Lecture 5

David Aldous

4 September 2015

The specific examples I'm discussing are not so important; the point of these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 4.

- Conditional expectation as a random variable.
- Uses of $\mathbb{E}[\mathbb{E}(X \mid Y)]=\mathbb{E} X$.
- Uniform random point in a region.
- If X has continuous distribution function F then $F(X)$ has uniform distribution on $(0,1)$.
- Conditioning on first step, for simple symmetric random walk.

A Markov chain $\left(X_{0}, X_{1}, X_{2}, \ldots\right)=\left(X_{t}, t \geq 0\right)$ is a process such that
(i) each X_{t} takes values in the same state space States
(ii) There are numbers ($p_{i j}, i, j \in$ States) such that

$$
\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i, X_{t-1}=i_{t-1}, \ldots X_{0}=i_{0}\right)=p_{i j}
$$

for all t, i, j and all $\left(i_{0}, \ldots, i_{t-1}\right)$.
In words, (ii) says that at each time t, probabilities for the future depend on the current state X_{t} but not on past states.

We can consider the matrix \mathbf{P} with entries $\left(p_{i j}\right)$. For the definition to make sense, \mathbf{P} must have the properties
(iii) $p_{i j} \geq 0, \quad$ for all i, j.
(iv) $\sum_{j} p_{i j}=1, \quad$ for all i.

A matrix with these properties is called a stochastic matrix. It is intuitively clear that, given any stochastic matrix \mathbf{P} indexed by States, there exists the Markov chain specified by (i,ii).

So for a Markov chain ($\left.X_{0}, X_{1}, X_{2}, \ldots\right)$
(ii) There are numbers ($p_{i j}, i, j \in$ States) such that

$$
\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i, X_{t-1}=i_{t-1}, \ldots X_{0}=i_{0}\right)=p_{i j}
$$

for all t, i, j and all $\left(i_{0}, \ldots, i_{t-1}\right)$. In this context we call $\mathbf{P}=\left(p_{i j}\right)$ the transition matrix and call the $p_{i j}$ the transition probabilities for the chain.

If we want to calculate a probability or expectation for a Markov chain, the answer will depend not only on \mathbf{P} but also on the "initial distribution" of X_{0}. Often we think of the initial state as non-random: $X_{0}=i_{0}$.

We can visualize \mathbf{P} as a weighted directed graph; draw edge $i \rightarrow j$ if $p_{i j}>0$ and assign "weight" $p_{i j}$ to that edge. Then visualize the chain as a jumping particle; from present state i the particle will, at the next step, jump to state j with probability $p_{i j}$.

Textbook [PK] sections 3.1-3.2 gives numerical examples of matrices with 3 or 4 states. You should read this. I do not emphasize numerics, but will do one example on the board.

I will give 5 examples - meaning an explicit set States and an explicit transition matrix \mathbf{P}. Some of these are "toy models", meaning we are imagining some real-world process but making a hugely over-simplified and unrealistic model. Most of the examples are in [PK] section 3.3.

Example. Recall simple symmetric random walk

$$
X_{t}=\sum_{i=1}^{t} \xi_{i}
$$

where $\left(\xi_{i}\right)$ are i.i.d. with $\mathbb{P}\left(\xi_{i}=1\right)=\mathbb{P}\left(\xi_{i}=-1\right)=\frac{1}{2}$.
Here $\left(X_{t}\right)$ is the Markov chain with States $=\mathbb{Z}$ and

$$
\text { (*) } \quad p_{i, i-1}=\frac{1}{2}, p_{i, i+1}=\frac{1}{2} \text {. }
$$

In the "gambler's ruin" variant, where you stop on reaching K or 0 , we take the states as $\{0,1,2, \ldots, K\}$ and modify $\left(^{*}\right)$ by setting

$$
p_{00}=1, p_{K K}=1
$$

Note the implicit convention: if $p_{i j}$ is not specified then $p_{i j}=0$.

Example: Ehrenfest urn model.

2 boxes, 2a balls, each ball in one of the boxes. Each step, pick uniform random ball and move to other box.

Consider $Y_{t}=$ number of balls in left box after t steps,
States $=\{0,1,2, \ldots, 2 a\}$.

$$
p_{i, i-1}=\frac{i}{2 a}, p_{i, i+1}=\frac{2 a-i}{2 a} .
$$

Example: Fisher-Wright genetic model. (2-type, no mutation or selection).

- $2 N$ genes in each generation, of types \mathbf{a} or \mathbf{A}.
- "children choose parents" : each gene is a copy (same type) of a uniform random gene from previous generation.
Then

$$
X_{t}=\text { number of type-a in generation } t
$$

is a Markov chain, with states $\{0,1,2, \ldots, 2 N\}$ and transition probabilities

$$
\left.p_{i j}=\mathbb{P}\left(\operatorname{Bin}\left(2 N, \frac{i}{2 N}\right)=j\right)=\binom{2 N}{j}\left(\frac{i}{2 N}\right)^{j} \frac{2 N-i}{2 N}\right)^{2 N-j}
$$

Queue models are more naturally set up in continuous time, but here is a Discrete time queue model.

- Service takes unit time for each customer.
- If no customer, server takes a break for unit time.
- ξ_{t} new customers arrive during time $[t-1, t]$.
- Model $\left(\xi_{1}, \xi_{2}, \ldots\right)$ as i.i.d.

Consider

$$
X_{t}=\text { number of customers at time } t
$$

Clearly

$$
X_{t}=\left(X_{t-1}-1\right)^{+}+\xi_{t}
$$

Here $\left(X_{t}\right)$ is a Markov chain on states $\{0,1,2, \ldots\}=\mathbb{Z}^{+}$with transition probabilities

$$
\begin{gathered}
p_{0 j}=\mathbb{P}(\xi=j), j \geq 0 \\
p_{i j}=\mathbb{P}(\xi=j-i+1), i \geq 1, j \geq i-1 .
\end{gathered}
$$

Example: Umbrellas.

- A man owns K umbrellas, which are either at home or at work.
- He goes to work each morning, and goes home each evening.
- If raining, he takes an umbrella, if one is available. If not raining he does not take an umbrella.
- Model (unrealistic) that $\mathbb{P}($ rain $)=p$, independently, each morning and evening.

To set up as a Markov chain, consider

$$
X_{t}=\text { number of umbrellas at home, end of day } t .
$$

States $\{0,1, \ldots, K\}$.
What are the transition rates?

Example: Umbrellas.

- A man owns K umbrellas, which are either at home or at work.
- He goes to work each morning, and goes home each evening.
- If raining, he takes an umbrella, if one is available. If not raining he does not take an umbrella.
- Model (unrealistic) that $\mathbb{P}($ rain $)=p$, inependently, each morning and evening.

To set up as a Markov chain, consider

$$
X_{t}=\text { number of umbrellas at home, end of day } t .
$$

States $\{0,1, \ldots, K\}$.

$$
\begin{gathered}
p_{01}=p, \quad p_{00}=1-p \\
p_{K, K-1}=p(1-p), \quad p_{K K}=1-p(1-p) \\
p_{i, i+1}=p_{i, i-1}=p(1-p), \quad p_{i i}=1-2 p(1-p), 1 \leq i \leq K-1
\end{gathered}
$$

[repeat earlier slide]

Conceptual point. The notion of independence is used in two conceptually different ways.

- We often use independence as an assumption in a model throwing dice, for instance.
- Given a well-defined math model, events or random variables X, Y either are independent, or are not independent, as a mathematical conclusion.

We see the same point in these examples of Markov chains. For "simple symmetric random walk" and "discrete time queue model" we started with a model defined using i.i.d. random variables, then defined X_{t} in terms of that model. In the other examples we started with a story in words, and then built a math model which assumed the Markov property.

