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Abstract

Courses on the mathematics of gambling have been offered by a num-
ber of colleges and universities, and for a number of reasons. In the past
15 years, at least seven potential textbooks for such a course have been
published. In this article we objectively compare these books for their
probability content, their gambling content, and their mathematical level,
to see which ones might be most suitable, depending on student interests
and abilities. This is not a book review but rather an essay offering advice
about which topics to include in a course on the mathematics of gambling.
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1 Introduction

There is anecdotal evidence that a number of college and university courses have
been offered on the mathematics of gambling. Early examples include a course
offered in 1970 at what is now California State University, Sacramento (Griffin,
1999, p. 1), and a course first offered in 1974 at Carleton University (Schneider
& Turmel, 1975).

There are several reasons for such a course. One would be to train the next
generation of casino managers, perhaps in a business program, although the
potential audience would be limited. Another would be to offer liberal arts
students a nontechnical course illustrating the applicability of mathematics,
perhaps to meet some graduation requirement. A third reason would be to give
a course in discrete probability, a subject that may seem rather dry to some
students, in a more entertaining and accessible way. A fourth reason would
be to offer a course on the mathematics of gambling as a subject in its own
right, much as one might give a course on the mathematics of finance. Such a
stand-alone course might even have a probability prerequisite.
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Certainly, there should be no question that the “theory of gambling” is a
subject worthy of study on its own. Indeed, as Bachelier (1914, p. 6) wrote over
a century ago,1

It is almost always gambling that enables one to form a fairly clear
idea of a manifestation of chance; it is gambling that gave birth to
the calculus of probability; it is to gambling that this calculus owes
its first faltering utterances and its most recent developments; it
is gambling that allows us to conceive of this calculus in the most
general way; it is, therefore, gambling that one must strive to un-
derstand, but one should understand it in a philosophic sense, free
from all vulgar ideas.

On the other hand, Laplace (1819, pp. clxix, v) regarded probability as the
subject of primary interest, with gambling having a subsidiary role:2

It is remarkable that a science, which commenced with the consider-
ation of games of chance, should be elevated to the rank of the most
important subjects of human knowledge. [. . .] [T]he most important
questions of life [. . .] are indeed for the most part only problems of
probability.

Whether gambling provides motivation for the study of probability, or proba-
bility provides tools for the study of gambling, the distinction is primarily one
of emphasis.

More-recent examples of gambling courses illustrate the diversity of ap-
proaches:

• McMaster University: “Probability and Games of Chance.” (The origi-
nal title when the course was proposed was “Probability and Gambling.”)
Offered seven times since 2009, typically in alternate years. Average en-
rollment per term: 52 through 2018; unexpectedly, 155 in 2019. Prereq.:
Introductory probability. Intended for 3rd and 4th year students. Instruc-
tor: Fred M. Hoppe.

• Carleton University: “Mathematical Analyses of Games of Chance.” Of-
fered biennially since 2009. Prereq.: Permission of School (Introductory
probability and statistics recommended). Appears to be intended for 3rd
and 4th year students. Instructor: Jason Z. Gao.

• University of Denver: “Probability Theory: The Mathematics of Gam-
bling.” Offered annually since the late 1990s. Usual enrollment: 40 (full
capacity). Prereq.: Basic statistics. Intended primarily for juniors and
seniors in business. Instructor: Robert C. Hannum until 2018.

• Drexel University: “Optimal Strategies for Repeated Games.” Offered
twice in the early 2010s by ECES (Electrical & Computer Engineering -

1 Translation from Dubins & Savage (2014, p. vi).
2 Translation from Laplace (1902, pp. 195, 1).
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Systems). Average enrollment: 20–25. Prereq.: Probability and Statistics
for Engineers. Intended for seniors and graduate students in Engineering.
Instructor: Steven Weber.

• University of California, Santa Cruz: “Gambling and Gaming.” Offered
twice a year (in the quarter system) since 2009. Enrollment 120–150 per
term. Prereq.: Precalculus. Intended for freshmen and sophomores from
non-quantitative majors, so as to meet a “Statistical Reasoning” require-
ment. Instructors: Abel Rodŕıguez, Bruno Mendes, and others.

• University of Ottawa: “Probability and Games of Chance! Poker 101.”
Offered annually. 2019 enrollment: 340. Prereq.: None. Intended for
first year students as a science or general elective. The list of topics com-
prises game theory, probability theory, history, games (including poker),
psychology, and gaming today. Instructor: Pieter Hofstra.

• Roanoke College: “Math of Gambling and Games.” Offered almost an-
nually since 2009, as part of the “Intellectual Inquiry Curriculum.” En-
rollment: About 16 per term. Prereq.: High school algebra. Intended for
students from a broad range of majors, including Mathematics. Instruc-
tors: David G. Taylor and others.

• Albion College: “Mathematics of the Gaming Industry.” Offered in Spring
2014 and Spring 2017. Enrollment both times: 8. Prereq.: Permis-
sion of instructor. Intended for Mathematics and Computer Science ma-
jors/minors who turn 21 by Spring Break, during which a class trip to Las
Vegas is held. Instructor: Mark Bollman.

• Stanford University: “Mathematics and Statistics of Gambling.” Offered
in Spring 2018. Enrollment: 40, including 10 undergraduates and 15 grad-
uate students from Mathematics/Statistics, and 15 from other depart-
ments. Prereq.: Undergraduate probability and undergraduate statistics.
Intended for graduate students. Instructor: Persi Diaconis.

• University of Utah: “Mathematics of Games of Chance.” Offered in Sum-
mer 2005 as an REU (Research Experience for Undergraduates) program.
Enrollment: 10. Prereq.: Permission of instructor following a competitive
application process. Intended for undergraduates interested in mathemat-
ical research. Instructor: Stewart N. Ethier.

There are undoubtedly other such courses that have not come to our attention.
In the past 15 years, at least seven potential textbooks for a course on the

mathematics of gambling have been published. These include the following,
listed by year of publication (see also Table 1 and Figure 1):

1. Hannum, R. C. & Cabot, A. N. (2005). Practical Casino Math, Second
Edition. Reno: Institute for the Study of Gambling and Commercial
Gaming; Las Vegas: Trace Publications.
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2. Packel, E. W. (2006). The Mathematics of Games and Gambling, Second
Edition. Washington, D.C.: The Mathematical Association of America.

3. Ethier, S. N. (2010). The Doctrine of Chances: Probabilistic Aspects of
Gambling. Berlin–Heidelberg: Springer-Verlag.

4. Epstein, R. A. (2013). The Theory of Gambling and Statistical Logic,
Second Edition. Waltham, MA: Academic Press, an imprint of Elsevier.

5. Bollman, M. (2014). Basic Gambling Mathematics: The Numbers Behind
the Neon. Boca Raton, FL: CRC Press, an imprint of Taylor & Francis
Group.

6. Taylor, D. G. (2015). The Mathematics of Games: An Introduction to
Probability. Boca Raton, FL: CRC Press, an imprint of Taylor & Francis
Group.

7. Rodŕıguez, A. & Mendes, B. (2018). Probability, Decisions and Games:
A Gentle Introduction Using R. Hoboken, NJ: John Wiley & Sons.

Hannum & Cabot (2005) is currently out of print (except for a Chinese edition),
and Epstein (2013) is currently available only as an ebook.

A few of the books, especially Epstein (2013) and Taylor (2015), have broader
coverage than just gambling, but since most textbooks have more material than
can be covered in a course, this need not be a liability for a course on the math-
ematics of gambling. However, it is a liability for Gould’s (2016) Mathematics
in Games, Sports, and Gambling, which has insufficient emphasis on gambling
for a course whose focus is gambling, so we exclude it from the list. Bǎrboianu
(2013) is excluded because, while its treatment of probability is reliable, its
treatment of gambling is not. Books that are clearly intended for graduate
students, specifically Dubins & Savage (2014) and Maitra & Sudderth (1996),
are also excluded. We choose to exclude Wilson (1970), Thorp (1984), Haigh
(2003), and Bewersdorff (2005) because these books are intended for a general
audience, and as such are not textbooks, but each is a valuable resource for
supplementary material.

In what follows we offer advice about which topics should be included in a
course on the mathematics of gambling, and we check the extent to which each
the seven textbooks meets our criteria. For example, video poker is a topic that
most students, we believe, would want to learn about, so we make suggestions
about which aspects of that subject deserve attention. We also summarize the
video poker coverage of each of the seven textbooks. In fact, only four of the
seven books address video poker at all.

In the process of analyzing the coverage of each of these books (in discrete
probability and in gambling), we point out any conceptual errors that we have
noticed (we found about a dozen) as well as any unconventional approaches.
We emphasize information about the books that can be documented and is not
a matter of opinion. Our aim is to give potential instructors a sense of how
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Table 1: Comparison of the seven textbooks.

1 2 3 4 5 6 7
author Han Pac Eth Eps Bol Tay Rod
edition 2nd 2nd 1st 2nd 1st 1st 1st

year 2005 2006 2010 2013 2014 2015 2018

xix+ xiv+ xiv+ xiii+ xi+ xxi+ xvii+
pages 272 163 744 414 243 288 190

+27 +11 +72 +37 +27 +116 +25

chapters 10 7 22 11 7 8 13

exercises 0 60 468 28 99 110 185

answers 1 2 3 4 5 6 7

bibliog. items 58 48 713 663∗ 103 43 0

1 Not applicable. 2 Answers/hints for selected exercises. 3 Answers online.
4 None. 5 Answers to odd-numbered exercises. Complete solutions in a
separate manual. 6 Answers and selected solutions. 7 Solutions manual
for odd-numbered problems online. ∗ Some items counted more than once.

appropriate each book would be for the kind of course they may be considering,
and the types of students they expect to attract.

We conclude this section with a necessarily brief literature review. We have
found only four papers on this topic, all unpublished and all from the 1970s.

The Carleton University course first taught by Walter Schneider in 1974
and mentioned above in the opening paragraph was described in some detail
in Schneider and Turmel (1975). The idea for the course came from Milton
Parnes of SUNY Buffalo, who had taught a successful course on gambling in
the early 1970s. Schneider mentioned several problems that he encountered.
One was finding a good textbook. He eventually settled on Wilson (1970),
which is excellent in some areas (e.g., blackjack and baccarat) but is not really
a textbook and, from the present-day perspective, is rather dated. Another
problem was that students did not appreciate in-depth coverage of topics such
as blackjack, poker, and game theory. We will explain later why we believe that
the students were mistaken.

The three other papers concern a course offered by Larry S. Johnson at Fort
Lewis College (Durango, CO) in 1974 (Johnson, 1975, 1977; Gibbs & Johnson,
1977). It was a 4-week immersion-type course with the second and third weeks
spent in Las Vegas. Textbooks included Wilson (1970) and Thorp (1966a). The
purpose of the course was to motivate students, especially nonmajors, to study
mathematics (Johnson, 1975). There was a wide disparity in the mathematical
backgrounds of the students. This was resolved by putting less emphasis on the
mathematics of gambling and more emphasis on non-mathematical aspects of
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Figure 1: The seven textbooks compared here.

gambling, such as its history.

2 Probability content

Virtually all topics in discrete probability have applicability to gambling, but
some may be omitted for the purpose of making the course accessible to a
broader audience. Table 2 summarizes which of 30 probability topics are in-
cluded in each of the seven textbooks.

2.1 Basics

It does not matter whether probabilities are introduced via axioms, rules, the-
orems, or definitions. Ultimately, they are typically evaluated by combining
probabilities obtained from the equally-likely-outcomes assumption, using

P(A) =
|A|
|S|

, (1)
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where |A| is the cardinality of event A, and S is the sample space. This result is
so self-evident that Hannum & Cabot (2005, p. 10) takes it for granted, without
formally stating it. Various notation for the complement of event A include
Ac (Ethier, 2010, p. 11), A (Epstein, 2013, p. 14; Rodŕıguez & Mendes, 2018,
p. 2), A′ (Bollman, 2014, p. 5), not A (Packel, 2006, p. 20), and no specific
notation (Hannum & Cabot, 2005, p. 11; Taylor, 2015, p. 11). Among the basic
laws of probability, the only result omitted by most of the textbooks is the
inclusion-exclusion law (for n events). There are gambling applications (e.g., in
the game of rencontre, in the derivations of the distribution of dice sums and the
distribution of the number of n specified events that occur, and in the analysis
of the Fire Bet at craps), but none is essential to the course.

Six of the seven textbooks treat the Chevalier de Méré’s problem of finding
both the probability of at least one six in four tosses of a single die and the
probability of at least one double six in 24 tosses of a pair of dice (Taylor, 2015,
Exercise 1.4, considers only the first part), and four of the seven textbooks treat
Méré’s problem of points (Packel, 2006, pp. 14–15; Ethier, 2010, Example 2.1.1;
Epstein, 2013, pp. 128–129; Rodŕıguez & Mendes, 2018, Section 4.2). Both
problems were subjects of the 17th-century correspondence between Blaise Pas-
cal and Pierre de Fermat, a correspondence that Rényi (1972) recreated in a
fictional exchange of dated letters between Pascal and Fermat in which Pascal
enunciates the laws of discrete probability.

Three of the seven textbooks fail to formalize the basic counting principle,
presumably regarding it as self-evident. Each book covers permutations and
combinations, the main distinction being the notation employed. It is unclear
to us why the notation Cn,r (Packel, 2006, p. 54) and nCr (Bollman, 2014,
p. 32) persists, since its only advantage (namely, that it is typewriter friendly)
is an anachronism 30+ years after LATEX was introduced. Even Hannum &
Cabot (2005, p. 16), which was created in Word, uses the standard

(
n
r

)
. For

permutations, the preferred notation is Pn,r (Hannum & Cabot, 2005, p. 15;
Packel, 2006, p. 54), nPr (Bollman, 2014, p. 29; Taylor, 2015, p. 127; Rodŕıguez
& Mendes, 2018, p. 48), and P r

n (Epstein, 2013, p. 16). Ethier (2010, p. 4)
departs from this consensus with (n)r, the Pochhammer symbol, though Epstein
(2013, pp. 233–234) also uses it occasionally. One of the few problems that calls
for permutations instead of combinations is the enumeration of possible bingo
cards. This is done correctly in Ethier (2010, Problem 14.17), Bollman (2014,
Example 3.2.14), and Taylor (2015, Example 8.4), but not in Epstein (2013,
p. 157), which uses combinations.

Only three of the textbooks use multinomial coefficients. Epstein (2013,
p. 20) introduces them in connection with the multinomial distribution but
never actually uses them as far as we can tell; Taylor (2015, p. 130) introduces
them to analyze certain games requiring multiple dice; and Ethier (2010, p. 5)
uses them in analyses of video poker and trente et quarante, but also in one
elementary application, namely the evaluation of poker-hand probabilities.

Specifically, the probabilities of one pair, two pairs, three of a kind, full
house, and four of a kind need not be treated separately, as is typically done.
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Instead, they are all special cases of a single formula, namely(
13

d0,d1,d2,d3,d4

)(
4
1

)d1
(
4
2

)d2
(
4
3

)d3
(
4
4

)d4(
52
5

) ,

where di is the number of denominations represented i times in the hand, so
that d0 + d1 + d2 + d3 + d4 = 13 and d1 + 2d2 + 3d3 + 4d4 = 5. This unified
expression seems worth including, regardless of the level of the course. Perhaps
surprisingly, it dates back more than three centuries to Montmort (1708, p. 97;
1713, p. 28); in particular, it predates poker.

2.2 Conditional probability

Packel (2006) is unique among the seven textbooks in avoiding the concept of
conditional probability. He formulates the multiplication law as

P(A then B) = P(A)P(B), (2)

provided that A and B are events in independent successive experiments, instead
of the more general

P(A ∩B) = P(A)P(B | A), (3)

valid for arbitrary events A and B. Consider, for example,

P(1st card is an ace and 2nd card is an ace) =
4

52

3

51
(4)

(Packel, 2006, p. 17). It does not follow from (2) because the events are not
independent, and it does not follow from (3) because conditional probability
is never defined. Instead, it follows “after some thought and consideration of
equally likely outcomes” (p. 16). Perhaps this means

P(1st card is an ace and 2nd card is an ace) =

(
4
2

)(
48
0

)(
52
2

) =
4

52

3

51
,

but Packel (2006, p. 58) eventually reverts to calculation such as (4) without
attempting to justify them.

Four of the seven textbooks omit the total probability law, despite its nu-
merous applications in gambling problems. How then do they evaluate the
probability of winning a pass-line bet at craps? They all effectively use Packel’s
(2006, Table 3.4) method, namely

P(pass-line win) =

12∑
k=2

P(initial roll is k then pass-line win)

= P(initial roll is 7 or 11)

+
∑

k=4,5,6,8,9,10

P(initial roll is k then roll k before 7),

8



Table 2: Probability content of the seven textbooks. Entries are page numbers
at which the listed topics are addressed. Page numbers in parentheses indicate
that the book treats only a special case.

1 2 3 4 5 6 7
topic Han Pac Eth Eps Bol Tay Rod

2005 2006 2010 2013 2014 2015 2018

probability axioms – – 12 13 13 – –
equally likely outcomes (10) 17 3 12 15 5 6
addition law 12 21 12 13 51 8 11
complementation law 11 21 12 14 14 11 2
inclusion-exclusion law – – 13 14 (51) (8) (11)
odds 14 18 15 (306) 46 26 5

basic counting principle (70) (52) 4 (16) 26 12 8
permutations 15 54 4 16 29 127 48
combinations 16 54 4 18 33 54 49
multinomial coefficients – – 5 20 – 130 –

independent events 12 21 16 15 54 9 65
conditional probability (13) – 17 14 59 92 64
multiplication law 13 (58) 18 14 61 (93) 64
total probability law (110) – 19 15 (69) – 66
Bayes’ law – – 19 15 – – 67

random variables (230) – 21 19 75 – 15
binomial distribution 21 80 22 19 123 115 103
hypergeometric distrib. (82) (72) 22 19 39 285 (50)
geometric distribution – – 22 20 146 286 103
expectation 18 23 27 21 79 32 16
variance 24 – 31 24 126 (118) 21

independent r.v.s – – 25 22 – – 65
multinomial distribution – – 26 20 – 131 –
multivariate hypergeom. – (68) 26 19 – (145) –
conditional expectation – – 76 (178) – (78) –
expectation of a sum (26) – 32 22 81 – 18
covariance – – 35 (278) – – –
variance of a sum (26) – 36 (57) – – (65)

law of large numbers (21) (88) 43 (26) (17) – 17
central limit theorem (22) (85) 48 (28) (128) (118) –
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which is evaluated by applying (2) to each term in the second sum, noting
that {initial roll is k} and {roll k before 7 (beginning with the second roll)} are
independent. Bollman (2014, Example 3.2.6) and Taylor (2015, Table 2.2) adopt
the same method because they study craps before they introduce conditional
probability.

Bayes’ law is covered by only three of the seven textbooks, despite its ap-
plications in roulette, craps, blackjack, and poker. For example, if a blackjack
player has {6, 10} vs. a playable dealer 10, what is the distribution of the next
card dealt? Here we are implicitly conditioning on the event that the dealer’s
downcard is not an ace, thereby requiring the use of Bayes’ law (Ethier, 2010,
Example 1.2.9). Whether students should be troubled by issues as subtle as this
is a choice for the instructor.

An example that can be addressed with or without conditional probability
is the now-classic Monty Hall problem. Popularized by Marilyn vos Savant in
the early 1990s, it actually dates back to Selvin (1975a,b). It is discussed by
Ethier (2010, Problem 1.19), Epstein (2013, pp. 143–144), Taylor (2015, pp. 13–
15), and Rodŕıguez & Mendes (2018, Section 5.1), with the latter confirming its
analysis with a simulation (Monty Hall Monte Carlo).

2.3 Subjective conditional probability

The conditional probability of B given A is usually defined as the ratio

P(B | A) =
P(A ∩B)

P(A)
. (5)

To be used effectively, this definition requires that both P(A) and P(A ∩ B)
be computable. However, typically P(B | A) is specified outside this definition
using an interpretation of what conditional probability is meant to represent.
For instance, the second factor in (4),

P(2nd card is an ace | 1st card is an ace) =
3

51
,

is found by regarding the conditional probability as the (unconditional) proba-
bility of drawing an ace from the 51-card deck obtained by removing an ace from
a standard deck (which ace does not matter, and the equally-likely-outcomes as-
sumption applies). Alternatively but less naturally, we could use the definition
(5) to derive

P(2nd card is an ace | 1st card is an ace)

=
P(1st card is an ace and 2nd card is an ace)

P(1st card is an ace)
=

(
4
2

)(
48
0

)
/
(
52
2

)
4/52

=
3

51
.

Because of its connection to betting, a careful introduction to conditioning
in a gambling course allows the opportunity to present conditional probability
from the subjective or betting perspective, as championed by Bruno de Finetti
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(1937). He said that an event A has probability p = P(A) ∈ (0, 1) to an
individual if this individual is indifferent as to the choice of the following two
bets:

• (P): pay 1; receive 1/p if A occurs, nothing if Ac occurs.

• (H): receive 1; pay 1/p if A occurs, nothing if Ac occurs.

The first corresponds to a player (P) making a bet of size 1 that pays 1/p − 1
to 1 if A occurs. The second corresponds to the house (H) banking the player’s
bet.

If the bet size is b > 0, then all payoffs scale linearly so that (P) and (H)
become

• (P): pay b; receive b/p if A occurs, nothing if Ac occurs.

• (H): receive b; pay b/p if A occurs, nothing if Ac occurs.

It is easy to check that, by allowing b < 0, (P) interchanges with (H) because
paying b (positive or negative) is equivalent to receiving −b.

To say the player is indifferent means that the player does not favor either
(P) or (H). Indifference implies that both bets are equivalent to

• Net gain b(1/p− 1) if A occurs or net gain −b if Ac occurs,

where b can be positive or negative. (A negative net gain is a net loss.)
Suppose that the player is considering two events, A and B, and can place

three bets: A bet on A occurring; or a bet on A∩B occurring; or a conditional
bet on B occurring given that A also occurs, which means that the bet on B
takes place only if A occurs. Otherwise this conditional bet is called off and no
money changes hands. (An example of a conditional bet is the don’t pass bet
at craps, which is returned to the player if 12 appears on the come-out roll.)

Suppose the player evaluates his or her probabilities of these three events
occurring as P(A), P(A∩B), and P(B | A), respectively, which are the player’s
“subjective” probabilities (all in (0, 1)) of these events occurring. Let b1, b2, b3
be the player’s respective bet sizes. Summarizing,

• Bet 1:

– If A occurs, the player wins b1(1/P(A)− 1).

– If Ac occurs, the player wins −b1.

• Bet 2:

– If A ∩B occurs, the player wins b2(1/P(A ∩B)− 1).

– If (A ∩B)c occurs, the player wins −b2.

• Bet 3: If A occurs, then

– If B also occurs, the player wins b3(1/P(B | A)− 1).

11



– If Bc also occurs, the player wins −b3.

But if Ac occurs, then Bet 3 is called off.

De Finetti’s remarkable insight was that there must be a relationship among
the subjective probabilities P(A), P(A ∩ B), and P(B | A) to prevent a player
from becoming a sure loser or a sure winner, which is called avoiding arbitrage
or a Dutch book. This means that it should not be possible to choose wagers
b1, b2, b3 in such a way that the player will always lose or always win, no matter
the random outcome on which the bets are placed. He called this principle
coherence.

To determine what the player wins in any circumstance, partition the sample
space into a disjoint union of three events

D1 = Ac, D2 = A ∩Bc, D3 = A ∩B.

On D1, the player’s winnings are

w1 = −b1 − b2.

On D2, the player’s winnings are

w2 = b1

(
1

P(A)
− 1

)
− b2 − b3.

On D3, the player’s winnings are

w3 = b1

(
1

P(A)
− 1

)
+ b2

(
1

P(A ∩B)
− 1

)
+ b3

(
1

P(B | A)
− 1

)
.

Write these three equations in matrix notation by introducing the matrix

M =

 −1 −1 0
1/P(A)− 1 −1 −1
1/P(A)− 1 1/P(A ∩B)− 1 1/P(B | A)− 1


and column vectors b = (b1, b2, b3)T and w = (w1, w2, w3)T, giving

w = Mb.

If the determinant satisfies detM 6= 0, in which case the inverse M−1

exists, then for any desired winnings vector w there is a bets vector b that will
guarantee w, namely b = M−1w. In particular, if all components of w are
positive, then the player is a sure winner no matter what outcome occurs. If all
components of w are negative, then the player is a sure loser (and the house a
sure winner) no matter what outcome occurs. To avoid this, de Finetti required
that

detM = 0.

12



Evaluating the determinant of M with row operations (subtract row 1 from row
2 and then subtract row 1 from row 3) we get 1/[P(A)P(B | A)]−1/P(A∩B) = 0
which reduces to (5) (or (3)). Thus, the formulation (5) is consistent with the
subjective interpretation of the various probabilities.

This approach is not included in any of the seven textbooks, but maybe it
should be. It requires only a first course in linear algebra.

We implicitly used odds in the development above. Recall that a player (P)
makes a bet of size 1 that pays 1/p−1 to 1 if A occurs, or equivalently 1−p to p.
These are both the true odds and the payoff odds, since p = P(A) = p/(p+1−p).

2.4 Random variables

While each textbook covers expectation, which is arguably the most important
concept in the subject, Hannum & Cabot (2005), Packel (2006), and Taylor
(2015) avoid the concept of a random variable. They can still define the expec-
tation of a distribution, and the house advantage of a wager. (In fact, Packel
uses X for expectation, a letter ordinarily reserved for random variables.) But
there are repercussions for this choice, of which we list several.

• How does one debunk the claim (from a 1959 Cuban magazine) that,
because of a defect in the roulette layout, a one-unit bet on black and
a one-unit bet on the third column is a winning play? With random
variables, the gambler’s profits X1 and X2 from these two bets satisfy
E[X1 +X2] = E[X1] + E[X2] = −1/19− 1/19 = −2/19. Without random
variables, one is obliged to find the distribution of the gambler’s profit
(X1 + X2), which requires counting the number of black numbers in the
third column. While easy in this case (E[X1 +X2] = (1+2)(4/38)+(−1+
2)(8/38) + (1 − 1)(14/38) + (−1 − 1)(12/38) = −2/19; Bollman, 2014,
Example 7.1.1), other examples exist where such an accounting would be
burdensome.

• How does one find the house advantage of a pass-line bet with free odds?
The first step is to find the gambler’s expected loss. With the availability
of random variables, we can define X1 to be the gambler’s loss from a
one-unit pass-line bet and X2 to be the gambler’s loss from the associated
m-times free odds bet (X2 = 0 if the pass-line bet is resolved on the
come-out roll). Then E[X1] = 7/495 and E[X2] = 0, so E[X1 + X2] =
E[X1] + E[X2] = 7/495. Without the availability of random variables, one
must derive the distribution of the gambler’s loss (X1+X2) and show that
its expectation is 7/495. This is an extra step that makes the derivation
quite a bit more complicated. The final step in the argument is to divide
the expected loss by the expected amount bet, namely 1 + (2/3)m.

• How does one find the mean np of the binomial(n, p) distribution? One
can find it directly using k

(
n
k

)
= n

(
n−1
k−1
)
, as does Bollman (2014, The-

orem 4.3.2), or one can use probability generating functions and calcu-
lus. But a much simpler argument, suitable even for the most elementary
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course, is to write the binomial random variable as a sum of n indicator
variables, each with mean p. The same issues arise in finding the mean of
the hypergeometric distribution.

• How does one state the two gems of probability theory, the strong law
of large numbers and the central limit theorem? Do they not require the
random variables

Sn

n
and

Sn − nµ√
nσ2

?

It is possible to state the Bernoulli case of these theorems (i.e., the normal
approximation to the binomial distribution) without random variables,
but much is lost by restricting to this special case. Actually, Hannum
& Cabot (2005) goes beyond the Bernoulli case but does so only very
informally. For example, it uses the self-explanatory notation (p. 26)

EVwin = unit wager× n× EVper unit,

SDwin = unit wager×
√
n× SDper unit.

We will return to this point later.

Variance too can be computed for a distribution without reference to random
variables, and it is important in connection with the central limit theorem,
and perhaps especially when comparing slot machines or video poker games.
Only two of the seven textbooks omit the concept of variance (or, equivalently,
standard deviation).

The most important special univariate distributions are the binomial, the
hypergeometric, and the geometric. Less important are the negative binomial
and the Poisson. The binomial distribution appears explicitly in the solution
of Méré’s problem, the analysis of chuck-a-luck/sic bo, one possible solution of
the problem of points, and analysis of the Kelly system, among other applica-
tions. The hypergeometric distribution is ubiquitous in analysis of keno and
lottery games, for example. The geometric distribution appears in the St. Pe-
tersburg paradox, the martingale system, top-to-random shuffles, the length of
the shooter’s hand at craps, and the study of casino dead-chip programs, among
others. The negative binomial distribution yields another possible solution of
the problem of points but is perhaps not as widely used in gambling calcula-
tions. As a rule, the Poisson distribution does not appear explicitly in gambling
problems but only as an asymptotic distribution as some parameters converge.
It therefore deserves less attention.

Next, random vectors and joint distributions can be lightly covered, but
should not be omitted. The two most important multivariate distributions for
gambling are the multinomial and the multivariate hypergeometric. The former
is used in connection with biased roulette analysis and games with multiple dice
(e.g., Taylor’s, 2015, pp. 122–142, study of Yahtzee), and the latter in studies
of card games and card counting. For example, the most natural expression for
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the probability of a natural in single-deck blackjack is arguably(
4
1

)(
16
1

)(
32
0

)(
52
2

) .

Independence of random variables is easy, once independence of events is cov-
ered. Variances of sums require covariances except in the case of independent
random variables, and because sampling without replacement plays such an
important role in card games, one should not assume independence.

Finally, conditional expectation is a topic that is omitted by most of the
seven textbooks, perhaps because a conditional expectation can often be re-
garded as an unconditional expectation, thereby requiring no new ideas. An-
other reason for avoiding this topic is that thinking of a conditional expectation
as a random variable is often regarded as an advanced concept, involving σ-fields
and Radon–Nikodym derivatives, more suitable for graduate students. However,
in the setting of discrete random variables, conditional expectations are really
quite elementary and nothing to fear. A careful treatment of conditional expec-
tation yields an expectation version of the total probability law. This is needed
for the century-old result of Brown (1919) evaluating the mean duration of a
craps decision. Such a basic result should not be beyond the scope of a course
on the mathematics of gambling.

2.5 Limit theorems

The culmination of the probability portion of a course on the mathematics of
gambling should include the strong law of large numbers (SLLN) and the central
limit theorem (CLT), the two greatest intellectual achievements in the subject.
(Both date back to the 18th century but were not proved under the optimal
assumptions until the 20th century.) But aside from their rich history, these
results have important implications for gambling. The SLLN justifies the fre-
quentist interpretation of probability, and can be used to explain why the house
advantage is defined as the ratio of expected loss to expected amount bet, or
why the Kelly bettor’s fortune grows exponentially. The CLT quantifies the dis-
tribution of deviations between observed and expected results in a precise way.
It is the basis for a casino statistic known as the volatility index. It also allows
approximate evaluation of certain probabilities for which exact computation
would be prohibitive.

A nice application of the central limit theorem (for independent but not
identically distributed random variables) is given in Hannum (2007), which an-
alyzes the play of an actual online roulette player who had won over a million
euros in three weeks. Was he cheating or was he lucky?

3 Gambling content

Many of the simpler gambling games (roulette, craps, keno) can be used to il-
lustrate the concepts of discrete probability, whereas the games that students
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are typically most interested in are those that offer a better chance of winning
(blackjack, video poker, Texas hold’em); these games tend to be more mathe-
matically challenging.

Textbooks should emphasize contemporary games. De Moivre (1738) studies
bassette (p. 57), pharaon (p. 65), quadrille (p. 83), hazard (p. 135), whisk
(p. 147), and piquet (p. 151), but these games are of little interest today, except
possibly for historical reasons. While some of today’s casino games have long
histories, others are more recent. The first published reference to Texas hold’em
is Livingston (1968). Video poker is even more recent (late 1970s), and the more
popular proprietary games (e.g., Let It Ride, Three Card Poker) date back only
to the 1990s.

Table 3 summarizes the gambling content of each of the seven textbooks,
listing the numbers of pages of coverage of each of 30 topics. This is not an
ideal statistic because some books have more material per page than others,
but the table should nevertheless be useful for quick comparisons.

3.1 Roulette

One of the simplest casino games is roulette, and it is covered in each of the
seven textbooks because it provides a good illustration of the concept of ex-
pectation. One useful observation about roulette, noted by only Ethier (2010,
p. 461) and Bollman (2014, p. 22), is that the payoff odds of the m-number
bet (m = 1, 2, 3, 4, 6, 12, 18, 24) are 36/m − 1 to 1. Thus, if XA is a ran-
dom variable denoting the profit from a one-unit bet on a permitted subset
A ⊂ {0, 00, 1, 2, 3, . . . , 36}, then

E[XA] =

(
36

|A|
− 1

)
|A|
38

+ (−1)

(
1− |A|

38

)
= − 1

19
,

so all such bets have the same expectation and house advantage. We have
excluded the notorious 5-number bet whose payoff odds are 6 to 1, rounded
down from the 36/5− 1 = 6.2 to 1 that the formula suggests they should be.

Another observation about roulette is that a one-unit bet on a subset A ⊂
{0, 00, 1, 2, 3, . . . , 36} (with |A| belonging to {1, 2, 3, 4, 6, 12, 18, 24}) is equivalent
to |A| single-number bets, each of size 1/|A| (ignoring the possibility that 1/|A|
may not be a legal bet size). To justify this, write XA = (36/|A|)IA − 1, where
IA denotes the indicator of the event that a number in subset A occurs on the
next spin. Then

XA =
36

|A|
IA − 1 =

1

|A|
∑
j∈A

(
36

1
I{j} − 1

)
=

1

|A|
∑
j∈A

X{j}.

This has some useful applications (e.g., Ethier, 2010, p. 466), but here is a trivial
one. Suppose you want to make a bet of b units on {0, 00, 1, 2, 3} (the 5-number
bet). If b/5 is a legal bet size, then instead make five single-number bets of size
b/5 on 0, 00, 1, 2, and 3. You will then effectively be paid at the proper odds
of 6.2 to 1 if one of those numbers occurs on the next spin.
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Four of the textbooks consider biased roulette. An interesting statistical is-
sue is whether the most frequently occurring number in n spins offers a favorable
bet. Ethier (2010, Section 13.2) gives a criterion: Yes, if the frequency of the
most frequent number in n spins exceeds n/36 + c

√
n, where c depends on the

desired significance level α. Epstein (2013, p. 150) suggests c = 0.48 if α = 0.05
and c = 0.40 if α = 0.20, though without explanation; these figures are close to
those of Ethier (approx. 0.49 and 0.41, resp.). Bollman (2014, Example 4.3.8)
suggests the critical value n/38 + 0.48

√
n (three standard deviations above the

mean), which is the same as Epstein’s for α = 0.05, except for n/38 in place of
n/36. Rodŕıguez & Mendes (2018, Section 7.4) evaluates the probability that
a specified number appears at least 270 times in 10,000 spins, but avoids the
issue of whether that number was chosen before or after collecting the data.

3.2 Craps

Each of the seven textbooks covers craps, at least to the extent of analyzing the
pass-line bet. One step in this analysis to to evaluate the probability of rolling
a total of j before a total of 7 in repeated rolls of a pair of dice. With πj :=
(6−|k−7|)/36 being the probability of rolling a total of j (j = 2, 3, 4, . . . , 12), five
of the textbooks give the required probability as πj/(πj+π7), effectively ignoring
any result that is not j or 7. While this is the correct answer, it is somehow
less satisfying than the infinite series solution (Ethier, 2010, Example 1.2.1;
Rodŕıguez & Mendes, 2018, pp. 79–82),

P(j before 7) =

∞∑
n=1

P(j before 7, and in exactly n rolls)

=

∞∑
n=1

(1− πj − π7)n−1πj =
πj

πj + π7
,

which requires knowledge of the sum of a geometric series.
The free odds bets at craps deserve attention, being almost unique among

casino wagers as conditionally fair bets. We have already explained that the
house advantage of the pass-line bet with free odds is the gambler’s expected
loss divided by the expected amount bet. Only Rodŕıguez & Mendes (2018)
does not cover free odds bets, and Bollman (2014, Example 5.2.3) divides by
maximum amount bet instead of expected amount bet.

Craps is usually regarded as one of the simpler casino games, but that does
not mean that the mathematics of craps is necessarily trivial. For example,
analysis of the Fire Bet, which pays off according to the number of distinct points
made during the shooter’s hand, is a challenge. Ethier (2010, pp. 511–512)
gives an explicit formula and Bollman (2014, Example 5.2.5) cites a recursive
solution by the Wizard of Odds (Shackleford, 2019). Finally, for perhaps the
most complicated craps problem ever published, one can refer to a paper by
the present authors (Ethier & Hoppe, 2010), which gives an explicit formula in
closed form for the distribution of the length of the shooter’s hand at craps.
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Table 3: Gambling content of the seven textbooks. Entries are the numbers of
pages devoted to the listed topics. Numbers are rounded to the nearest integer.
For example, an entry of 0 means less than half a page of coverage. An en-dash
means no coverage. (Some material may correspond to more than one topic,
e.g., poker and matrix/bimatrix games.)

1 2 3 4 5 6 7
topic Han Pac Eth Eps Bol Tay Rod

2005 2006 2010 2013 2014 2015 2018

roulette 11 4 28 10 25 9 14
keno 3 3 20 2 9 – 0
lotteries 1 10 0 4 8 7 9
craps 14 7 46 12 19 12 13
baccarat 16 – 25 2 6 3 –
chemin de fer – – 11 0 3 – –
blackjack 19 4 49 32 42 37 12
video poker 5 7 29 – 8 – –
poker, general 6 7 32 6 6 22 14
poker, hold’em 4 6 28 3 3 2 4

slot machines 22 0 34 1 6 – –
bingo 1 0 1 3 4 7 –
big six wheel 1 – – – 1 – –
chuck-a-luck/sic bo 2 1 0 0 6 1 –
backgammon 0 13 0 1 – 5 –
Casino War 4 – 2 – 3 – –
Let It Ride 3 – 11 – 5 – –
Three Card Poker 3 – 9 – 2 – –
Caribbean Stud 4 – 2 – 4 – –
pai gow poker 2 – – – 4 – –
trente et quarante – – 22 1 – – –
sports betting 12 1 – – 8 – –
pari-mutuel betting 1 7 – 9 2 – 0

matrix/bimatrix games – 26 51 27 – 8 44
house advantage 15 0 36 – 5 – –
betting systems 3 4 51 6 19 14 7
gambler’s ruin 2 6 35 4 – 9 –
Kelly system – – 36 2 – 7 –
bold play – – 40 0 3 – –
shuffling 7 – 12 9 1 – –
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That paper was motivated by a 2009 incident at the Borgata Hotel Casino &
Spa in Atlantic City in which one Patricia DeMauro rolled the dice 154 times
before sevening out, a 5.59 billion to 1 shot. (This calculation is trickier than it
first appears, and a story in Time got it wrong, owing to a misunderstanding of
the problem; see Suddath, 2009.) A derivation of the closed formula is probably
beyond the scope of any of the seven textbooks. However, simpler calculations,
such as the mean of this distribution (Ethier, 2010, Example 3.2.6, pp. 505–
506, p. 510, Problem 15.10; Epstein, 2013, p. 210) or the median (Ethier, 2010,
Example 4.1.6; Epstein, 2013, p. 211), are quite manageable, but the variance
(Ethier, 2010, p. 511) is complicated.

3.3 Keno or Lotteries

Every course should cover keno or lotteries but not necessarily both. Lotteries
have the advantage of life-changing prizes, and keno has the disadvantage that
it is a dying game, not unlike faro a century ago. On the other hand, keno, with
its way tickets, may be slightly more interesting from the mathematical point
of view. In either case, the key probability distribution is the hypergeometric.

In this connection, there is one point that requires caution. The probability
of exactly six catches on a 10-spot keno ticket is given by the hypergeometric
probability(

10
6

)(
70
14

)(
80
20

) =
40,583,288,950,923,600

3,535,316,142,212,174,320
=

24,869,385

2,166,436,987
≈ 0.0114794. (6)

Some authors (Hannum & Cabot, 2005, p. 82; Packel, 2006, p. 72; Epstein,
2013, p. 160) prefer to express this as(

20
6

)(
60
4

)(
80
10

) =
18,900,732,600

1,646,492,110,120
=

24,869,385

2,166,436,987
≈ 0.0114794 (7)

because the numerator and denominator are smaller and so easier to evaluate.
But since the casino’s choice of 20 numbers is random and the player’s choice
of 10 numbers need not be, (6) is easy to justify, whereas (7) is not, at least
not directly. Packel’s (2006, p. 73) attempted derivation of (7) illustrates the
problem:

To see how products of combinations arise, consider the case of mark-
ing exactly 6 winning numbers [on a 10-spot ticket]. Assume, for the
purposes of our reasoning process, that the 20 random numbers have
been determined but remain unknown to the player. In how many
ways can exactly 6 out of 10 marked numbers appear among the 20
numbers drawn? (In actuality, the player marks his ticket before
the numbers are drawn, but our reinterpretation will not affect the
results.) There are

(
20
6

)
combinations of 6 marked numbers appear-

ing among the 20 numbers drawn, but for each such combination
there remain 4 marked numbers to be chosen among the 60 undrawn
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numbers (possible in
(
60
4

)
ways). Thus there is a total of

(
20
6

)
×
(
60
4

)
equally likely ways to have exactly 6 of the 10 marked numbers
drawn.

Notice that the basic result (1) requires that all outcomes in the sample space
be equally likely, not just those corresponding to the event in question. So
this derivation is dubious, especially if the player’s 10 numbers are not chosen
randomly. However, it is possible to justify (7) directly (Ethier, 2010, p. 484),
that is, without reference to (6).

We mentioned way tickets as an interesting aspect of keno not found in lotter-
ies. An especially nice class of way tickets arises as follows. Let A1, A2, . . . , Ar

be mutually exclusive subsets of {1, 2, . . . , 80}, each of size s ≤ 15 (so rs ≤ 80),
and let t ∈ {1, 2, . . . , r} satisfy st ≤ 15. Consider a ticket that bets one unit on⋃

i∈I Ai for each I ⊂ {1, 2, . . . , r} with |I| = t. This is what might be called an(
r
t

)
-way st-spot ticket. Popular choices include (r, s, t) = (20, 4, 2) (a 190-way

8-spot ticket) and (r, s, t) = (10, 2, 5) (a 252-way 10-spot ticket). An unpopular
choice is (40, 2, 4) (a 91,390-way 8-spot ticket).

3.4 Baccarat/chemin de fer

Modern-day baccarat evolved from the 19th century French game chemin de fer,
and it is by far the most popular gambling game in the world’s largest casino-
resort destination, Macau. Mathematically, chemin de fer is more interesting
because it involves some strategy decisions, whereas baccarat does not. Five of
the seven textbooks cover baccarat, but only three treat chemin de fer as well.
The first issue in baccarat is describing Banker’s mandatory drawing strategy.
There are several ways to do this.

1. An 8× 11 table such as Table 4.

2. Summary of Table 4 row by row as in Table 5.

3. Summary of Table 4 column by column as in Table 6.

4. Summary of Table 4 by listing the 13 departures from symmetric play.
(These are the 11 Ss in rows 3–5 and the two Ds in row 6.)

A case can be made for each approach. Hannum & Cabot (2005, p. 100) and
Bollman (2014, p. 93) use 2, Epstein (2013, p. 265) and Taylor (2015, p. 266)
use 3, and Ethier (2010, p. 598) uses 4. Approach 2 is apparently the way it is
learned by baccarat dealers, the logic being that Banker’s two-card hand is seen
before Player’s third card is dealt. A potentially useful way to remember Table 5
is, if Banker’s two-card total is x ∈ {3, 4, 5, 6} and Player draws a third card
y ∈ {0, 1, 2, . . . , 9}, then Banker draws if 2(x− 3) ≤ y ≤ 7 or if (x, y) = (3, 9).

The first question a student is likely to have is, Where did Banker’s manda-
tory drawing strategy come from? To give a partial answer to this question,
one could consider a particular case such as (3, 8), meaning a Banker two-card
total of 3 and a Player third card of 8. Compute Banker’s expectation by
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Table 4: Banker’s mandatory drawing strategy at baccarat (D = draw, S =
stand). The shading of D entries is for improved readability.

Banker’s Player’s third card (∅ if Player stands)
two-card

total 0 1 2 3 4 5 6 7 8 9 ∅

0 D D D D D D D D D D D
1 D D D D D D D D D D D
2 D D D D D D D D D D D
3 D D D D D D D D S D D
4 S S D D D D D D S S D
5 S S S S D D D D S S D
6 S S S S S S D D S S S
7 S S S S S S S S S S S

drawing and Banker’s expectation by standing, and confirm that the latter is
larger, perhaps counter-intuitively. Indeed, the two expectations are 86/1365
and 91/1365, respectively, assuming an infinite-deck shoe, as shown by Wilson
(1970, pp. 201–202). This is consistent with Ethier (2010, Table 5.3). Bollman
(2014, pp. 93–94) computes the standing expectation assuming that the possible
Player totals are equally likely, which is true except for 0, and does not compute
the drawing expectation.

Table 5: Banker’s mandatory drawing strategy at baccarat, as a function of
Banker’s two-card total.

Banker’s Banker draws . . .
two-card total

0–2 always
3 if Player’s third card is 0–7, 9, or none
4 if Player’s third card is 2–7 or none
5 if Player’s third card is 4–7 or none
6 if Player’s third card is 6 or 7
7 never

We strongly encourage the study of chemin de fer, provided the course in-
cludes the basics of noncooperative game theory (an issue we will return to). In
the formulation of Kemeny & Snell (1957), chemin de fer is 2×288 matrix game.
Player can draw or stand on 5, and Banker’s strategy is unrestricted. Calcu-
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Table 6: Banker’s mandatory drawing strategy at baccarat, as a function of
Player’s third card, if any.

Player’s Banker draws
third if Banker’s
card two-card total is

0 or 1 0–3
2 or 3 0–4
4 or 5 0–5
6 or 7 0–6

8 0–2
9 0–3

none 0–5

lations similar to those done for (3, 8) above show that Banker should play as
in baccarat, except possibly in the cases of (3, 9), (4, 1), (5, 4), and (6,∅). This
reduces the game by strict dominance to 2× 24 and then further to 2× 10, and
the graphical method reveals the 2 × 2 kernel. The correct solution, in which
Player’s draw-stand mix when holding 5 is (9/11, 2/11) and Banker draws on
(3, 9), stands on (4, 1), draws on (5, 4), and uses a draw-stand mix on (6,∅)
of (859/2288, 1429/2288), appears in Haigh (2003, pp. 217–220) and Bewers-
dorff (2005, Chap. 42). Epstein’s (2013, p. 265) solution inexplicably contains
three errors, despite being stated correctly in his earlier editions, and Bollman
(2014, pp. 95–99) studies the game under the assumption that all cards are
dealt face up. In baccarat it does not matter whether cards are dealt face up
because drawing rules are mandatory (in practice, cards are dealt face up in
mini-baccarat but not in baccarat); but in chemin de fer initial hands must be
dealt face down because drawing rules are partly discretionary.

The matrix game solution of Kemeny & Snell (1957) applies to the parlor
game chemin de fer, whereas the casino game involves a 5% commission on
winning Banker bets, resulting in a bimatrix game. The Nash equilibrium was
found by Ethier & Lee (2015b) and would be just as suitable for textbook
treatment as the Kemeny & Snell solution.

We recommend doing all chemin de fer calculations under the assumption
of an infinite-deck shoe. The exact d-deck analysis, which involves sampling
without replacement and composition-dependent two-card hands, is complicated
(Ethier & Gamez, 2013) and likely unsuitable for a textbook.

3.5 Blackjack

Each of the seven textbooks covers blackjack but at varying levels of detail.
Let us briefly compare their treatments of basic strategy. Packel (2006) does
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not discuss it. Rodŕıguez & Mendes (2018, Section 8.2) gives a portion of basic
strategy (ignoring soft hands) and provides motivation, but does not discuss
its derivation. All others provide a complete basic strategy under some set
of rules. Epstein (2013, p. 273–277) does little else, providing no motivation
or derivation. Bollman (2014, Section 6.3) provides some motivation but no
derivation. Hannum & Cabot (2005, pp. 127–132) provides good motivation but
no derivation. Taylor (2015, pp. 89–99) provides no motivation but does derive
basic strategy in a particular case, {8, 10} vs. 10, assuming an infinite-deck shoe
(an assumption that avoids the need to condition on the dealer not having a
natural). Ethier (2010, Section 21.2) derives basic strategy in two particular
cases, {6, 10} vs. 9 and {6, 10} vs. 10, assuming a single deck, then provides
an algorithm for recursively deriving composition-dependent basic strategy, and
finally reports the results.

There is no question that deriving basic strategy is complicated, but we
do not consider that a good reason to avoid it. At a minimum, one or two
particular cases of basic strategy should be analyzed in some detail to give a
sense of the magnitude of the problem. Assuming an infinite-deck shoe does
simplify matters considerably and might permit a more complete analysis. See
Werthamer (2018, Section 7.1) for a viable approach. The recursive algorithm
mentioned above dates back to Manson et al. (1975) and was used by Griffin
(1999, p. 172). In the end it requires a rather elaborate computer program,
which raises the question of whether this approach is suitable for a textbook.

Ethier & Lee (2019) proposed an alternative approach. Specifically, they
showed that basic strategy can be derived by hand (using the recursive algorithm
just mentioned) for a toy model of blackjack called snackjack (so-named by
Epstein, 2013, p. 291). The eight-card deck comprises two aces (value 1 or
4), two deuces (value 2), and four treys (value 3). The target total is 7, not
21, and ace-trey is a natural. The dealer stands on 6 and 7, including soft
totals, and otherwise hits. The player can stand, hit, double, or split, but split
pairs receive only one card per paircard (like split aces in blackjack), and there
is no insurance. To see why calculations by hand are feasible, there are only
32 decision points and 17 dealer drawing sequences in single-deck snackjack,
compared to 19,620 and 48,532, respectively, in single-deck blackjack. To see
more visually the simplicity of snackjack, refer to Figure 2. We believe that this
toy model has pedagogical value, which could be exploited in a course on the
mathematics of gambling.

The next main topic in blackjack is card counting, and there is a lot that can
be said. Topics might include the fundamental theorem of card counting, card
counting for insurance decisions, the effects of removal, balanced and unbalanced
card-counting systems, betting correlation, strategy variation, the Illustrious 18,
and so on. Among the seven textbooks, Bollman (2014, Section 6.4) has the
most thorough coverage.
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Figure 2: The tree diagram used to evaluate the standing expectation with
{3, 3} vs. 1 at single-deck snackjack. (A remainder of (1, 2, 2) means that 1 ace,
2 deuces, and 2 treys remain.) We find that E = −2/9. Notice that we are
conditioning on the dealer not having a natural (i.e., the dealer’s downcard is
not a trey). The corresponding tree diagram for standing with {10, 10} vs. 1 at
single-deck blackjack would have 5994 terminal vertices (Griffin, 1999, p. 158)
instead of four.

3.6 Video poker

Video poker shares two features with blackjack. First, these are the only two
house-banked casino games in which a skillful player can have a positive ex-
pectation under ordinary circumstances (ruling out, for example, games with
progressive jackpots). Second, the mathematical analysis of both games is com-
plicated and computer-intensive. The first property implies that both games
are essential components of any course on the mathematics of gambling, despite
the second property.

A sound approach to video poker is to focus on one specific game, such as
the classic 9/6 Jacks or Better. (Here 9/6 refers to the fact that the payoff odds
for a full house are 9 for 1 and those for a flush are 6 for 1.) See Table 7 for the
pay table. Hannum & Cabot (2005, pp. 159–160) considers the standard 9/6
game and gives the payoff distribution under optimal play, but does not describe
optimal play. Ethier (2010, Section 17.1) analyzes the standard 9/6 game and
gives the payoff distribution under optimal play, as well as exact optimal play.
Bollman (2014, pp. 99–103) studies the 9/6 game, except that a royal flush pays
940 for 1, and gives what is said to be optimal play but is only an approximation
to it. (For example, his hand-rank table ranks “3-card straight flush” ahead of
“1 or 2 high cards.” But A♥-3♦-5♣-7♣-9♣, for example, is correctly played by
holding only the ace, not the three-card straight flush.) Packel (2006, pp. 62–67)
treats 8/5 Jacks or Better, except that a royal flush pays 2500 for 1, and optimal
play is not described except for determining which hands are pat hands.

While 9/6 Jacks or Better (optimal expected return 99.5439%) and 8/5 Jacks
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or Better (optimal expected return 97.2984%) are widely available, the two
games just mentioned with royal flush bonuses are not currently available (see
https://www.vpfree2.com/video-poker/pay-table/jacks-or-better). A
2500-for-1 payout on a royal flush is conceivable in a game with a progressive
jackpot. A good reason to choose the standard 9/6 game for analysis is that
tutorial software is available online at https://www.freeslots.com/poker.

htm. This software also has the ability to analyze an arbitrary specified hand.

Table 7: Jacks or Better pay tables. Main entries are the returns from a one-unit
(max-coin) bet.

rank 9/6 game 1 9/6 game,2 8/5 game,3

royal bonus royal bonus

royal flush 800 940 2500
straight flush 50 50 50
four of a kind 25 25 25
full house 9 9 8
flush 6 6 5
straight 4 4 4
three of a kind 3 3 3
two pairs 2 2 2
one pair, jacks or better 1 1 1
other 0 0 0

optimal expected return 99.5439% 99.9030% 102.3886%
std. deviation (opt. play) 4.4175 5.1835 14.1466
royal probab. (opt. play) 1/40,390.5 1/38,077.8 1/31,746.0

1 Studied by Hannum & Cabot (2005, p. 160) and Ethier (2010, p. 546).
2 Studied by Bollman (2014, p. 99). 3 Studied by Packel (2006, p. 63).

What should a textbook treatment include? It should certainly discuss
equivalence of hands (via permutation of suits) and the fact that there are
134,459 equivalence classes. It should consider a few example hands and evalu-
ate expected returns under two or more drawing strategies. It might discuss the
concept of penalty cards. It should give the exact (or a nearly) optimal strategy
in terms of a hand-rank table, as well as the distribution of return under optimal
play. It might point out that that this strategy is, in effect, uniquely optimal (in
9/6 Jacks or Better but not necessarily in other games). An extended treatment
could give, at least in part, the distribution of the optimal conditional expected
return, given the initial hand, a distribution (for 9/6 Jacks or Better) of a ran-
dom variable with 1153 distinct values (or 387 distinct values if garbage hands
are ignored) that was only recently evaluated, apparently for the first time. For
details, see Ethier et al. (2019).

We mention in passing a result from Hannum & Cabot (2005, p. 162) that
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could be misinterpreted:

Without delving further into the mathematics, suffice it to say that
for multi-play video poker, there is no change in the expected value
(house edge) but the variance (volatility) increases.

The most natural way to compare n-play video poker with single-play video
poker is to divide a one-unit (max-coin) bet evenly among the n plays, thereby
maintaining a bet size of one unit. Then the mean return is constant in n and
the variance is decreasing in n. A less natural comparison is to make a one-unit
(max-coin) bet on each play, thereby betting a total of n units. Then the mean
return per unit bet is constant in n and the variance is increasing in n. It is this
second formulation that was apparently intended.

3.7 Poker

One can study the principles of generic poker, such as hand counting, poker
variants (seven-card stud, Omaha, etc.), poker models, pot odds, bluffing, and
game theory, but most students will be more interested in learning about Texas
hold’em, a game whose popularity has exploded in the past two decades. Un-
fortunately, the mathematics of hold’em is either trivial (e.g., the probabilities
of making a hand at the turn or the river) or extremely complicated (e.g., cal-
culations of the sort described in the next paragraph).

Hannum et al. (2012) introduced the game of chance hold’em, which differs
from Texas hold’em in that all players must call the big blind, and then all play-
ers must check through to the showdown, regardless of the board. Their object
was to isolate the chance aspect of Texas hold’em, and thereby show, using an
online poker database, that skill predominates. Heads-up chance hold’em can be
fully analyzed, but it requires a substantial computing effort (simulation is also
feasible, but much less reliable). Ethier (2010, p. 707–715) gives the details for
the case of A♠-K♠ vs. 8♥-8♦, a calculation that ultimately must be confirmed
by computer. But this is only one of 47,008 heads-up matchups (or equivalence
classes of such). This leads to a ranking of initial hands according to their ex-
pectation against a random hand in heads-up play. A similar ranking of initial
hands in a game with 10 players requires simulation. See Table 8 for a par-
tial ranking. Finally, Ethier (2010, pp. 721–725) gives two examples (borrowed
from Guerrera, 2007, pp. 62–73) requiring a Bayesian analysis of a call-or-fold
decision in a specific game in which the history of the betting is known. One of
them uses the heads-up probabilities of the sort described above.

The other six textbooks provide only brief coverage of Texas hold’em.

3.8 Other games

We are going to take the position, which is certainly arguable, that all other
gambling games should be ignored. There is simply too much material in the
seven topics just described (roulette, craps, keno/lotteries, baccarat/chemin de
fer, blackjack, video poker, and poker) to spend time with lesser games. That’s
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Table 8: Ranking of pocket pairs among the 169 distinct initial hands in Texas
hold’em. Columns 2 and 3 rank the hands according to expectation vs. a random
hand in a 2-player (heads-up) game; these were determined by exact compu-
tation. Columns 4 and 5 rank the hands according to expectation vs. random
hands in a 10-player game; these were determined by a simulation of more than
20.5 billion games (Shackleford, 2016).

2-player game 10-player game

pocket expectation vs. expectation vs.
pair rank random hand rank random hands

AA 1 0.704074 1 2.1071
KK 2 0.647914 2 1.6079
QQ 3 0.598503 3 1.2224
JJ 4 0.549389 5 0.9318
TT 5 0.500236 13 0.7145
99 6 0.441145 17 0.5559
88 7 0.383261 26 0.4471
77 9 0.324720 35 0.3647
66 17 0.265695 46 0.3017
55 27 0.206498 52 0.2379
44 48 0.140456 56 0.2155
33 66 0.073862 60 0.2002
22 87 0.006680 62 0.1933

not to say that Let It Ride, for example, lacks mathematical interest. Or that
slot machines or sports betting lacks popularity. We are simply recognizing that
thorough coverage of the principal topics will have greater impact on students
than spotty coverage of many topics.

As for slot machines, the decision to ignore them is actually a consequence
of a feature they uniquely enjoy: The information needed to analyze slots is
highly classified and in particular not available to textbook authors or univer-
sity instructors. Ethier (2010, pp. 436–441) analyzes a par sheet made available
by Bally for an outdated machine. The same author also acquired par sheets
for some modern five-reel video slots through a confidential source, but his pub-
lisher (Springer) was unwilling to risk a lawsuit by publishing that information.
As long as the gambling public continues to patronize games that deny them
knowledge of the edge they are up against, the practice of restricting access to
that information will persist.

27



3.9 Game theory

We believe that a course on the mathematics of gambling should include the
basics of game theory, not because that is a beautiful subject, which it certainly
is, but because it is needed to analyze the games of chemin de fer and poker.
Other gambling games that require game theory include le her, an 18th-century
card game that was the very first game analyzed using game theory, more than
two centuries before game theory existed as a subject; super pan 9, a baccarat-
like card game; and baccarat banque, a three-person zero-sum game (Ethier &
Lee, 2015a). As explained earlier, chemin de fer is a 2×288 matrix (or bimatrix)
game that is reduced to 2 × 24, then to 2 × 10, by strict dominance and then
solved graphically to reveal the mixed-strategy solution. Le her is easier, being
effectively a 14× 14 matrix game that is reduced to 2× 2 by strict dominance,
resulting in a mixed-strategy solution. Super pan 9 is also easier than chemin
de fer (but less interesting), being initially a 2×220 matrix game that is reduced
to 2 × 2 by strict dominance, then solved by noticing the presence of a saddle
point. We have already discussed poker endgame.

Four of the seven textbooks have extensive coverage of matrix and/or bi-
matrix games (the subset of game theory most relevant to gambling). Packel
(2006, Chap. 6) treats matrix and bimatrix games, cooperative n-person games,
and sequential games of perfect information, all in a chapter titled “Elemen-
tary Game Theory,” and then applies the theory to a poker endgame situation.
Rodŕıguez & Mendes (2018, Chaps. 10–13) covers the same topics as Packel ex-
cept for cooperative n-person games. Ethier (2010, Chap. 5) restricts attention
to matrix games, while Epstein (2013, pp. 30–37 and Chap. 10) treats matrix
games as well as providing extensive coverage of sequential games of perfect
information (e.g., tic-tac-toe, nim, checkers, chess, go).

Restriction to matrix games (rather than bimatrix games) is undesirable
because chemin de fer and poker are both examples of matrix games that are
more properly regarded as bimatrix games. We have already mentioned that,
with a 5% commission on Banker wins, the casino game chemin de fer is a
bimatrix game, whereas, with no commission, the parlor game chemin de fer is
matrix game. Poker endgame is a constant-sum bimatrix game, which can be
treated as a matrix game if necessary, but it would be clearer not to. Let us
clarify this point.

Basic endgame is described in Ethier (2010, p. 694) (essentially from Fergu-
son & Ferguson, 2007) as follows:

Two players, 1 and 2, ante a units each, where a > 0 is specified.
Player 1 then draws a card that gives him a winning hand with
probability P , where 0 < P < 1, and a losing hand otherwise. Both
players know the value of P but only player 1 knows whether he
has a winning hand. It is assumed that play begins with a check
by player 2. Player 1 may then check or bet b units, where b > 0
is specified. If he checks, there is a showdown. If he bets, player 2
may fold or call. If player 2 folds, player 1 wins the pot. If player 2
calls, there is a showdown.
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It turns out that player 1 should never check with a winning hand (such strate-
gies are dominated), so the payoff matrix has the following form, with player 1
being the row player and player 2 being the column player:

fold if call if
player 1 bets player 1 bets

check if loser, bet if winner
bet if loser, bet if winner

(
(a11, b11) (a12, b12)
(a21, b21) (a22, b22)

) .

The a21 entry, for example, is the payoff to player 1 if player 1 bets regardless
of his status as winner or loser and player 2 folds. It is therefore the value
of the pot, 2a, since the pot is regarded as belonging to neither player. The
b21 entry is the payoff to player 2 under the same circumstances, which is 0,
and therefore this is a general-sum (in fact, constant-sum) game. To study
this game using the theory of matrix games, Ethier (2010, pp. 604–607) simply
redefined bij := −aij , maintaining the correct payoff for player 1 but reducing
player 2’s payoff by 2a. This gives the right answers but is a little contrived.
An alternative, and perhaps more natural, approach is to regard the money in
the pot as belonging to the player that contributed it, in which case a21 = a
and b21 = −a (Ferguson & Ferguson, 2007). The most natural approach, we
believe, is to formulate the game as a bimatrix game.

3.10 House advantage

The house advantage of a wager is the most important casino statistic. It can
be expressed as either a fraction or a percentage. The definition varies slightly
from one source to another because there are several aspects of it that are
controversial. Here we mention three issues.

1. Should pushes be included or excluded? For example, should the house
advantage of the don’t pass bet at craps be 27/1980 ≈ 0.0136364 (pushes
included) or 27/1925 ≈ 0.0140260 (pushes excluded)?

2. In compound wagers should the house advantage be computed with re-
spect to the initial amount bet or the total amount bet? For example, for
the ante-play wager at Three Card Poker, is the house advantage (pushes
included)

686,689

20,358,520
≈ 0.0337298 or

686,689

34,084,400
≈ 0.0201467,

that is, expected loss per initial amount bet or expected loss per expected
total amount bet?

3. Should amount bet be the amount “in play” or the amount placed at risk?
For example, assuming that a $5 20-spot keno ticket returns at least $1,
regardless of what happens, should the bet size be $5 (amount “in play”)
or $4 (amount placed at risk)?
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These issues are addressed in some detail by Hannum & Cabot (2005, pp. 56–
58) and Ethier (2010, pp. 236–238). Incidentally, our preferred answers are as
follows: 1. It depends on the game (e.g., pushes included in baccarat, blackjack,
and video poker, pushes excluded in craps and faro). 2. Expected total amount
bet, except in blackjack. 3. Amount placed at risk.

Another interesting issue is how the house advantage is affected by a dead-
chip (or nonnegotiable-chip) program; see Hannum & Cabot (2005, pp. 216–231)
for a thorough discussion.

3.11 Betting systems

Betting systems is a topic worthy of some attention. Here we are referring to the
classic systems for repeated even-money wagers that go by names such as the
martingale, Fibonacci, Labouchere, and d’Alembert. In the martingale system,
one doubles one’s bet after each loss until finally achieving a win. Its analysis
is straightforward.

The Fibonacci and Labouchere systems are closely related and mathemati-
cally interesting. In both systems, the bettor keeps an ordered list of numbers
on a scoresheet. The next bet is always the sum of the first and last numbers on
the list in the Labouchere system, or the sum of the last two numbers on the list
in the Fibonacci system. (An obvious exception is made if the list has only one
number.) After a win, the first and last numbers are canceled (Labouchere) or
the last two numbers are canceled (Fibonacci), whereas after a loss, the amount
just lost is appended to the list as a new last term. When the list becomes
empty, the bettor stops. The reason for the name Fibonacci is that, if the
initial list is, for example, 1, 1, 2, 3, subsequent terms and bet sizes are always
Fibonacci numbers. An important distinction is that while the Fibonacci sys-
tem is amenable to analysis, the Labouchere system is not because of its history
dependence. Epstein (2013, pp. 52–57) gives good coverage, but accuracy is
uneven. For example, the calculation on p. 54 purporting to show the size of
the bettor’s bankroll needed for a 0.99 probability of success at the Labouchere
system at a fair game starting with an initial list of 1, 2, 3 is erroneous, and we
do not know how to fix it; this material is new to the second edition. Bollman
(2014, Example 7.1.3) states the rules of the Fibonacci ambiguously. In terms
of Fibonacci numbers, the key rule is as follows: After winning a bet of Fn, stop
if n = 1 or 2, bet Fn−2 if n ≥ 3; after losing a bet of Fn, bet Fn+1.

Ethier (2010) and Bollman (2014) discuss the martingale, Fibonacci, Labou-
chere, and d’Alembert systems. Hannum & Cabot (2005), Epstein (2013), and
Rodŕıguez & Mendes (2018) neglect only the Fibonacci, Packel (2006) discusses
only the martingale and Labouchere systems, and Taylor (2015) discusses only
the martingale, among these four betting systems.

3.12 Gambler’s ruin formula

The gambler’s ruin formula (for the probability of winning W units before losing
L units when betting one unit at even money at each trial in an independent
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sequence) is important and easy to derive. One can solve a linear system of
second-order difference equations, the method used by Packel (2006, Section 7.4)
and Taylor (2015, pp. 237–245), or, better yet, use the martingale proof of De
Moivre (Ethier, 2010, pp. 271–272), which is easy to understand even if not
entirely rigorous. Here is the argument.

Let us refer to the gambler as A and to his opponent as B. We assume
that A has L units initially while B has W . Play continues until one
of the players has all L + W units. Let us call these units “chips”
(De Moivre used the word “counters”) and assume that each player
stacks his chips and that each coup amounts to a transfer of one
chip from the top of one stack to the top of the other. The key idea
is to artificially assign values to the chips that make the game fair.
Thus, we assign values q/p, (q/p)2, . . . , (q/p)L to A’s initial stack of
chips from bottom to top, and (q/p)L+1, . . . , (q/p)L+W to B’s initial
stack of chips from top to bottom. At every coup, B risks q/p times
as much as A, and since A wins, loses, and pushes each coup with
probabilities p, q, and r := 1− p− q, respectively, the game is fair.
Consequently, at the end of play, the expected (artificial) value of
A’s profit is

P(A wins)

{(
q

p

)L+1

+ · · ·+
(
q

p

)L+W}
− (1− P(A wins))

{
q

p
+

(
q

p

)2

+ · · ·+
(
q

p

)L}
,

which must be 0.

The formula for P(A wins) follows, with the cases p 6= q and p = q treated
separately. (A rigorous treatment requires the optional stopping theorem from
martingale theory.)

Hannum & Cabot (2005, p. 198) and Epstein (2013, pp. 58–59) state the
gambler’s ruin formula without proof.

3.13 Other topics

There are several other mathematical topics, not already covered in discrete
probability, that should not be neglected in a course on the mathematics of
gambling.

The Kelly system is taken up by only three of the seven textbooks, perhaps
because its minor use of calculus puts it beyond the scope of most of the pre-
calculus textbooks. Just as the central limit theorem can be (and often is)
included in pre-calculus statistics textbooks, the Kelly system can be discussed
in even the most elementary course. Indeed, Taylor (2015, pp. 230–237) shows
how to do it. Epstein (2013, pp. 61–62) gives brief coverage, and Ethier (2010,
Chap. 10) provides more-thorough coverage.
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Bold play is a beautiful topic, which can be discussed at an elementary
level. Proofs are a challenge, but providing motivation for the principal re-
sults is quite easy, especially if the gambler’s ruin formula is available. Bollman
(2014, Section 7.6) gives excellent motivation but stops short of stating a theo-
rem. Epstein (2013, p. 60) states a theorem, though not quite accurately: The
maximum boldness strategy is not necessarily optimal in the presence of a house
limit. Ethier (2010, Chap. 9) gives extended coverage.

Shuffling is a suitable topic for a course on the mathematics of gambling.
Hannum & Cabot (2005, pp. 261–264, 281–285) discusses shuffle tracking and
statistical properties of shuffles; Epstein (2013, pp. 222–232) discusses period-
icity of perfect shuffles and what he refers to as the amateur shuffle (a.k.a. the
riffle shuffle), among other things; and Ethier (2010, Section 11.1) proves the
theorem of Bayer & Diaconis (1992) on riffle shuffles that led to their celebrated
finding that “seven shuffles suffice.”

Finally, martingales are covered by only one of the seven textbooks, perhaps
because they depend on conditional expectation, which itself receives little cov-
erage. The one result from martingale theory that seems essential to a course
on the mathematics of gambling is the result that says that no betting system
applied to a sequence of fair or subfair wagers can result in a positive expec-
tation. Of course, some hypotheses are needed. An elementary formulation of
this result can be found in Thorp (1984, pp. 121–124).

4 Mathematical level

Here we compare the seven textbooks in terms of mathematical level. Only
three of the seven books state their prerequisites clearly.

Packel (2006, p. ix) writes,

While the only formal mathematics background assumed is high
school algebra, some enthusiasm for and facility with quantitative
reasoning will also serve the reader well.

Ethier (2010, p. v) writes,

This is a monograph/textbook [. . . ] intended for those already famil-
iar with probability at the post-calculus, pre-measure-theory level.

Rodŕıguez & Mendes (2018, p. xiii) write,

The material should be suitable for a college-level general education
course for undergraduate college students who have taken an alge-
bra or pre-algebra class. In our experience, motivated high-school
students who have taken an algebra course should also be capable
of handling the material.

With this information, we can rank the seven textbooks according to their
mathematical level. We start with the more advanced books.
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• Ethier (2010) assumes some familiarity with basic probability, and is in-
tended for an upper-division class in mathematics or statistics. Proofs are
given for most of the principal results.

• Epstein (2013) covers few topics in depth, but there are a vast number of
topics (some of which are unrelated to gambling). Proofs, which appeared
in the original edition (Epstein, 1967), were dropped in the revised edition
(Epstein, 1977) and remain absent in the latest edition. Although the
book is largely concerned with discrete mathematics, it does use calculus
more than just occasionally. We conclude that the prerequisite for this
textbook is calculus. And some familiarity with basic probability is likely
also necessary.

We believe that the other five textbooks could be successfully used in a pre-
calculus course. That does not mean, however, that they are all at the same
mathematical level.

• Taylor (2015) is a user-friendly textbook that starts at the beginning and
eventually gets into some rather sophisticated mathematics. Examples of
nonstandard topics include a combinatorial derivation of the seven-card
poker-hand probabilities (where only the best five-card subset counts);
probability problems that can be solved recursively; Sicherman dice via
generating functions; stationary distributions of finite Markov chains3 with
application to Monopoly and other board games; and an analysis of win-
ning streaks in independent Bernoulli trials. Although calculus is only
rarely needed, this book seems to require of its readers greater mathemat-
ical maturity than the other four textbooks.

• Bollman (2014) introduces many games not listed in Table 3 (including
punchboards, Die Rich, spider craps, twenty-six, Royal Roulette, Dia-
mond Roulette, Riverboat Roulette, Double Action Roulette, crapless
craps, barbooth, Double Dice, card craps, EZ Baccarat, Rupert’s Island
Draw, card slots, Multicolore, boule, Double Exposure, Super Fun 21,
Spanish 21, Multiple Action 21, and Blackjack Switch) and analyzes most
of them. Only the more complicated topics (e.g., blackjack, video poker)
lack derivations and rely on other sources for their conclusions. Because
of a greater emphasis on derivations, albeit elementary ones, we regard
Bollman (2014) as more advanced than Hannum & Cabot (2005).

• Hannum & Cabot (2005, p. ix) clearly states that its primary intended
audience is casino managers, or potential managers. The prerequisites are
similar to those of Packel (2006) and Rodŕıguez & Mendes (2018), but its
level of mathematical sophistication puts it ahead of those two books on
this list. Compare, for example, their treatments of blackjack and of the
central limit theorem.

3 It is incorrectly stated (p. 170) that these are always unique. A necessary and sufficient
condition for uniqueness of stationary distributions is uniqueness of recurrent classes.
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The last two textbooks would be suitable for a general education class. Both
have a high school algebra prerequisite.

• Rodŕıguez & Mendes (2018) has much to recommend it. It has perhaps the
clearest analysis of the pass-line bet at craps of any of the seven textbooks.
It avoids proofs but often confirms conclusions with simulations in R. It
studies game theory in some depth, permitting analysis of a poker-like
game.

• Packel’s (2006) primary selling point is its broad accessibility. The price
of this accessibility is its sparse coverage of probability (omitting con-
ditional probability, random variables, and variance, for example), but,
like Rodŕıguez & Mendes (2018), it does provide an introduction to game
theory with an application to a poker endgame situation.

5 Conclusions

Every book on discrete probability has many examples; indeed, it would not
be possible to learn the subject without them. Some of the simplest and least
contrived examples arise in games of chance, perhaps not surprisingly because
that is where the subject originated more than three centuries ago.

A course on the mathematics of gambling can be regarded as a course on
discrete probability in which all of the examples involve gambling. Although
some instructors may prefer a broader emphasis, to include games that are not
ordinarily considered gambling games (e.g., Yahtzee), or to include games that
are not even games of chance (e.g., checkers), there is no question that there
exists abundant material even within the narrow confines of casino games. And
furthermore, there is complete flexibility with respect to the mathematical level
of such a course, from high school level to graduate level, but usually at the
university undergraduate level, lower division or upper division.

To justify our claim that examples from games of chance are less contrived
than “real-world” examples, we cite a problem from the excellent probability
textbook by Ross (2010, Problem 3.51):

A worker has asked her supervisor for a letter of recommendation for
a new job. She estimates that there is an 80 percent chance that she
will get the job if she receives a strong recommendation, a 40 percent
chance if she receives a moderately good recommendation, and a 10
percent chance if she receives a weak recommendation. She further
estimates that the probabilities that the recommendation will be
strong, moderate, and weak are 0.7, 0.2, and 0.1, respectively.

(a) How certain is she that she will receive the new job offer?

(b) Given that she does receive the offer, how likely should she feel
that she received a strong recommendation? a moderate recommen-
dation? a weak recommendation?
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(c) Given that she does not receive the job offer, how likely should
she feel that she received a strong recommendation? a moderate
recommendation? a weak recommendation?

For comparison, here is a problem from Ethier (2010, Problem 1.20), rewritten
slightly to make it comparable to the Ross problem.

Recall the rules of the pass-line bet at craps as well as the distri-
bution of the various dice totals, given by πj := (6 − |j − 7|)/36,
j = 2, 3, 4, . . . , 12.

(a) Find the probability that the pass-line bet is won.

(b) Regarding the probabilities πj as the prior probabilities for the
come-out roll, find the corresponding posterior probabilities, given
that the pass-line bet is won.

(c) Regarding the probabilities πj as the prior probabilities for the
come-out roll, find the corresponding posterior probabilities, given
that the pass-line bet is lost.

Both problems have the same structure. But in the first problem three condi-
tional probabilities and three unconditional probabilities are assumed without
any real basis, whereas in the second problem we assume only fair dice. The
first problem is contrived, the second one is not.

5.1 Advice to potential instructors

Our first advice to instructors preparing to teach a course on the mathematics
of gambling is to read the literature of the field as thoroughly as time permits
but to do so skeptically. The point is that, especially since the dawn of the
Internet, the barrier to publishing in this field has been very low, so there exist
many works that are mathematically unreliable. Barnhart (1988), referring
specifically to the history of roulette, described what he called a “scholarly
disaster,” a situation where assertions become accepted once they are misstated
often enough.

This can be prevented if instructors independently confirm any results they
borrow from other sources. This is usually easy to do, but there are exceptions
(e.g., blackjack, video poker, Texas hold’em). In the exceptional cases, it is
important to recognize which sources are reliable, and this can only be learned
through experience.

Whichever textbook is chosen by the instructor, we recommend supplement-
ing it with additional material, to make the course fit the instructor’s and the
students’ interests. Just because a book gives inadequate coverage to a particu-
lar topic should not rule it out as a potential textbook for the course. In addition,
if it is feasible, the instructor should consider bringing in outside speakers. For
example, in the Stanford University course mentioned in the Introduction, one
lecture was given by a professional poker player, another by the head statistician
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for the California State Lottery, and a third by the author of the textbook used
for the course.

Moreover, even for students in a mathematics department, facility with com-
puting, in addition to logical reasoning skills, is both relevant and important.
Many of the more interesting problems and calculations in applications of prob-
ability to gambling require numerical work or programming, and such a course
may encourage students to learn a suitable programming language.

We also point out that, in the event that the course attracts exceptional
students, there are accessible research problems that can challenge their abil-
ities. The University of Utah course mentioned in the Introduction resulted
in a publication (Vanniasegaram, 2006) by a UC Berkeley undergraduate, and
the course at Stanford University resulted in the solution of a 12-year-old open
problem by two graduate students (Han & Wang, 2018).

We also encourage instructors to include material that can captivate a stu-
dent’s imagination and pique his or her interest in the subject. Let us mention
several of our favorite examples.

• When discussing Texas hold’em, play scenes from the 1998 film Rounders
in which Mike McDermott (Matt Damon) competes against Teddy “KGB”
(John Malkovich) in heads-up play, or the scene from the 2006 film Casino
Royale in which James Bond (Daniel Craig) check-raises Le Chiffre (Mads
Mikkelsen) to win a $115 million pot.

• When discussing chemin de fer, read Chapters 9–13 of Fleming’s (1953)
Casino Royale, at the climax of which James Bond competes against Le
Chiffre at a hand of baccarat/chemin de fer with 32 million francs at stake.
(This is every bit as dramatic as the hold’em game just cited.)

• When discussing card counting at blackjack, play scenes from the 2008 film
21 or read excerpts from the book on which the film is based, Mezrich’s
(2002) Bringing Down the House: The Inside Story of Six M.I.T. Students
Who Took Vegas for Millions. Thorp’s (1966b) Beat the Dealer is also
compelling, especially for historical reasons.

• When discussing craps, read Scoblete’s (2007, Part 4; 2010) dramatic
story of the Captain’s 148-roll hand. As we mentioned, this record was
subsequently eclipsed by Ms. DeMauro, but no such eyewitness account
of the latter incident exists.

• When discussing the gambler’s ruin formula, read Johnson’s (1990) “Tale
of a Whale: Mysterious Gambler Wins, Loses Millions,” the story of a
freeze-out match between a Japanese billionaire, who would later be mur-
dered, and an Atlantic City casino mogul, who would later be President
of the United States. See also Crowley (2016) for a more recent account.

• When discussing lotteries, read Arratia et al.’s (2015) “Some people have
all the luck” about how certain Florida State Lottery players won so reg-
ularly that they must have been up to something. Or read the story of a
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retired couple who exploited a loophole in the Michigan State Lottery to
win millions (Fagone, 2018).

• When discussing video poker, read Poulsen’s (2014) “Finding a video
poker bug made these guys rich — Then Vegas made them pay.” This
article suggests that, even if one finds an exploitable weakness is a casino
game, one cannot legally exploit it. Indeed, the same conclusion appar-
ently applies to Phil Ivey’s edge-sorting scheme at baccarat (Hawkins,
2017), a mathematical analysis of which appears in Dalton & Hannum
(2016).

• When discussing the Labouchere system, read Leigh’s (1976) Thirteen
Against the Bank, the story of how 13 Englishmen and women beat the
roulette wheels of the casino at Nice using the reverse Labouchere system.
This book is alleged to be a work of nonfiction. A good project for the
class would be to investigate its plausibility, perhaps using simulation.

• When discussing the Kelly system, read Poundstone’s (2005) Fortune’s
Formula: The Untold Story of the Scientific Betting System that Beat
the Casinos and Wall Street. It brings together a remarkable cast of
characters, from mobsters to Nobel laureates.

• When discussing roulette, read excerpts from Dostoevsky’s 1867 book, The
Gambler. Alternatively, read the exploits of a number of successful biased
wheel players in Barnhart’s (1992, Chapters 4–10) Beating the Wheel.

• In the event that faro is discussed, read Pushkin’s 1834 short story, “The
Queen of Spades.”

In fact, there is so much great literature concerned with gambling that any list
such as this must necessarily be incomplete.

Instructors interested in introducing a course on the mathematics of gam-
bling should keep in mind that there could be some resistance on the grounds
that such a course would encourage gambling. As Emerson et al. (2009) pointed
out,

Researchers estimate that 3% to 11% of college students in the U.S.
have a serious gambling problem that can result in psychological
difficulties, unmanageable debt, and failing grades.

Without attempting to minimize the problem, we believe that such objections
lack merit. A student who understands the law of large numbers, the gambler’s
ruin formula, the futility of betting systems, and the house advantages of the
standard casino games is less likely to engage in games of pure chance (roulette,
craps, keno, baccarat) than a student who lacks this knowledge. A student who
understands card counting at blackjack, hand-rank tables at video poker, and
the principles of Texas hold’em, is perhaps more likely to participate in these
skill-based games of chance than a student who lacks this knowledge, but to do
so possibly as an advantage player, or in any case in a way unlikely to cause
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harm. We are not suggesting that learning to gamble intelligently is a solution
to problem gambling, only that it is unlikely to create a new problem gambler.
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Rodŕıguez, A. & Mendes, B. (2018). Probability, Decisions and Games: A
Gentle Introduction Using R. Hoboken, NJ: John Wiley & Sons.

Ross, S. (2010). A First Course in Probability, Eighth Edition. Upper Saddle
River, NJ: Pearson Prentice Hall.

Schneider, W. & Turmel, J. (1975). On the organization of a university level
course in gambling. Unpublished manuscript (15 pp.), available at UNLV
Lied Library Special Collections, LB 2365 .M3 S35.

Scoblete, F. (2007). The Virgin Kiss and Other Adventures. Daphne, AL:
Research Services Unlimited.

Scoblete, F. (2010). The Captain rolls 147. Golden Touch Craps. Retrieved
October 26, 2019, from
https://www.goldentouchcraps.com/captainrolls147.shtml.

Selvin, S. (1975a). A problem in probability. Amer. Statistician, 29 (1), 67.
Selvin, S. (1975b). On the Monty Hall problem. Amer. Statistician, 29 (3),

134.
Shackleford, M. W. (2016). Texas holdem — Top hands for 10-player game.

Wizard of Odds. Retrieved October 26, 2019, from

41

https://www.wired.com/2014/10/cheating-video-poker/
https://www.goldentouchcraps.com/captainrolls147.shtml


https://wizardofodds.com/games/texas-hold-em/10-player-game/.
Shackleford, M. W. (2019). Craps side bets. Wizard of Odds. Retrieved

October 26, 2019, from
https://wizardofodds.com/games/craps/appendix/5/.

Suddath, C. (2009). Holy craps! How a gambling grandma broke the record.
Time. Retrieved October 26, 2019, from http:

//content.time.com/time/nation/article/0,8599,1901663,00.html.
Taylor, D. G. (2015). The Mathematics of Games: An Introduction to

Probability. Boca Raton, FL: CRC Press, an imprint of Taylor & Francis
Group.

Thorp, E. O. (1966a). Elementary Probability. New York: John Wiley & Sons.
Thorp, E. O. (1966b). Beat the Dealer: A Winning Strategy for the Game of

Twenty-One, Revised and Simplified Ed. New York: Random House.
Thorp, E. O. (1984). The Mathematics of Gambling. Secaucus, NJ: A

Gambling Times Book, Lyle Stuart.
Vanniasegaram, S. (2006). Le her with s suits and d denominations. J. Appl.

Probab., 43 (1), 1–15.
Werthamer, N. R. (2018). Risk and Reward: The Science of Casino Blackjack,

Second Edition. Cham, Switzerland: Springer International Publishing AG.
Wilson, A. N. (1970). The Casino Gambler’s Guide, Extended Edition. New

York: Harper & Row.

42

https://wizardofodds.com/games/texas-hold-em/10-player-game/
https://wizardofodds.com/games/craps/appendix/5/
http://content.time.com/time/nation/article/0,8599,1901663,00.html
http://content.time.com/time/nation/article/0,8599,1901663,00.html

	1 Introduction
	2 Probability content
	2.1 Basics
	2.2 Conditional probability
	2.3 Subjective conditional probability
	2.4 Random variables
	2.5 Limit theorems

	3 Gambling content
	3.1 Roulette
	3.2 Craps
	3.3 Keno or Lotteries
	3.4 Baccarat/chemin de fer
	3.5 Blackjack
	3.6 Video poker
	3.7 Poker
	3.8 Other games
	3.9 Game theory
	3.10 House advantage
	3.11 Betting systems
	3.12 Gambler's ruin formula
	3.13 Other topics

	4 Mathematical level
	5 Conclusions
	5.1 Advice to potential instructors


