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The specific examples I’m discussing are not so important; the point of
these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 3.

Distributions of max(X1,X2) and min(X1,X2)

Properties of Exponential distribution.

Basics of conditional probability and conditional expectation.

Global and local interpretations of density function.

Calculating E(X |A) from conditional distributions.

Conditional expectation as a random variable.
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Conditional expectation as a random variable.

Given r.v.’s (W ,Y ) consider E(W |Y = y). This is a number depending
on y – in other words it’s a function of y . Giving this function a name h
we have

(∗) E(W |Y = y) = h(y) for all possible values y of Y .

We now make a notational convention, to rewrite the assertion (*) as

(∗∗) E(W |Y ) = h(Y ).

The right side is a r.v., so we must regard E(W |Y ) as a r.v.

[PK] page 60 lists properties of (**), but rather hard to understand at
first sight. One important property is that the “law of total probability”
becomes

E[ E(W |Y ) ] = EW .

I will give three examples to illustrate this notation.
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Example.
First consider

Sn =
n∑

i=1

ξi for i.i.d. (ξi ) with Eξi = µξ.

Then take N a {1, 2, 3, . . .}-valued r.v. with EN = µN , independent of
(ξi ).

What is ESN?
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Sn =
n∑

i=1

ξi for i.i.d. (ξi ) with Eξi = µξ.

N a {1, 2, 3, . . .}-valued r.v. with EN = µN , independent of (ξi ).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ESn = nµξ.

E(SN |N = n) = nµξ.

E(SN |N) = N µξ.

ESN = E[E(SN |N)] = E[N µξ] = µN µξ.
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A “geometric probability” example.
Saying that a random point in the plane is uniform on a set A is saying
that the joint density function of its coordinates (X ,Y ) is

f (x , y) = 1
area(A) , (x , y) ∈ A.

Let’s do some calculations in the case where A is the top half of the unit
disc. In particular, we will calculate EY by first considering E(Y |X ).
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Conditional distribution of Y given X = x is uniform on [0,
√

1− x2]. So

E(Y |X = x) = 1
2

√
1− x2; that is E(Y |X ) = 1

2

√
1− X 2.

We can now calculate

EY = E[E(Y |X )]

= 1
2E

√
1− X 2

= 1
2

∫ 1

−1

√
1− x2 fX (x)dx

= π−1

∫ 1

−1

(1− x2)dx

= 4
3π .
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Example: Likelihood of your team winning, at halftime.

Most team sports are decided by point difference – points scored by
home team, minus points scored by visiting team. Write

X1 = point difference in first half

X2 = point difference in second half

so
• home team wins if X1 + X2 > 0
• visiting team wins if X1 + X2 < 0
• tie if X1 + X2 = 0.

A reasonable probability model assumes
(i) X1 and X2 are i.i.d. random variables.
If the teams are equally talented, then assume
(ii) X1 has symmetric distribution, that is the same distribution as −X1.
Finally, let me simplify the math by making an unrealistic assumption
(iii) the distribution of X1 is continuous.
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So ties cannot happen, and by (ii) P(Home team wins) = 1/2. This is
the probability before the game starts. At half time we know the value of
X1, so there is a conditional probability P(Home team wins | X1). This
is different in different matches, so we can ask

What is the distribution of P(Home team wins | X1)?

First I show some data from baseball.
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In this match the initial “price” (perceived probability of home team
winning) was close to 50%, and halfway through the game it was about
64%. I have these “halfway through the game” numbers for 30 matches
where the initial “price” was close to 50%
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Figure. Empirical distribution function for the baseball data, compared with

the uniform distribution.
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Write F (x) for the distribution function of each Xi .

P(Home team wins | X1 = x) = P(X1 + X2 > 0|X1 = x)

= P(X2 > −x)

= P(−X2 < x)

= F (x) by symmetry assumption

and this says

P(Home team wins | X1) = F (X1).

But we know (STAT134) that for X1 with continuous distribution, F (X1)
always has Uniform(0, 1) distribution.

The baseball data fits this theory prediction quite well. In a low-scoring
sport like soccer the “continuous distribution of Xi” assumption is not
realistic but we could modify the analysis.
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Stochastic Processes

For our purposes a stochastic process is just a sequence
(X0,X1,X2, . . .) of random variables. The range space of the X ’s might
be the integers Z or the reals R or some more general space S . We
envisage observing some physical process changing with time in some
random way: Xt is the observed value of the process at time
t = 0, 1, 2, . . .. So X0 is the “initial” value.

Perhaps the simplest example is simple symmetric random walk

Xt =
t∑

i=1

ξi

where (ξi ) are i.i.d. with P(ξi = 1) = P(ξi = −1) = 1
2 . Here X0 = 0.

There are many ways to study this process, but I want to illustrate the
technique “conditioning on the first step” which will be a fundamental
technique for studying Markov chains.
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Interpret this process as“gambling at fair odds” – bet 1 unit on an event
with probability 1/2, either win or lose the 1 unit. So Xt is your
“fortune” after t bets. Suppose

start with fortune x

continue until your fortune reach some target amount K or 0.

There is some probability p(x) that you succeed in reaching K ; this
probability depends on x and on K , but let us take K as fixed. So we
know

p(K ) = 1; p(0) = 0.

What can we say about p(x) for 1 ≤ x ≤ K − 1?
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From the “law of total probability”

P(A) = P(B)P(A|B) + P(Bc)P(A|Bc)

we have

p(x) = P( win first bet)× P( reach K | win first bet)

+ P( lose first bet)× P( reach K | lose first bet)

That is,

(∗) p(x) = 1
2p(x + 1) + 1

2p(x − 1), 1 ≤ x ≤ K − 1.

This is the simplest case of a linear difference equation and the general
solution is p(x) = a + bx . Because we know the “boundary conditions”
p(0) = 0, p(K ) = 1 we can solve to find a, b and find

p(x) = x/K , 0 ≤ x ≤ K .
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We can use the same “conditioning on the first step” method to study

s(x) = E(number of steps until reach K or 0)

starting from x . Here the equation is

s(x) = 1 + 1
2 s(x + 1) + 1

2 s(x − 1), 1 ≤ x ≤ K − 1

s(0) = 0, s(K ) = 0.

The general form of solution (see textbook for details) is
s(x) = cx(K − x); plugging into the equation gives c = 1, so

s(x) = x(K − x), 0 ≤ x ≤ K .
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Conceptual point. The notion of independence is used in two
conceptually different ways.

We often use independence as an assumption in a model –
throwing dice, for instance.

Given a well-defined math model, events or random variables X ,Y
either are independent, or are not independent, as a mathematical
conclusion. For instance, for a uniform random pick of a playing
card from a standard deck, the events “card is a King” and “card is
a Spade” are independent.

The same point will arise with the Markov property.
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