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Abstract

The main aim of this project is to analyze the variation in a dataset that is obtained from the
PGA tour website. The data has been merged according to the player names, and formatted
to render it for effective procedures in data analysis. In the recent years where computational
power is no longer a hindrance, predicting player performance has been integral to player
selection and sports planning. Along with modern equipment supplied for the playground,
increased data recording and storage has facilitated better predictive analytics of players.
This project aims to demonstrate the efficacy and usefulness of such techniques to some
extent.

Introduction: Exploratory Data Analysis

The dataset is pertaining to PGA tour of different players up to the current week. The
structure of the raw data did not facilitate analysis right away, however after merging the
according to player names over the 9 variables we created an interpretable dataset consisting
of 200 players, with monitored data over 9 different indicators,

1. Y Scoring Average,

2. X1 Driving Distance Average,

3. X2 Driving Accuracy,

4. X3 Greens in Regulation,

5. X4 Scrambling,

6. X5 Total Putting per Round,

7. X6 Average putting per hole,
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8. X7 Scramble from 10yds,

9. X8 Scramble from 20-30yds.

Naturally, we would like to analyze the variation in Y , that is the scoring average of the players
based on the other factors, X = (X1, . . . , X8). Before proceeding directly into modeling the
data at hand, we first take a short digression into making a thorough exploratory analysis
of the dataset. Referring to [1], we use the common methods, histogram , boxplots and the
pairwise correlation plot, to determine the nature of the predicted variables.
Referring to the respective plots shown below, adhered to in the previous paragraph, we
see that X are mostly multimodal, although the degree and significance of multimodality
is to be tested further. The table below shows the descriptive statistics for X. From the
histograms we also note that there is a slight skewness in the data. Moreover, referring to
the boxplots, we notice the significant shift in scoring average. Referring to the correlation
plots we see that there is significant correlation between the variables in X. Therefore, we
should be expecting multicollinearity in the data while fitting a linear model for prediction.

The rest of the discussion is laid out as follows, firstly due to the multivariate nature of the
data, we fit a factor analysis model, referring to [2], [3] for the details of modeling, this allows
us to visualize the data on two components and show the impact of clustering thereby. Next,
we proceed to carry out cluster analysis, using hierarchical as well as parametric procedures,
to determine trends in the data. Again visualization is sought through PCA. Finally, we
carry out a regression analysis (multivariate) for building a predictive model for the data.
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X1 X2 X3 X4 X5 X6 X7 X8
Min. 263.4 46.50 58.59 41.12 27.23 1.672 65.52 14.29
Q1 285.4 56.91 64.39 56.31 28.73 1.753 81.82 45.38
Q2 290.2 60.26 66.67 59.37 29.14 1.773 86.21 52.88
X̄ 290.6 60.46 66.53 59.17 29.15 1.772 85.76 52.44
Q3 296.0 64.50 68.75 61.88 29.53 1.789 90.63 59.44

Max. 314.9 74.18 75.12 69.74 30.77 1.905 100.00 77.14

Factor Analysis: PCA

For this part, we mainly borrow the theoretical background from [2] and [3]. The model
fitted to the data, is basically a factor analysis model, which focuses on identifying
orthogonal components via linear transformations of the dataset. The modeled variable here
is Y , while the factors are constructed using X as follows,

Y1 =
p∑

i=1
β1iXi,

Y2 =
p∑

i=1
β2iXi,

...

Yp1 =
p∑

i=1
βp1iXi.

In matrix notation we transform the data as follows, Y = βX, where β is a rotation matrix
that constitutes the loadings. The main goal that is achieved by this model is that
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previously correlated Xi s are transformed linearly (orthogonally) to an uncorrelated subset
Y1, . . . , Yp1 of predictors for the data. Then we have the generalized setup for the model,

X − µ = LF + ε (1)

with ε ∼ WN(0, σ2). The assumptions for the model are as follows,

1. F and ε are independent,

2. E(F ) = 0,

3. Cov(F ) = Ip1 .

Under these assumptions we fit model (1), to the data. The summary of the fit is explained
in terms of the decreasing order of variance of components, as follows, note that the scree
plot shows the diagrammatic representation as well,

Table 1: Variance for the 8 components of PCA.
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

Std. Dev. 11.37 9.80 6.24 5.32 3.64 2.44 0.42 0.01
Prop.Var. 0.41 0.31 0.12 0.09 0.04 0.02 0.00 0.00

Cum.Prop. 0.41 0.72 0.85 0.94 0.98 1.00 1.00 1.00
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We note that selecting the first 3 components account for 85% of the variability in the data.
We should be careful at the trade-off we make in between the number of components and the
percentage of variance that we are looking for to be explained by the factor model that is
fitted to the data. To be on the fair-side we include the 4 components maximum, which
accounts for 94% of the variability in the data. It is important to note here that the
components fitted, Y1, . . . , Y4, cause sufficient dimension reduction for the data, as we have
seen that the original data, has 8 predictor variables for the model. This is one of the
principal reasons why we consider factor analysis.
The loadings matrix for the 4 principal components selected are given by,

Table 2: Loadings for the 4 components of PCA.
X Comp.1 Comp.2 Comp.3 Comp.4

driving distance avg 0.33 0.86 0.16 -0.26
driving accuracy -0.14 -0.34 0.16 -0.79

greens in regulation in 0.04 0.08 0.14 -0.42
scrambling -0.21 0.02 0.19 -0.23

total putting per round 0.02 0.00 0.00 -0.02
avg.putting per hole 0.00 -0.00 -0.00 0.00

scramble from (10yards) -0.19 -0.03 0.92 0.29
scramble from (20-30 yards) -0.89 0.37 -0.20 0.00

The loadings matrix L, in equation (1) denotes the degree of rotation that is imposed on Y ,
to introduce orthogonality in the transformed variables, Y1, . . . , Y4. In practice we see that
the first two principal components of the PCA that is,

Y1 =
8∑

i=1
β1iXi,

Y2 =
8∑

i=1
β2iXi.

prove useful in projecting the data that is currently in R8, to R2.

Analyzing the first 2 principal components

The scatter plot for the projected data on first two components is as shown below, we see
that in this case the new variables Y1, and Y2 are independent of each other.
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Table 3: Loadings for the first 2 PC
X Comp.1 Comp.2
driving distance avg 0.3269373 0.8588868
driving accuracy -0.1393701 -0.3383757
greens in regulation in 0.0446734 0.0831210
scrambling -0.2126148 0.0191585
total. putting per round 0.0198506 0.0003671
avg. putting per hole 0.0002626 -0.0002390
scramble from (10 yards) -0.1890584 -0.0258099
scramble from (20-30 yards) -0.8890163 0.3739958

First Component: The first component is characterized by significant scrambling from 20-30
yards, which affects the component negatively, if we note carefully we see that the signs of
the co-efficients affect the projections, that is,

• X2 Driving accuracy,

• X4 Average Putting per hole,

• X7 Scramble (10 yards),
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• X8 Scramble (20-30 yards)

affect the first components negatively, while the others affect the first component positively
creating the first orthogonal component Y1, which is responsible for the component
explaining the 41% of the variation in the data.
Second Component: The second component is characterized by significant driving distance
average, which affects the component positively, if we note carefully we see that the signs of
the co-efficients affect the projections, that is,

• X2 Driving accuracy,

• X6 Average Putting per hole,

• X7 Scramble (10 yards)

affect the second components negatively, while the others affect the second component
positively creating the second orthogonal component Y2, which is responsible for the
component explaining the 31% of the variation in the data.
We shall use these two components for projecting the data to inspect the data for clustering,
and locate X’s using which the clustering is implemented on the data.

Cluster Analysis: Hierarchical

The agglomerative hierarchical clustering algorithms build a cluster hierarchy that is
commonly displayed as a tree diagram called a dendrogram. They begin with each object in
a separate cluster. At each step, the two clusters that are most similar are joined into a
single new cluster. Once fused, objects are never separated.
The joining of the clusters depends on the nature of linkage that is defined in between the
points in the data. As is rightly inferred we understand that the clustering of the data points
are highly dependent on the type of linkage that is used. Clustering is essentially done using
a bottom-up approach. Explicitly stating we set a cut point to obtain a crude estimate of
the number of clusters in the data. Note that, the latter discussion is based assuming that
we have a fixed linkage to evaluate herarchical clustering in the data. More explicit methods
of clustering are obtained by considering model based clustering approaches, which are more
intricate. For the sake of simplicity we keep this analysis restricted to two most commonly
used linkages, the “average linkage”, and the complete linkage.
While describing the linkages in between sets of points we use the concept of a distance
function. The distance function satisfies the following properties.
A function d(a, b), is said to be a distance function if,

1. For points a ∈ A, and b ∈ B, d(a, b) ≥ 0,

2. For points a ∈ A, and b ∈ B, d(a, b) = d(b, a),

3. For points a ∈ A, b ∈ B and c ∈ C, d(a, b) ≥ d(a, c) + d(c, b).
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Average Linkage:

The average linkage uses the following model for linking points in two different clusters A
and B through,

Lavg = 1
|A||B|

∑
a∈A

∑
b∈B

d(a, b)

under a suitable metric usually taken to be the statistical distance between two sets,

d(a, b) =
√

(a− b)TS−1(a− b)

The latter distance function satisfies all of the above properties and also stays consistent
with the properties of adhered to above. This is also commonly known as the Mahalanobis
distance. Below we have the dendrogram that is created.

Complete Linkage:

In case of the complete linkage we use the following linkage function,
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max{d(a, b)
∣∣∣∣a ∈ A, b ∈ B}

where d serves as the usual distance function between the sets A and B.

The dendrogram that is created to indicate clustering in the data requires a suitable cutoff
point that needs to be selected for obtaining suitable number of clusters in the data. We see
that from the figure attached, the tree is plotted bottom up. Therefore, in the PGA data we
use the complete linkage that allows us to look for 4 clusters in the data, as a suitable option
for plotting the data. The linkage that is used is the complete linkage.
Visualization for the multivariate data becomes increasingly difficult due to the multivariate
nature of the data. We use the 2 principal components that have been obtained in the
previous section, that account for the largest variability in the dataset to show the properties
in clustering through the effect exerted on the two different principal components. Having
obtained an intuitive idea regarding the hierarchical clustering in the data, we proceed to go
for the more parametric robust methods in clustering, by implementing the K-Means
clustering over the dataset.
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Cluster Analysis: K-Means

Given a set of observations (x1, x2, . . . , xn), where each observation is a d-dimensional real
vector, k-means clustering aims to partition the n observations into k(≤ n) sets
S = {S1, S2, . . . , Sk} so as to minimize the within-cluster sum of squares (WCSS) (sum of
distance functions of each point in the cluster to the K center). In other words, its objective
is to find:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2

where µi is the mean of points in Si.
The parameter k is selected accordingly as we minimize the WSS, for the data at hand we
initialize the algorithm starting from the number of clusters that are located for the
hierarchical clustering case. We see that the initial number of 4 clusters, we proceed to 10
clusters,

k = (4, 5, . . . , 10)

The implemented algorithm uses an iterative refinement technique. Due to its ubiquity it is
often called the k-means algorithm; it is also referred to as Lloyd’s algorithm.
Given an initial set of k means m(1)

1 , . . . ,m
(1)
k as shown below, the algorithm proceeds by

alternating between two steps,
Assignment step: Assign each observation to the cluster whose mean yields the least
within-cluster sum of squares (WCSS). Since the sum of squares is the squared Euclidean
distance, this is intuitively the “nearest” mean. Mathematically, this means partitioning the
observations according to the Voronoi diagram generated by the means.

S
(t)
i =

{
xp :

∥∥∥xp −m(t)
i

∥∥∥2
≤
∥∥∥xp −m(t)

j

∥∥∥2
∀j, 1 ≤ j ≤ k

}
,

where each xp is assigned to exactly one S(t), even if it could be assigned to two or more of
them.
Update step: Calculate the new means to be the centroids of the observations in the new
clusters.

m
(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i

xj
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Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster
sum of squares (WCSS) objective. The algorithm has converged when the assignments no
longer change. Since both steps optimize the WCSS objective, and there only exists a finite
number of such partitioning, the algorithm must converge to a (local) optimum. There is no
guarantee that the global optimum is found using this algorithm.
The algorithm is often presented as assigning objects to the nearest cluster by distance. The
standard algorithm aims at minimizing the WCSS objective, and thus assigns by “least sum
of squares”, which is exactly equivalent to assigning by the smallest Euclidean distance.
Using a different distance function other than (squared) Euclidean distance may stop the
algorithm from converging. Various modifications of k-means such as spherical k-means and
k-medoids have been proposed to allow using other distance measures.
The clusters located are projected onto PCA first component and shown below,

For the problem of visualizing the data, we again use the 2 principal components that have
been located in the previous section. We observe that clustering located 4 main clusters in
the PGA data. The within and the between sum of squares for the data is shown in the
table below,
We conclude that there are 4 clusters in the data by also noting the between sum of squares
(BSS) that are located in the data, with k = 4 clusters. The plots showing the clustering in
the data using the first 2 PCAs has been shown below.
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k = 4 k = 5 k = 6 k = 7 k = 9 k = 10
WSS 33951.35 30461.92 28055.06 25860.70 22564.80 21170.02
BSS 28470.51 31959.95 34366.80 36561.16 39857.06 41251.84

It is imperative to note that the number of clusters located, is sensitive to the norm that is
selected for the objective function. We select the L2-norm, or the Euclidean distance, to
evaluate the distance between the two points in the dataset. As it can be seen above that
the BSS, is minimum in the case of 4 selected clusters, and therefore we conclude that there
are four effective clusters in the data.
The clusters located are projected onto PCA second component and shown below,

Regression Analysis: Linear

In this section we look at linear relationships between Y , and X, through the following
equation,

Y = Xβ + ε

where the underlying assumptions are as follows,
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1. Xi ∈X are independent of each other.

2. ε iid∼ Nn(0, σ2In), that shows that the errors are independent of each other.

where 0 < σ2 <∞ is the residual error variance and serves as the standard error for the
model. It is integral to the reliability of the inference from the model that the above
assumptions are verified.
We inspect the linear relationship by inspecting the model coefficients for the linear model
specified above. The coefficients are displayed below.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.2346093 2.3294362 28.8630391 0.0000000

driving.distance.avg -0.0246449 0.0043382 -5.6809298 0.0000000
driving.accuracy.. -0.0155864 0.0069286 -2.2495908 0.0256161

greens.in.regulation.in.. -0.1697189 0.0191694 -8.8536348 0.0000000
scrambling.. -0.0333482 0.0119415 -2.7926342 0.0057601

total.putting.per.round 0.6991790 0.1885771 3.7076560 0.0002740
avg.putting.per.hole 2.8872139 2.5474925 1.1333552 0.2584857

scramble..from...10yards 0.0011016 0.0048131 0.2288749 0.8192110
scramble..from.20.30.yards -0.0033570 0.0030965 -1.0841225 0.2796771

We see that the model coefficients above show that for the unrestricted model that is
implemented we have the following structure that is assigned for the model,

Y = 67.235− 0.0245X1 − 0.0156X2 − 0.170X3 − 0.034X4 + 0.7X5 + 2.887X6

+0.001X7 − 0.004X8 + ε.

The inferences drawn on the model without looking at any model checking and selection
procedures show that the residual standard error for the model is 0.4119 over 191 degrees of
freedom, which makes it suitable for prediction. Moreover, we see that the possibility of
multicollinearity, therefore, we proceed to more explicit procedures of subset selection on X,
predictors.
Inference: The multiple R2, and the adjusted R2, show that there is significant efficacy in
the linear relationship. The inferences drawn are dependent on the p-values of the model
coefficients and R2. The model efficacy that is R2, is defined as,

R2 = V ar(Ŷ )
V ar(Y )

that is the amount of variation in Y , that is explained by the regression equation. The latter
formula is affected adversely by the presence of outliers. Therefore, we select the adjusted R2

to draw our inferences. We note that the adjusted R2 for the model is 0.7719, which shows
that the current equation explains 77.2% of the variability that is present in the data.
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Subset Selection: Parsimonious models

For implementing subset selection procedures on the given dataset we first proceed to
implement selecting independent variables in X. The problem of variable selection is one of
the most pervasive model selection problems in statistical applications. Often referred to as
the problem of subset selection, it arises when one wants to model the relationship between a
variable of interest and a subset of potential explanatory variables or predictors, but there is
uncertainty about which subset to use.
We use three different kinds of measures to evaluate the criteria for selecting the variables for
the purpose of formulating an optimum prediction equation. The direction, starting variable
and method of inclusion and deletion affect the model, which is formulated for the PGA data.
Keeping all of the latter things in mind we proceed to construct a valid selection procedure.
We use the following structure, which is suitable for creating the most parsimonious models.
Method used for the data: PGA parameters

1. Method of Selection: Backward and Forward Selection,

2. Criteria for evaluation: Akaikae Information criteria (AIC), Bayesian Information
Criteria (BIC), Residual sum of squares (RSS),

3. Model structure: Linear relationship.

With the above mentioned parameters we proceed to select the variables to formulate the
regression equation for predicting Y , that is the scoring average.
Intermediate Steps for model selection
Step 1 :
Here we start with the initial model, and show the AIC and RSS, along with the degrees of
freedom for the model under construction with the above mentioned parameters. We start
with the initial model and evaluate the residual sum of squares (RSS) and AIC, according to
the formulae below, for each of the 8 predictors.

RSS = 1
n

n∑
i=1

(Yi − Ŷi(X)),

AIC = 2k − 2 ln(L),

AICc = AIC + 2k(k + 1)
n− k − 1 .

where AICc, is the corrected formula for AIC for finite, n-sample sizes.
The AIC and the RSS are calculated for the both ways inclusion and exclusions for each
Xi ∈X and we proceed to begin the extraction of the variables in the predictor set
according to the difference caused in AICs, for the model. Note that the corrected AIC
(AICc) is used for this purpose.
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Table 4: Step 1: Variable Selection
Srl. No X Df SumofSq RSS AIC

1 scramble..from...10yards 1 0.0089 32.407 -347.99
2 scramble..from.20.30.yards 1 0.1994 32.597 -346.82
3 avg.putting.per.hole 1 0.2179 32.616 -346.70
4 driving.accuracy.. 1 0.8584 33.257 -342.81
5 scrambling.. 1 1.3229 33.721 -340.04
6 total.putting.per.round 1 2.3318 34.730 -334.14
7 driving.distance.avg 1 5.4743 37.872 -316.82
8 greens.in.regulation.in.. 1 13.2963 45.694 -279.27

Step 2 :
We see that from the previous table, we see that the scramble..from...10yards predictor
has the least AICc amongst all predictor variables, and therefore the variable is excluded
from the model and the above procedure is repeated for the remaining variables to result in
the output shown below.

Table 5: Step 2: Variable Selection
Srl. No X Df SumofSq RSS AIC

1 scramble..from.20.30.yards 1 0.1936 32.601 -348.80
2 avg.putting.per.hole 1 0.2201 32.627 -348.63
3 driving.accuracy.. 1 0.8625 33.270 -344.74
4 scrambling.. 1 1.3165 33.723 -342.02
5 total.putting.per.round 1 2.3281 34.735 -336.11
6 driving.distance.avg 1 5.5490 37.956 -318.38
7 greens.in.regulation.in.. 1 13.2915 45.698 -281.25

We note that at each step a single variable is deleted from the model, to reach towards an
optimum model structure. Again, from the above shown output we observe that, the
predictor scramble..from.20.30.yard has the least AICc, which implies that the variable,
is not as effective a predictor as the rest of the variables that are still present in the model.
Step 3 :
After removing, the predictor scramble..from.20.30.yard, we are left with 6 variables, for
which the RSS and AICc is recalculated. Note the increasing nature of AICc, in absolute
value shows gradual progress towards a parsimonious model.
In this output we see that AICc for avg.putting.per.hole is considerably low, in
comparison to the rest of the variables. Therefore we remove the predictor, to construct the
final stage of Forward and Backward Stepwise variable selection process.
Step 4 :
We have the following model, at the end, for which we note that the no AICc, is significantly
lower in comparison to all of the variables that are considered.
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Table 6: Step 3: Variable Selection
Srl. No X Df SumofSq RSS AIC

1 avg.putting.per.hole 1 0.1551 32.756 -349.85
2 driving.accuracy.. 1 0.8459 33.446 -345.67
3 scrambling.. 1 1.4460 34.047 -342.12
4 total.putting.per.round 1 2.7421 35.343 -334.65
5 driving.distance.avg 1 5.5124 38.113 -319.55
6 greens.in.regulation.in.. 1 13.9688 46.569 -279.47

Table 7: Step 4: Variable Selection
Srl. No X Df SumofSq RSS AIC

1 driving.accuracy.. 1 0.916 33.672 -346.33
2 scrambling.. 1 1.738 34.494 -341.51
3 driving.distance.avg 1 5.521 38.277 -320.69
4 total.putting.per.round 1 29.161 61.917 -224.50
5 greens.in.regulation.in.. 1 39.392 72.148 -193.92

The variable selection procedure is concluded with the final selected model being,

Y = 66.99− 0.02X7 − 0.02X4 − 0.19X8 − 0.03X5 + 0.90X6 + ε (2)

with ε ∼ N , which marks a conclusive model for prediction of Y , the scoring average for all
players in the data.
Hypothesis Testing for Model Coefficients:

For each the βi, for i = 1, . . . , 8 we test the following hypothesis,

H0 : βi = 0,
HA : βi 6= 0.

We see that the asymptotic distribution under normality for the variables is,

β̂i
a∼ N (βi, σ

2(X ′X)−1)

using the structure we have our desired test statistic, which is used to figure out the
significance of the predictors for the model selected for PGA predictors for player scoring
averages.
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Table 8: Selected Model
Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.99 2.28 29.33 0.00
driving.distance.avg -0.02 0.00 -5.72 0.00

driving.accuracy.. -0.02 0.01 -2.33 0.02
greens.in.regulation.in.. -0.19 0.01 -15.27 0.00

scrambling.. -0.03 0.01 -3.21 0.00
total.putting.per.round 0.90 0.07 13.14 0.00

Outlier Testing: Final Model

Now that we have a desirable model for prediction, we proceed to conduct outlier inspection,
for influential observations in the data. We first consider the nature of the prediction errors,
in terms of tails for prediction errors. The plot below, shows the nature of residuals under
the assumption of a t-studentized structure, the dotted lines representing confidence bands.
Using naive methods of locating outliers, we see that,

Table 9: Outlier/s
Observation rstudent unadjusted p-value Bonferroni p

Steven Bowditch 3.736688 0.0002455 0.049101
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We first establish the definitions for the outliers, leverage and influence with respect to
points. Firstly, outliers are observations that are extreme in nature with respect to either
location or scale of the entire dataset. Their presence affects inference adversely, in case of
parametric estimates, interval or point. Secondly by leverage, we mean the effect or trend, or
systematic variation that is provided by each of the predictors. Intuitively, if systematic
variation is present, there would be presence of significant trend in the residuals for player
scoring averages upon inclusion of that particular predictor variable. Thirdly, influence of an
observation refers to the degree of criticalness of position, not only with respect to mean and
variance, with respect to the dataset, but as a whole. The difference between the outliers
and influence points is that, influence points when removed can cause a significant change in
the inference drawn from a dataset.
The commonly used methods that are applied for testing the significance of outliers,
influence points and leverage that shall also be used in case of the PGA data are,

1. QQ-Plots for residuals, checking for tail behavior, and normality of errors,

2. Bonferroni confidence intervals for outlier values,

3. Cook’s Distance, Mallows Cp, for testing influence,

4. Hat matrix H = X(X ′X)−1X, for testing significant outliers and influence points,

5. Model validation and adequacy in terms of standardized and residual plots, to check
how correlated the errors are with the fitted values,

6. Autocorrelation in the residuals.

In the ensuing sections we apply each of these techniques for testing for outliers and model
adequacy, the model here being the selected parsimonious model given by equation (2),

Y = 66.99− 0.02X7 − 0.02X4 − 0.19X8 − 0.03X5 + 0.90X6 + ε

Leverage:

While considering the leverage of predictors in the above model, we refer the plots that are
generated for the residuals in prediction, on the inclusion and exclusion of the different
predictors. We test for significant correlation of a particular selected predictor with other
predictors. Referring the plot shown below, we see that the presence of outliers in case of
greens.in.regulation,in.. and total.putting.per.round bring about significant
change, in the correlation/dependence structure for the predictors. The rest of the plots
show fairly independent structures amongst the predictors X(1) = (X4, X5, X6, X7, X8) in
the equation displayed above.
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Hence inspecting the data for outliers and influence points seems integral to the reliability
and the inference of the model shown. We aim to locate players that show significantly
different behavior in the data, in comparison to the other players in terms of statistics
analyzed.
Influence Points

For locating influence points in the dataset, we consider a 2-fold approach towards analyzing
the data,
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1. Added-Variable Plots,

2. Cook’s Distance/ Mallow’s Cp plots.

In the PGA data we have the following type of a model,

Y = β0 + β1X7 + β2X4 + β3X8 + β4X5 + β5X6 + ε,

= 66.99− 0.02X7 − 0.02X4 − 0.19X8 − 0.03X5 + 0.90X6 + ε.

where the predictor variables Xi and Xj , for i 6= j may be correlated. For instance the slopes
indicate by β1 and β2 are both negative, we can say that,

1. Y , scoring average for players decreases as with increase in driving distance average X7,
if driving accuracy, X4 is held constant,

2. Y , scoring average for players decreases as with increase in driving accuracy, X4 if
driving distance average X7 is held constant.

Since, both β1, and β2 are negative.
We have already established in previous sections the importance of interpreting multiple
regression coefficients by considering what happens when the other variables are held
constant (“ceteris paribus”). For example, if a model with Y against X4 is regressed with a
model Y = β′0 + β′1X4 + β′2X7 + ε. The estimates of the model coefficients may be different in
both of the models, consequently there is an adverse effect on the predictive efficacy for the
model for scoring average of players. This problem is commonly termed as omitted-variable
bias.
A lot of the value of an added variable plot comes at the regression diagnostic stage,
especially since the residuals in the added variable plot are precisely the residuals from the
original multiple regression. This means outliers and heteroskedasticity can be identified in a
similar way to when looking at the plot of a simple rather than multiple regression model.
Influential points can also be seen - this is useful in multiple regression since some influential
points are not obvious in the original data before you take the other variables into account.
Hence in short by using added variable plots we delve deeper into inspecting the model
selected for further inconsistencies amongst predictors, in terms of the subjective amount of
predictive advantage offered by considering one regression over the other. The added
variable plots for the predictors X(1) are shown below.
Cook’s Distance Plot:
In this section we consider the Cook’s distance Plots. Note that we have the following
structure,

y
n×1

= X
n×p

β
p×1

+ ε
n×1
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with ε ∼ N (0, σ2I) and β = [β0 β1 . . . βp−1]′. The estimator of β, under squared-error loss is,
β̂ =

(
XTX

)−1
XTy. With this the Cook’s distance is,

Di = e2
i

s2p

[
hi

(1− hi)2

]
,

where s2 = (n− p)−1
[

hi

(1−hi)2

]
is the estimate of the squared error. The acceptable bound

that is used for the Cook’s distance is
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4
n− p− 2

The significance of influence of the points is measured by testing the following hypothesis,

H0 : Di ≤
4

n− p− 2 ,

HA : Di >
4

n− p− 2 ,

for all points i = 1, . . . , n. From, the plot shown below, we infer the following points that are
shown as outliers in the current PGA dataset. We display the total data that is available on
the located points. Note that all of the shown players have high scoring averages, low driving
distance averages, low driving accuracy, low scrambling, high total putting per round, high
average putting per hole, low greens in regulation, and unusually low, scramble from
10/20/30 yards.
The plot showing Cook’s Distance for different data points is shown below,

These characteristics are picked up by the Cook’s distance and the points shown below are
classified are outliers/influence points for the model.
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Table 10: Outliers: Cook’s Distance
Player Name Ken Duke Charlie Beljan Steven Bowditch
scoring AVG 72.31 74.75 74.34

driving distance avg 276.20 301.80 289.60
driving accuracy 70.24 51.38 46.93

greens in regulation in 58.73 60.90 59.41
scrambling 53.21 55.19 49.43

total putting per round 29.52 30.77 28.92
avg putting per hole 1.83 1.91 1.77

scramble from 10 yards 77.27 94.74 81.82
scramble from 20-30 yards 50.00 47.06 37.14

Normality for residuals:

We look at studentized residuals for the model, through the following diagrammatic
representations,

1. QQ-Plot

2. Histogram
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The studentized residuals are calculated using,

t = ei − E(ei)
S.E.(ei)

e = Y − Ŷ .

the quantiles are shown for the latter variable.
The histogram and the residual QQ-plot are shown above. The histogram and the residuals
show sufficient consistency with normality, which is inferred using the confidence bands and
the shape of the histogram, overlaid with the probability curve.
Variance Inflation Factor:
We inspect the correlation structure between the fitted values in the optimum model, (2).
Ideally one should expect no significant correlation in the scatter plot. As we can see from
the scatter-plot, there is no significant correlation in between the fitted values and residuals.
The standardized residuals are used in their absolute value to indicate the relationships in
terms of magnitude.

The variance inflation factor, picks up the spike in residual variance due to high correlation
being present in between the predictors. The table below shows that there is no significant
correlation in between the predictors for the model selected in equation (2).
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Table 11: VIF: Significant
X VIF sig.

driving.distance.avg FALSE
driving.accuracy.. FALSE

greens.in.regulation.in.. FALSE
scrambling.. FALSE

total.putting.per.round FALSE

CERES Plots , Auto correlated Errors

It is imperative to verify that the errors are not auto-correlated, because if the errors are
auto-correlated the assumption of independence for observations, of Y scoring average is
violated. We use the Durban-Watson test,

H0 : The errors are independent,
HA : The errors show significant dependence.

Also, a homoscedasticity test is conducted, to check whether there is a presence of significant
heteroscedasticity in the model. The CERES plots, and the Durban Watson test show that
there is sufficient non-linearity still present in the errors.

Conclusion

We finally conclude the analysis, by suggesting the prediction equation (2), as an optimum
model. Also, a cross-validation procedure implemented shows that the out-sample variance
for the model, is sufficiently lower than the in-sample variance, indicating reliability of
inference drawn. The methods of cluster and regression analysis proved effective in
understanding the nature of relationship of the dependence in between the predictors X(1)
and Y , scoring average. The outliers for the model are shown in the table (10).
This analysis establishes the following relationship,

Y = 66.99− 0.02X7 − 0.02X4 − 0.19X8 − 0.03X5 + 0.90X6 + ε

as the governing relationship for scoring averages for players. Using multiple linear regression
we located the factors that are significant in terms of their effect on explaining variability in
player scoring averages are,

1. Driving Distance Average,

2. Driving Accuracy,
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3. Greens in regulation,

4. Scrambling,

5. Total Putting per Round.

These predictor variables significantly affect the variability in terms of explaining scoring
averages for players. Note that when examining the PCA factors responsible for justifying
maximum variability we note that the coefficients for the above mentioned variables are
higher,

Table 12: Loadings for the 4 components of PCA.
X Comp.1 Comp.2 Comp.3 Comp.4

driving distance avg 0.33 0.86 0.16 -0.26
driving accuracy -0.14 -0.34 0.16 -0.79

greens in regulation in 0.04 0.08 0.14 -0.42
scrambling -0.21 0.02 0.19 -0.23

total putting per round 0.02 0.00 0.00 -0.02
avg.putting per hole 0.00 -0.00 -0.00 0.00

scramble from (10yards) -0.19 -0.03 0.92 0.29
scramble from (20-30 yards) -0.89 0.37 -0.20 0.00

where the first two factors justify the projected plots that are considered in the analysis.
This concludes the analysis successfully showing consistency in relationship for the significant
predictors located above.
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