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Introduction

With prediction markets growing in number and in prominence in various
domains, the construction of a modeling framework for the behavior of prices
on traded contracts has become an increasingly important endeavor. In this
paper, we present such a theoretical framework, as we attempt to use mar-
tingale theory in the analysis of prediction market price fluctuations. The
application of this theory to prediction market prices generates certain pre-
dictions regarding, in particular, win probabilities, the distribution of maxi-
mum and minimum prices, and the distribution of interval crossings, which
we test using empirical data on contract prices for baseball matches from the
online prediction marketplace Tradesports.

Background

For the purposes of this paper, we define a prediction market as a venue
at which contracts whose ultimate value depends on the occurrence or fail-
ure to occur of some specified event (presumably with a limited time horizon)
are publicly traded. Classic examples of such contracts are those whose value
is tied to the event that a specific candidate (e.g., Barack Obama) becomes
president of the United States, or (as will be particularly relevant for this
paper) the event that a sports team wins a given match. From the moment
contracts are initially put up for bid by the hosting party until the time at
which the contracts pay out, they may be bought and sold by individual
traders. In this sense, prediction markets function as an admixture of tra-
ditional betting markets and stock markets: Like stock markets (and unlike
betting markets), prediction market contracts may be sold by individual par-
ticipants; unlike most stock markets, however, there is a clear termination
point for the contract.

In general, this paper will assume the Tradesports model: Contracts vary
between the (arbitrary) values of 0 and 100; a contract is initially offered
at some value between 0 and 100, and may be traded until the termination
point for the contract, at which point its value is either 100 (in which case it
pays out $10) or zero (in which case it pays out nothing). During the trading
period for the contract, its value may fluctuate as investor beliefs about the
outcome change. In this paper, we concern ourselves principally with these
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price fluctuations; our central tool in the analysis of these movements is an
artifact from probability theory known as a martingale.

A sequence Y = Y0, . . . , Yn is a martingale with respect to a random se-
quence X = X0, . . . , Xn if for all n ≥ 0 the equality E(Yn |X0, . . . , Xn−1) = Yn

holds. For prediction markets, if we let X be a random sequence of price per-
turbations, then we assert that if we define Y such that Yn =

∑n
i=0Xi, then

the price sequence Y is a martingale. This follows from the principle that
the price at any given point represents the consensus probability that the
event in question will occur, and is thus the fair price for the gamble. Thus,
the expectation of the future price based on currently available information
will be equal to the current price.

One important property of a martingale that follows directly from the
definition is the fact that E(Yn) = E(Y0) for all n ≥ 0. This is easily shown
using the tower property of expectation:

E(Yn) = E(E(Yn |X0, . . . , Xn−1))

= E(Yn−1)

Repeated iteration of this process gives the desired equality. Though this
result applies only to a fixed time n, the Optional Stopping Theorem asserts
that it can be extended to a random time T given that T is a stopping time.
(T is defined to be a stopping time if it is decidable whether or not n = T
for a given value of n based on the information contained in X0, . . . , Xn. For
example, if we define T to be the time when a gambler first achieves positive
profits, then T is a stopping time; if we define T to be the time immediately
prior to the gambler’s first loss, T is not a stopping time.) Formally, the Op-
tional Stopping Theorem states that, for a stopping time T , E(YT ) = E(Y0)
given that P(T < ∞) = 1, |E(YT )| < ∞, and E(YnI{T>n}) → 0 as n → 0.
The Optional Stopping Theorem provides the basis for the following equality,
from which the key theoretical results of this paper derive.

Consider a price x such that Y0 = x (x is the starting price), and prices a
and b such that 0 ≤ a < x < b ≤ 100. Let T be the first time the price reaches
either a or b, given that it starts at x. T is clearly a stopping time, and it is
intuitively plausible, though we omit the formal proof, that YT satisfies the
conditions of the Optional Stopping Theorem. Thus, E(YT ) = E(Y0) = x.
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Additionally, if we define πb to be the probability that the price reaches b
before it reaches a, then we have that E(YT ) = (1− πb)a+ πb b (since YT can
take only the values a or b, and it takes the former with probability 1 − πb

and the latter with probability πb). Setting the two expressions for E(YT )
equal to each other gives

x = (1− πb)a+ πb b

x = a+ πb(b− a)

πb =
x− a
b− a

(1)

It follows that

πa =
b− x
b− a

(2)

where πa is the probability that the price reaches a before b.

A fundamental entailment of this formula is that if we suppose that the
contract pays out if Team 1 wins and fails to pay out if Team 1 loses, then we
may evaluate the probabilities that Team 1 wins or, alternately, that Team
2 wins for a given starting price x by setting a = 0 and b = 100. (We assume
here and in all cases to follow that Team 1 wins if and only if the terminal
price of the contract is 100.) These probabilities, respectively, are

P(Team 1 wins) =
x

100
(3)

P(Team 2 wins) =
100− x

100
(4)

Additionally, we can derive certain formulae regarding mY and MY , ran-
dom variables representing the minimum and maximum prices recorded for
a given traded contract. Clearly, if mY ≤ a for some given price a, it must
be the case that the price of the contract reaches a before it reaches 100.
Thus, P(mY ≤ a) = (100 − x)/(100 − a), which follows from (??), with
a = a, b = 100. Similarly, using (??) with a = 0, b = b, we have that
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P(MY < b) = (b− x)/b. Note that if we partition the price sequence Y for a
given traded contract into non-overlapping subsequences, these subsequences
are martingales as well. We use this observation in conjunction with formulae
(??) and (??) and Bayes’ Theorem to compute the cumulative distribution
function of the minimum conditional on the outcome that Team 1 wins.

P(mY ≤ a | Team 1 wins) =

(
a

100

) (
100−x
100−a

)(
a

100

) (
100−x
100−a

)
+ (1)

(
x−a

100−a

)
=
a(100− x)

x(100− a)
(5)

The first equation makes use of the following facts: P(Team 1 wins |mY ≤
a) = a/100; P(mY ≤ a) = (100−x)/(100−a); P(Team 1 wins |mY > a) = 1;
and P(mY > a) = (x− a)/(100− a). The first, second, and fourth equalities
are simple applications of (??) and (??) with appropriate choices for a, b,
and x, while the third follows from the condition that a ≥ 0; if the event
has terminated and the price has not reached a, then it has not reached
zero, and therefore, it must be the case that Team 1 has won. Given these
equalities, we arrive at (??) via basic algebra. Applying the same approach,
we may derive a similar formula with regard to the conditional cumulative
distribution function of the maximum price in the case that Team 2 wins:

P(MY < b | Team 2 wins) =
100(b− x)

b(100− x)
(6)

Another random variable of interest is Z, the number of crossings the
price makes of a given interval [a, b]. (The price sequence Y crosses [a, b]
when it reaches b, having started at a, or vice-versa.) For a general interval
[a, b], we compute the probability of a single crossing (Z = 1) as follows:
First, we note that in order for a crossing to occur, it must be the case
that the price sequence reaches either a or b. For x ∈ [a, b], the probabil-
ity that a single crossing from a to b occurs is equal to

(
b−x
b−a

) (
a
b

) (
b−a

100−a

)
(i.e., the probability that the price sequence reaches a before b, reaches b
before zero (starting from a), and then reaches 100 before reaching a again
(starting from b)), while the probability of a single crossing from b to a is(

x−a
b−a

) (
100−b
100−a

) (
b−a

b

)
, derived similarly. The probability of a single crossing for

x ∈ [a, b] is the sum of these two probabilities, since they represent disjoint
events. (Note that if it is not the case that x ∈ [a, b], it must either be true
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that x ≤ a or x ≥ b; in these cases, a single crossing from b to a or from a
to b, respectively, is impossible, and thus P(Z = 1 | x ≤ a) =

(
a
b

) (
b−a

100−a

)
,

and P(Z = 1 | x ≥ b) =
(

100−b
100−a

) (
b−a

b

)
.) For Z ≥ 2, the approach is similar;

we simply add terms prior to the end term to account for each subsequent
crossing.

In the case where the interval [a, b] is symmetric about 50, the formula is
considerably simpler. Information about the first endpoint of the interval the
price sequence reaches is irrelevant, since the price is just as likely to cross
up from a to b as it is to cross down from b to a. (If we write b = 100 − a,
it is easily seen that a

b
= 100−b

100−a
= a

100−a
.) Thus, the general formula for the

probability of k crossings given that the price sequence ever enters [a, 100−a]
is

P(Z = k) =

(
a

100− a

)k (
100− 2a

100− a

)
(7)

Note that this is the formula for a (shifted) geometric distribution with
p = (100− 2a)/(100− a).

Methodology and Results

As the foregoing analysis makes clear, the presumption that prediction mar-
ket prices may be described as martingales generates a number of predictions
that we may test empirically. To this end, we collected price data on Trade-
sports contracts for 91 baseball games played between August 7 and October
27, 2008. For each such game, data consisted of the price sequence from the
opening bid price (the starting price) until the price at termination (either
100 or 0). We used these data to assess the accuracy of the three main the-
oretical predictions described above, namely: 1) The starting price reflects
the probability that a given team will ultimately prevail; 2) The conditional
distributions of the minimum and maximum are those given in (??) and (??),
respectively; and 3) The distribution of the number of crossings of an interval
that is symmetric about 50 is given by (??).

For the purposes of testing these predictions, it is clearly desirable that we
may treat the games in the data set as independent, identically distributed
realizations of a particular random variable. While the assumption of inde-
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pendence is not difficult to justify, the identical distribution condition poses
a slight problem. In particular, the formulae which generate predictions (1)
and (2) depend on x, the starting price, which may vary from game to game.
Thus, if we consider the achievement of a given minimum or the failure to
achieve a given minimum, for example, as a random indicator variable, our
data set is like a series of coin flips where the coins may have different values
for p. Thus, it was necessary to adopt strategies to standardize p.

For the purposes of testing prediction (1), games were grouped according
to starting price; all games whose starting price was within a given range
(e.g., 50 ≤ x < 60) were placed in the same group, and all groups of equal
size with sufficiently many (i.e., more than 10) games were tested. We cre-
ated two separate partitions by starting price – one had price groups [50, 60)
and [60, 70) (each of which contained 39 games), while the other had groups
[50, 55), [55, 60), and [60, 65). (The groups in the second partition contained
19, 20, and 31 games, respectively.) For each group in a given partition,
the mean starting price was computed. This mean price divided by 100 was
taken to be the success probability p for a series of Bernoulli trials (success in
this case is the event that Team 1 wins). Thus, the number of games won by
Team 1 in the group as a whole was considered to be a binomially distributed
random variable. Using the binomial distribution, we were able to compute
the endpoints of the critical interval (that is, the interval in which 95 percent
of values would be expected to fall) for each price group.

The critical intervals for the two groups in the first partition were [15, 27]
and [18, 30], respectively, while the critical intervals for the three groups in
the second partition were [6, 14], [7, 16] and [14, 24]. The observed values
of the number of victories by Team 1 in each group were 23 and 24 for the
first partition, and 10, 13, and 19 for the second. (See Figs. 1 and 2 in the
Appendix for a visual representation of this data.) Thus, all critical intervals
contained the sample estimates for the parameter, and thus there is no strong
evidence to reject the null hypothesis that prediction market prices may be
modeled as martingales based on this criterion.

With regard to the conditional minima and maxima, we chose to consider
all contracts that passed through the value 50. The subsequence beginning
at 50 is itself a martingale, and so we take x = 50 to be the starting price for
each contract. (The choice of 50 was arbitrary, based primarily on simplicity
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and symmetry: Each team won half of the 64 games whose price reached
50 at some point.) The martingale theory described above is presumed to
apply equally well to these truncated trading periods. Thus, substituting
50 for x in (??) and (??), we have that P(mY ≤ a | Team 1 wins) = a

100−a

and P(MY < b | Team 2 wins) = 2(b−50)
b

. Using these probabilities and the
binomial formula as above, we were able to construct the critical intervals for
the minimum value 40 conditional on victory by Team 1, and, respectively,
for the maximum value 60 conditional on victory by Team 2. These inter-
vals were then compared with the actual number of games won by Team 1
(respectively, Team 2) whose minimum (maximum) price was below 40 (60).
These intervals were [16, 26] and [6, 16]. The number of games won by Team
1 in which the minimum price reached after 50 was below 40, 21, was equal to
the number of games won by Team 2 in which the maximum price achieved
after 50 was 21; while this number is contained in the critical interval for the
minimum, it is beyond the range of the critical interval for the maximum.
In fact, under the null hypothesis that the maximum probability is as given
in (??), the likelihood of getting a sample of 32 games in which 21 or more
had a post-50 maximum price less than 60 was virtually zero. This result
thus casts serious doubt on whether prediction market prices may in fact be
modeled as martingales in the manner described above.

Additionally, for each price less than or equal to 50, we tallied the num-
ber of games whose post-50 minimum price was less than or equal to the
given price. In this way, we were able to generate the empirical cdf for the
minimum. A graph of the empirical and theoretical distribution functions
(see Fig. 3) shows a high degree of consonance, and suggests that the mar-
tingale model describes such minimum prices quite well. The results are not
so agreeable, however, for the empirical cdf of the maximum: The observed
number of games where the post-50 maximum price is less than a given price
is consistently higher than the predicted number of such games. This is
driven in particular by the fact that 14 of the 32 games won by Team 2 after
the price reached 50 never reached a price above 50 after hitting 50 for the
first time.

Finally, we examine the difference between the observed and expected
numbers of crossings of a given (symmetric) interval. This requires no fix
to omit an x from the relevant formula, since a is the only parameter in the
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expression. We arbitrarily selected this a to be 40, which gives the interval
[40, 60]. Eighty-two of the 91 games contained a point in this interval and
were thus suitable for analysis. Using (??), for which p = 1/3 for a = 40, we
computed the vector of expected crossings to be approximately (27, 18, 12,
8, 16) for 0, 1, 2, 3, and 4 or more crossings, respectively. (Note that the sum
of the elements in the vector is only 81 due to rounding error.) The vector of
observed crossings was tabulated to be (38, 22, 13, 6, 1, 2). With this data,
we administered a chi-square goodness of fit test comparing the observed and
expected counts to test the hypothesis that the shifted geometric distribution
with p = 1/3 in fact describes the data. The p-value for this test was 0.0026,
which implies that the proposed distribution is a bad fit for the data. In
particular, it predicts many fewer games with zero crossings and many more
with four or more than were in fact observed.

Discussion

The results of this analysis are mixed. At a basic level, it appears that
the starting contract price is a fairly accurate predictor of the likelihood that
the event will in fact occur. However, predictions regarding the conditional
maximum price for a given contract are not supported by these data, nor
are those concerning the number of crossings of an interval. In particular,
for the markets analyzed in these data, it appears that there are fewer large
fluctuations than one would expect using martingale-based theory. We note
additionally that the data set contained a disproportionately large number of
games (84 of 91) whose starting price was greater than 50. Thus, if it is the
case that contracts tend to follow a given trend line more closely than the
theory implies, the failure of the theoretical predictions regarding maximum
prices may possibly be due to the large number of games that started above
50 and drifted down to zero in a fairly consistent manner. Obviously, it is
not clear from this analysis whether this is specific to baseball matches or
Tradesports or whether it applies to prediction markets in general, and thus
it remains undecided whether martingales may actually be used to generate
useful predictions for prediction market price movements.
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Appendix: Graphs
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Figure 1: Observed counts (left) and proportions (right) of games won by Team
1 for starting price groups [50, 60), [60, 70). (Note that the parentheses mark the
critical interval.)
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Figure 2: Observed counts (left) and proportions (right) of games won by Team 1
for starting price groups [50, 55), [55, 60), and [60, 65) and their critical intervals.
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Figure 3: Empirical/theoretical cdf for the minimum (post-50) price conditional
on a victory by Team 1. The points are the observed values, while the curve
represents the theoretical values.
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Figure 4: Empirical/theoretical cdf for the maximum (post-50) price conditional
on a victory by Team 2.
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Figure 5: Observed counts of numbers of games won by Team 1 (Team 2, respec-
tively) in which the minimum (maximum) price reached after 50 was below 40 (60)
and critical intervals.
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