David Aldous

4 September 2015

David Aldous Lecture 5



The specific examples I'm discussing are not so important; the point of
these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 4.
Conditional expectation as a random variable.
Uses of E[E(X]|Y)] = EX.
Uniform random point in a region.

If X has continuous distribution function F then F(X) has uniform
distribution on (0,1).

Conditioning on first step, for simple symmetric random walk.
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A Markov chain (Xp, X1, Xz,...) = (X;, t > 0) is a process such that
(i) each X; takes values in the same state space States
(ii) There are numbers (pj;, i,j € States) such that

P(Xt+1 :.j|Xt =i, Xee1=lt-1,... X0 = iO) = Pij

for all t,i,j and all (i, ..., ir—1).

In words, (ii) says that at each time t, probabilities for the future depend
on the current state X; but not on past states.

We can consider the matrix P with entries (p;;). For the definition to
make sense, P must have the properties

(iii) pj >0,  forall i,j.

(iv) 2P =1, foralli

A matrix with these properties is called a stochastic matrix. It is
intuitively clear that, given any stochastic matrix P indexed by States,
there exists the Markov chain specified by (i,ii).
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So for a Markov chain (Xp, X1, Xa, .. .)
(ii) There are numbers (pj;, i, j € States) such that

P(Xt+1 :j|Xt =0, Xem1 = lt—1,... Xo = io) = Pij

for all t,i,j and all (ig,...,/#—1). In this context we call P = (p;) the
transition matrix and call the p; the transition probabilities for the
chain.

If we want to calculate a probability or expectation for a Markov chain,
the answer will depend not only on P but also on the “initial distribution’
of Xy. Often we think of the initial state as non-random: Xy = fy.
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We can visualize P as a weighted directed graph; draw edge i — j if

p; > 0 and assign “weight” p; to that edge. Then visualize the chain as
a jumping particle; from present state i the particle will, at the next step,
jump to state j with probability pj;.

Textbook [PK] sections 3.1-3.2 gives numerical examples of matrices with
3 or 4 states. You should read this. | do not emphasize numerics, but will
do one example on the board.

| will give 5 examples — meaning an explicit set States and an explicit
transition matrix P. Some of these are “toy models”, meaning we are
imagining some real-world process but making a hugely over-simplified
and unrealistic model. Most of the examples are in [PK] section 3.3.
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Example. Recall simple symmetric random walk

t
Xi = Z gi
i=1

where (¢;) are i.i.d. with P(¢ = 1) = P(§ = —1) = 1.

Here (X;) is the Markov chain with States = Z and
(*) pii-1= %7 Pii+1 = %

In the “gambler’s ruin” variant, where you stop on reaching K or 0, we
take the states as {0,1,2,..., K} and modify (*) by setting

poo =1, pkk = 1.

Note the implicit convention: if p; is not specified then p; = 0.
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Example: Ehrenfest urn model.
2 boxes, 2a balls, each ball in one of the boxes. Each step, pick uniform
random ball and move to other box.

Consider Y; = number of balls in left box after t steps,
States = {0,1,2,...,2a}.

i 2a— i
Pii—1 = 23’ Pii+1 = o5
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Example: Fisher-Wright genetic model. (2-type, no mutation or
selection).

@ 2N genes in each generation, of types a or A.

o “children choose parents”: each gene is a copy (same type) of a
uniform random gene from previous generation.

Then

X; = number of type-a in generation t

is a Markov chain, with states {0,1,2,...,2N} and transition
probabilities

. 2NN iNON—
pU_P(Bln(zN’2N) i) = <j)(2N 2,2\1/\/ )2NJ
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Queue models are more naturally set up in continuous time, but here is a
Discrete time queue model.

@ Service takes unit time for each customer.
@ If no customer, server takes a break for unit time.
@ &; new customers arrive during time [t — 1, t].

o Model (&1,&,...) as i.i.d.

Consider
X: = number of customers at time t.

Clearly
X = (Xt—l - 1)+ + ft-

Here (X;) is a Markov chain on states {0,1,2,...} = Z" with transition
probabilities

poj =P(§=),j =0
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Example: Umbrellas.

@ A man owns K umbrellas, which are either at home or at work.
@ He goes to work each morning, and goes home each evening.

o If raining, he takes an umbrella, if one is available. If not raining he
does not take an umbrella.

@ Model (unrealistic) that P( rain ) = p, independently, each morning
and evening.

To set up as a Markov chain, consider

X: = number of umbrellas at home, end of day t.

States {0,1,...,K} .

What are the transition rates?

David Aldous Lecture 5



Example: Umbrellas.

@ A man owns K umbrellas, which are either at home or at work.
@ He goes to work each morning, and goes home each evening.

e If raining, he takes an umbrella, if one is available. If not raining he
does not take an umbrella.

o Model (unrealistic) that P( rain ) = p, inependently, each morning
and evening.

To set up as a Markov chain, consider
Xi = number of umbrellas at home, end of day t.

States {0,1,...,K} .

por=p, Poo=1—p
px.k-1=p(L—p), pkk=1-p(l—p)
piiv1 = piic1 =p(1—=p), pi=1-2p(1—p), 1<i<K-1.
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[repeat earlier slide]

Conceptual point. The notion of independence is used in two
conceptually different ways.

@ We often use independence as an assumption in a model —
throwing dice, for instance.

@ Given a well-defined math model, events or random variables X, Y
either are independent, or are not independent, as a mathematical
conclusion.

We see the same point in these examples of Markov chains. For “simple
symmetric random walk” and “discrete time queue model” we started
with a model defined using i.i.d. random variables, then defined X; in
terms of that model. In the other examples we started with a story in
words, and then built a math model which assumed the Markov property.
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