?

where X is the portfolio weight and rg is the risk free rate. Collecting terms and setting
the derivative of g, to zero yields

X = (BEy —10)/oiy

which is the optimal Kelly bet with optimal growth rate

1
g =10+ (Ep—10)° — 5[(EM7“0)/012\4]2012\4

1
=T0 -+ (EM — T0)2/0']2\/[ — §(EM — 7’0)2/0']2\/[

1
Substituting double Kelly, namely Y = 2X for X above into
L 50
gp =710+ (Ep—10)Y — iaMY
and simplifying yields
4
go—ro=2(Ey —10)% /03, — §(EM —r9)?/o3, = 0.

Hence gy = rg when Y = 285.

The CAPM assumption is not needed. For a more general proof and illustration, see Thorp
(2006).
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