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The specific examples I’m discussing are not so important; the point of
these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 4.

Conditional expectation as a random variable.

Uses of E[E(X |Y )] = EX .

Uniform random point in a region.

If X has continuous distribution function F then F (X ) has uniform
distribution on (0, 1).

Conditioning on first step, for simple symmetric random walk.
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A Markov chain (X0,X1,X2, . . .) = (Xt , t ≥ 0) is a process such that
(i) each Xt takes values in the same state space States
(ii) There are numbers (pij , i , j ∈ States) such that

P(Xt+1 = j |Xt = i ,Xt−1 = it−1, . . .X0 = i0) = pij

for all t, i , j and all (i0, . . . , it−1).

In words, (ii) says that at each time t, probabilities for the future depend
on the current state Xt but not on past states.

We can consider the matrix P with entries (pij). For the definition to
make sense, P must have the properties
(iii) pij ≥ 0, for all i , j .
(iv)

∑
j pij = 1, for all i .

A matrix with these properties is called a stochastic matrix. It is
intuitively clear that, given any stochastic matrix P indexed by States,
there exists the Markov chain specified by (i,ii).
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So for a Markov chain (X0,X1,X2, . . .)
(ii) There are numbers (pij , i , j ∈ States) such that

P(Xt+1 = j |Xt = i ,Xt−1 = it−1, . . .X0 = i0) = pij

for all t, i , j and all (i0, . . . , it−1). In this context we call P = (pij) the
transition matrix and call the pij the transition probabilities for the
chain.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
If we want to calculate a probability or expectation for a Markov chain,
the answer will depend not only on P but also on the “initial distribution”
of X0. Often we think of the initial state as non-random: X0 = i0.
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We can visualize P as a weighted directed graph; draw edge i → j if
pij > 0 and assign “weight” pij to that edge. Then visualize the chain as
a jumping particle; from present state i the particle will, at the next step,
jump to state j with probability pij .

Textbook [PK] sections 3.1-3.2 gives numerical examples of matrices with
3 or 4 states. You should read this. I do not emphasize numerics, but will
do one example on the board.

I will give 5 examples – meaning an explicit set States and an explicit
transition matrix P. Some of these are “toy models”, meaning we are
imagining some real-world process but making a hugely over-simplified
and unrealistic model. Most of the examples are in [PK] section 3.3.
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Example. Recall simple symmetric random walk

Xt =
t∑

i=1

ξi

where (ξi ) are i.i.d. with P(ξi = 1) = P(ξi = −1) = 1
2 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Here (Xt) is the Markov chain with States = Z and

(∗) pi,i−1 = 1
2 , pi,i+1 = 1

2 .

In the “gambler’s ruin” variant, where you stop on reaching K or 0, we
take the states as {0, 1, 2, . . . ,K} and modify (*) by setting

p00 = 1, pKK = 1.

Note the implicit convention: if pij is not specified then pij = 0.
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Example: Ehrenfest urn model.
2 boxes, 2a balls, each ball in one of the boxes. Each step, pick uniform
random ball and move to other box.

Consider Yt = number of balls in left box after t steps,

States = {0, 1, 2, . . . , 2a}.

pi,i−1 =
i

2a
, pi,i+1 =

2a− i

2a
.
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Example: Fisher-Wright genetic model. (2-type, no mutation or
selection).

2N genes in each generation, of types a or A.

“children choose parents”: each gene is a copy (same type) of a
uniform random gene from previous generation.

Then

Xt = number of type-a in generation t

is a Markov chain, with states {0, 1, 2, . . . , 2N} and transition
probabilities

pij = P(Bin(2N, i
2N ) = j) =

(
2N

j

)
( i
2N )j 2N−i

2N )2N−j .
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Queue models are more naturally set up in continuous time, but here is a
Discrete time queue model.

Service takes unit time for each customer.

If no customer, server takes a break for unit time.

ξt new customers arrive during time [t − 1, t].

Model (ξ1, ξ2, . . .) as i.i.d.

Consider
Xt = number of customers at time t.

Clearly
Xt = (Xt−1 − 1)+ + ξt .

Here (Xt) is a Markov chain on states {0, 1, 2, . . .} = Z+ with transition
probabilities

p0j = P(ξ = j), j ≥ 0

pij = P(ξ = j − i + 1), i ≥ 1, j ≥ i − 1.
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Example: Umbrellas.

A man owns K umbrellas, which are either at home or at work.

He goes to work each morning, and goes home each evening.

If raining, he takes an umbrella, if one is available. If not raining he
does not take an umbrella.

Model (unrealistic) that P( rain ) = p, independently, each morning
and evening.

To set up as a Markov chain, consider

Xt = number of umbrellas at home, end of day t.

States {0, 1, . . . ,K} .

What are the transition rates?
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Example: Umbrellas.

A man owns K umbrellas, which are either at home or at work.

He goes to work each morning, and goes home each evening.

If raining, he takes an umbrella, if one is available. If not raining he
does not take an umbrella.

Model (unrealistic) that P( rain ) = p, inependently, each morning
and evening.

To set up as a Markov chain, consider

Xt = number of umbrellas at home, end of day t.

States {0, 1, . . . ,K} .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p01 = p, p00 = 1− p

pK ,K−1 = p(1− p), pKK = 1− p(1− p)

pi,i+1 = pi,i−1 = p(1− p), pii = 1− 2p(1− p), 1 ≤ i ≤ K − 1.
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[repeat earlier slide]

Conceptual point. The notion of independence is used in two
conceptually different ways.

We often use independence as an assumption in a model –
throwing dice, for instance.

Given a well-defined math model, events or random variables X ,Y
either are independent, or are not independent, as a mathematical
conclusion.

We see the same point in these examples of Markov chains. For “simple
symmetric random walk” and “discrete time queue model” we started
with a model defined using i.i.d. random variables, then defined Xt in
terms of that model. In the other examples we started with a story in
words, and then built a math model which assumed the Markov property.
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