Lecture 4

David Aldous

2 September 2015

The specific examples I'm discussing are not so important; the point of these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 3.

- Distributions of $\max \left(X_{1}, X_{2}\right)$ and $\min \left(X_{1}, X_{2}\right)$
- Properties of Exponential distribution.
- Basics of conditional probability and conditional expectation.
- Global and local interpretations of density function.
- Calculating $\mathbb{E}(X \mid A)$ from conditional distributions.
- Conditional expectation as a random variable.

Conditional expectation as a random variable.

Given r.v.'s (W, Y) consider $\mathbb{E}(W \mid Y=y)$. This is a number depending on y - in other words it's a function of y. Giving this function a name h we have

$$
(*) \quad \mathbb{E}(W \mid Y=y)=h(y) \text { for all possible values } y \text { of } Y .
$$

We now make a notational convention, to rewrite the assertion (*) as

$$
(* *) \quad \mathbb{E}(W \mid Y)=h(Y)
$$

The right side is a r.v., so we must regard $\mathbb{E}(W \mid Y)$ as a r.v.
[PK] page 60 lists properties of $\left({ }^{* *}\right)$, but rather hard to understand at first sight. One important property is that the "law of total probability" becomes

$$
\mathbb{E}[\mathbb{E}(W \mid Y)]=\mathbb{E} W
$$

I will give three examples to illustrate this notation.

Example.

First consider

$$
S_{n}=\sum_{i=1}^{n} \xi_{i} \text { for i.i.d. }\left(\xi_{i}\right) \text { with } \mathbb{E} \xi_{i}=\mu_{\xi}
$$

Then take N a $\{1,2,3, \ldots\}$-valued r.v. with $\mathbb{E} N=\mu_{N}$, independent of $\left(\xi_{i}\right)$.

What is $\mathbb{E} S_{N}$?

$$
S_{n}=\sum_{i=1}^{n} \xi_{i} \text { for i.i.d. }\left(\xi_{i}\right) \text { with } \mathbb{E} \xi_{i}=\mu_{\xi}
$$

N a $\{1,2,3, \ldots\}$-valued r.v. with $\mathbb{E} N=\mu_{N}$, independent of $\left(\xi_{i}\right)$.

$$
\mathbb{E} S_{n}=n \mu_{\xi}
$$

$$
\begin{gathered}
\mathbb{E}\left(S_{N} \mid N=n\right)=n \mu_{\xi} \\
\mathbb{E}\left(S_{N} \mid N\right)=N \mu_{\xi}
\end{gathered}
$$

$\mathbb{E} S_{N}=\mathbb{E}\left[\mathbb{E}\left(S_{N} \mid N\right)\right]=\mathbb{E}\left[N \mu_{\xi}\right]=\mu_{N} \mu_{\xi}$.

A "geometric probability" example.
Saying that a random point in the plane is uniform on a set A is saying that the joint density function of its coordinates (X, Y) is

$$
f(x, y)=\frac{1}{\operatorname{area}(A)}, \quad(x, y) \in A
$$

Let's do some calculations in the case where A is the top half of the unit disc. In particular, we will calculate $\mathbb{E} Y$ by first considering $\mathbb{E}(Y \mid X)$.

$$
\begin{aligned}
& f(x, y)=\frac{2}{\pi},(x, y) \in A \\
& f_{x}(x)=\int_{0}^{y(x)} f(x, y) d y \\
& y(x)=\sqrt{1-x^{2}} \\
& x(y)= \pm \sqrt{1-y^{2}} \\
& =\frac{2}{\pi} \sqrt{1-x^{2}} \\
& f_{Y}|y|=\int_{-x(y)}^{x(y)} f(x, y) d x \\
& =\frac{4}{\pi} \sqrt{1-y^{2}}
\end{aligned}
$$

Conditional dirtribution of T given $X=x$ "ubuious" Uniturm $[0, y(x)]$

$$
f_{Y / X}(y \mid x)=\frac{f^{\prime}(x, y)}{f_{X}(x)}=\frac{2 / \pi}{2 / \pi \sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}, 0 \leq y \leq \sqrt{1-x^{2}}
$$

Conditional distribution of Y given $X=x$ is uniform on $\left[0, \sqrt{1-x^{2}}\right]$. So

$$
\mathbb{E}(Y \mid X=x)=\frac{1}{2} \sqrt{1-x^{2}} ; \text { that is } \mathbb{E}(Y \mid X)=\frac{1}{2} \sqrt{1-X^{2}} .
$$

We can now calculate

$$
\begin{aligned}
\mathbb{E} Y & =\mathbb{E}[\mathbb{E}(Y \mid X)] \\
& =\frac{1}{2} \mathbb{E} \sqrt{1-X^{2}} \\
& =\frac{1}{2} \int_{-1}^{1} \sqrt{1-x^{2}} f_{X}(x) d x \\
& =\pi^{-1} \int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =\frac{4}{3 \pi} .
\end{aligned}
$$

Example: Likelihood of your team winning, at halftime.

Most team sports are decided by point difference - points scored by home team, minus points scored by visiting team. Write

$$
\begin{gathered}
X_{1}=\text { point difference in first half } \\
X_{2}=\text { point difference in second half }
\end{gathered}
$$

SO

- home team wins if $X_{1}+X_{2}>0$
- visiting team wins if $X_{1}+X_{2}<0$
- tie if $X_{1}+X_{2}=0$.

A reasonable probability model assumes
(i) X_{1} and X_{2} are i.i.d. random variables.

If the teams are equally talented, then assume
(ii) X_{1} has symmetric distribution, that is the same distribution as $-X_{1}$.

Finally, let me simplify the math by making an unrealistic assumption
(iii) the distribution of X_{1} is continuous.

So ties cannot happen, and by (ii) $\mathbb{P}($ Home team wins $)=1 / 2$. This is the probability before the game starts. At half time we know the value of X_{1}, so there is a conditional probability $\mathbb{P}\left(\right.$ Home team wins $\left.\mid X_{1}\right)$. This is different in different matches, so we can ask

What is the distribution of $\mathbb{P}\left(\right.$ Home team wins $\left.\mid X_{1}\right)$?
First I show some data from baseball.

MLB.NYM@FLA.NYM

速

Source: www.tradesports.com (e)

In this match the initial "price" (perceived probability of home team winning) was close to 50%, and halfway through the game it was about 64%. I have these "halfway through the game" numbers for 30 matches where the initial "price" was close to 50%

Figure. Empirical distribution function for the baseball data, compared with the uniform distribution.

Write $F(x)$ for the distribution function of each X_{i}.

$$
\begin{aligned}
\mathbb{P}\left(\text { Home team wins } \mid X_{1}=x\right) & =\mathbb{P}\left(X_{1}+X_{2}>0 \mid X_{1}=x\right) \\
& =\mathbb{P}\left(X_{2}>-x\right) \\
& =\mathbb{P}\left(-X_{2}<x\right) \\
& =F(x) \text { by symmetry assumption }
\end{aligned}
$$

and this says

$$
\mathbb{P}\left(\text { Home team wins } \mid X_{1}\right)=F\left(X_{1}\right) .
$$

But we know (STAT134) that for X_{1} with continuous distribution, $F\left(X_{1}\right)$ always has Uniform $(0,1)$ distribution.

The baseball data fits this theory prediction quite well. In a low-scoring sport like soccer the "continuous distribution of X_{i} " assumption is not realistic but we could modify the analysis.

Stochastic Processes

For our purposes a stochastic process is just a sequence $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ of random variables. The range space of the X 's might be the integers \mathbb{Z} or the reals \mathbb{R} or some more general space S. We envisage observing some physical process changing with time in some random way: X_{t} is the observed value of the process at time $t=0,1,2, \ldots$. So X_{0} is the "initial" value.

Perhaps the simplest example is simple symmetric random walk

$$
X_{t}=\sum_{i=1}^{t} \xi_{i}
$$

where $\left(\xi_{i}\right)$ are i.i.d. with $\mathbb{P}\left(\xi_{i}=1\right)=\mathbb{P}\left(\xi_{i}=-1\right)=\frac{1}{2}$. Here $X_{0}=0$.
There are many ways to study this process, but I want to illustrate the technique "conditioning on the first step" which will be a fundamental technique for studying Markov chains.

Interpret this process as "gambling at fair odds" - bet 1 unit on an event with probability $1 / 2$, either win or lose the 1 unit. So X_{t} is your "fortune" after t bets. Suppose

- start with fortune x
- continue until your fortune reach some target amount K or 0 . There is some probability $p(x)$ that you succeed in reaching K; this probability depends on x and on K, but let us take K as fixed. So we know

$$
p(K)=1 ; \quad p(0)=0 .
$$

What can we say about $p(x)$ for $1 \leq x \leq K-1$?

From the "law of total probability"

$$
\mathbb{P}(A)=\mathbb{P}(B) \mathbb{P}(A \mid B)+\mathbb{P}\left(B^{c}\right) \mathbb{P}\left(A \mid B^{c}\right)
$$

we have

$$
\begin{aligned}
p(x) & =\mathbb{P}(\text { win first bet }) \times \mathbb{P}(\text { reach } K \mid \text { win first bet }) \\
& +\mathbb{P}(\text { lose first bet }) \times \mathbb{P}(\text { reach } K \mid \text { lose first bet })
\end{aligned}
$$

That is,

$$
\text { (*) } \quad p(x)=\frac{1}{2} p(x+1)+\frac{1}{2} p(x-1), 1 \leq x \leq K-1 .
$$

This is the simplest case of a linear difference equation and the general solution is $p(x)=a+b x$. Because we know the "boundary conditions" $p(0)=0, p(K)=1$ we can solve to find a, b and find

$$
p(x)=x / K, 0 \leq x \leq K
$$

We can use the same "conditioning on the first step" method to study

$$
s(x)=\mathbb{E}(\text { number of steps until reach } K \text { or } 0)
$$

starting from x. Here the equation is

$$
\begin{gathered}
s(x)=1+\frac{1}{2} s(x+1)+\frac{1}{2} s(x-1), 1 \leq x \leq K-1 \\
s(0)=0, s(K)=0
\end{gathered}
$$

The general form of solution (see textbook for details) is $s(x)=c x(K-x)$; plugging into the equation gives $c=1$, so

$$
s(x)=x(K-x), 0 \leq x \leq K
$$

Conceptual point. The notion of independence is used in two conceptually different ways.

- We often use independence as an assumption in a model throwing dice, for instance.
- Given a well-defined math model, events or random variables X, Y either are independent, or are not independent, as a mathematical conclusion. For instance, for a uniform random pick of a playing card from a standard deck, the events "card is a King" and "card is a Spade" are independent.

The same point will arise with the Markov property.

