Lecture 3

David Aldous

31 August 2015

This "size-bias" effect occurs in other contexts, such as class size.
If a small Department offers two courses, with enrollments 90 and 10 , then
average class (faculty viewpoint) $=(90+10) / 2=50$ average class (student viewpoint) $=(90 \times 90+10 \times 10) / 100=82$.

The specific examples I'm discussing are not so important; the point of these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 2.

- $\mathbb{E} g(X)=\int g(x) f_{X}(x) d x$.
- exploit symmetry.
- if X, Y independent then $\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$
- inventing extra structure
- size-biasing

Different authors use slightly different notation:

$$
\begin{gathered}
\mathbb{P}(A)=P(A)=\operatorname{Pr}(A) \\
\mathbb{P}(X \leq 4)=\mathbb{P}\{X \leq 4\} \\
\mathbb{E} X=\mathbb{E}[X]=E X \\
1_{A}=\mathbb{1}_{A}=\mathbb{1}(A)=I(A)
\end{gathered}
$$

Chapter 1 of textbook [PK] provides a review of STAT134 level material.
It's rather boring, but helpful for you to read. Here is material from section 1.5.2: some properties of the Exponential distribution, which plays a prominent role in Poisson processes later.
The Exponential (λ) distribution for a r.v. $X>0$ is defined to have density function

$$
f(x)=\lambda e^{-\lambda x}, 0<x<\infty
$$

and has $\mathbb{E} X=1 / \lambda=$ s.d. (X). Also $\mathbb{P}(X>x)=e^{-\lambda x}$. Note the parametrization convention; λ is called the rate.

There are special properties of independent Exponential r.v.'s - say X_{1} with rate λ_{1} and X_{2} with rate λ_{2}. Consider

$$
\begin{aligned}
U & =\min \left(X_{1}, X_{2}\right)=X_{M} \text { for } M=\arg \min \left(X_{1}, X_{2}\right) \\
V & =\max \left(X_{1}, X_{2}\right)=X_{N} \text { for } N=\arg \max \left(X_{1}, X_{2}\right)
\end{aligned}
$$

Let's calculate $\mathbb{P}(M=1, U>t)$, which is the same as $\mathbb{P}\left(t<X_{1}<X_{2}\right)$.
independent Exponentials: X_{1} with rate λ_{1} and X_{2} with rate λ_{2}.

$$
\begin{aligned}
\mathbb{P}\left(t<X_{1}<X_{2} \mid X_{1}=x_{1}\right) & =0 \text { if } x_{1}<t \\
& =e^{-\lambda_{2} x_{1}} \text { if } x_{1}>t .
\end{aligned}
$$

Use general formula

$$
\mathbb{P}(A)=\int \mathbb{P}(A \mid X=x) f_{X}(x) d x
$$

to get

$$
\begin{gathered}
\mathbb{P}\left(t<X_{1}<X_{2}\right)=\int_{t}^{\infty} e^{-\lambda_{2} x_{1}} \lambda_{1} e^{-\lambda_{1} x_{1}} d x_{1} \\
=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) .
\end{gathered}
$$

$$
U=\min \left(X_{1}, X_{2}\right)=X_{M} \text { for } M=\arg \min \left(X_{1}, X_{2}\right)
$$

We showed

$$
\begin{gathered}
\mathbb{P}(M=1, U>t)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) . \\
\Rightarrow \mathbb{P}(M=1)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \quad(\text { set } t=0) .
\end{gathered}
$$

So similarly

$$
\begin{gathered}
\mathbb{P}(M=2, U>t)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) . \\
\mathbb{P}(M=2)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{gathered}
$$

and by summing

$$
\mathbb{P}(U>t)=\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) .
$$

These formulas imply that $U=\min \left(X_{1}, X_{2}\right)$ has Exponential $\left(\lambda_{1}+\lambda_{2}\right)$ distribution and is independent of $M=\arg \min \left(X_{1}, X_{2}\right)$.

At the end we used a conceptual fact. Given two random variables Y, Z - say Y discrete and Z continuous, we know and often use the product formula:
if Y and Z independent then

$$
\text { (*) } \mathbb{P}(Z<z, Y=y)=\mathbb{P}(Z<z) \times \mathbb{P}(Y=y)
$$

The converse is also true: if $\left({ }^{*}\right)$ holds for all z, y then Y and Z are independent.

Recall how we find the distributions of minima/maxima. The event $\left\{\min \left(X_{1}, X_{2}\right)>x\right\}$ is the event $\left\{X_{1}>x, X_{2}>x\right\}$, so in this example

$$
\mathbb{P}\left(\min \left(X_{1}, X_{2}\right)>x\right)=\mathbb{P}\left(X_{1}>x\right) \times \mathbb{P}\left(X_{2}>x\right)=\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) x\right)
$$

which repeats the fact that $\min \left(X_{1}, X_{2}\right)$ has Exponential $\left(\lambda_{1}+\lambda_{2}\right)$ distribution. The same argument for maxima tells us
$\mathbb{P}\left(\max \left(X_{1}, X_{2}\right) \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right) \times \mathbb{P}\left(X_{2} \leq x\right)=\left(1-e^{-\lambda_{1} x}\right)\left(1-e^{-\lambda_{2} x}\right)$
and so $\max \left(X_{1}, X_{2}\right)$ has density function

$$
\lambda_{1} e^{-\lambda_{1} x}+\lambda_{1} e^{-\lambda_{2} x}-\left(\lambda_{1}+\lambda_{2}\right) e^{-\left(\lambda_{1}+\lambda_{2}\right) x} .
$$

Review of conditioning.

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A \text { and } B) / \mathbb{P}(B) ; \quad \mathbb{P}(A \text { and } B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)
$$

In this course we also use conditional expectation, only studied briefly in STAT134. We know

$$
\mathbb{E} X=\sum_{x} x \mathbb{P}(X=x) \text { or } \int x f(x) d x
$$

For an event B we calculate conditional expectation given B by using the same formula with the conditional distribution:

$$
\mathbb{E}(X \mid B)=\sum_{x} x \mathbb{P}(X=x \mid B) \text { or } \int x f_{X \mid B}(x) d x
$$

If ($B_{i}, 1 \leq i \leq k$) is a partition of events then ("law of total probability")

$$
\begin{aligned}
& \mathbb{P}(A)=\sum_{i} \mathbb{P}\left(A \mid B_{i}\right) \times \mathbb{P}\left(B_{i}\right) . \\
& \mathbb{E} X=\sum_{i} \mathbb{E}\left(X \mid B_{i}\right) \times \mathbb{P}\left(B_{i}\right) .
\end{aligned}
$$

If $\left(B_{i}, 1 \leq i \leq k\right)$ is a partition of events then ("law of total probability")

$$
\begin{aligned}
& \mathbb{P}(A)=\sum_{i} \mathbb{P}\left(A \mid B_{i}\right) \times \mathbb{P}\left(B_{i}\right) . \\
& \mathbb{E} X=\sum_{i} \mathbb{E}\left(X \mid B_{i}\right) \times \mathbb{P}\left(B_{i}\right) .
\end{aligned}
$$

So for a discrete r.v. Y

$$
\begin{aligned}
& \mathbb{P}(A)=\sum_{y} \mathbb{P}(A \mid Y=y) \times \mathbb{P}(Y=y) \\
& \mathbb{E} X=\sum_{y} \mathbb{E}(X \mid Y=y) \times \mathbb{P}(Y=y)
\end{aligned}
$$

And analogously for a continuous r.v. Y with density function f_{Y}

$$
\begin{aligned}
& \mathbb{P}(A)=\int \mathbb{P}(A \mid Y=y) f_{Y}(y) d y \\
& \mathbb{E} X=\int \mathbb{E}(X \mid Y=y) f_{Y}(y) d y
\end{aligned}
$$

Let's do two
Elementary examples. (a) X_{1}, X_{2} fair die throws. Calculate $\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)$.
(b) X_{1}, X_{2} independent Exponential, rates λ_{1} and λ_{2}. Calculate $\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)$.
(a) X_{1}, X_{2} fair die throws. Calculate $\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)$.

$$
\begin{gathered}
\mathbb{P}\left(X_{1}>X_{2}\right)=\frac{5}{12} \\
\mathbb{P}\left(X_{1}=x \mid X_{1}>X_{2}\right)=\frac{\frac{x-1}{36}}{\frac{5}{12}}=\frac{x-1}{15}, 2 \leq x \leq 6 \\
\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)=\sum_{x=2}^{6} \frac{x(x-1)}{15}=\frac{14}{3} .
\end{gathered}
$$

(b) X_{1}, X_{2} independent Exponential, rates λ_{1} and λ_{2}. Calculate $\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)$.

We know

$$
\begin{gathered}
\mathbb{P}\left(X_{1}>X_{2}\right)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
\mathbb{P}\left(x \leq X_{1} \leq x+d x\right)=\lambda_{1} e^{-\lambda_{1} x} d x
\end{gathered}
$$

and so

$$
\mathbb{P}\left(x \leq X_{1} \leq x+d x \mid X_{1}>X_{2}\right)=\frac{\lambda_{1} e^{-\lambda_{1} x} d x \times\left(1-e^{-\lambda_{2} x}\right)}{\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}}
$$

which says that the conditional density of X_{1} given $\left\{X_{1}>X_{2}\right\}$ is

$$
f_{X_{1} \mid X_{1}>X_{2}}(x)=\frac{\lambda_{1}\left(\lambda_{1}+\lambda_{2}\right)}{\lambda_{2}}\left(e^{-\lambda_{1} x}-e^{-\left(\lambda_{1}+\lambda_{2}\right) x}\right) .
$$

Then

$$
\mathbb{E}\left(X_{1} \mid X_{1}>X_{2}\right)=\int_{0}^{\infty} x f_{X_{1} \mid X_{1}>X_{2}}(x) d x=\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1} \lambda_{2}}-\frac{\lambda_{1}}{\lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)} .
$$

Conditional expectation as a random variable.

Given r.v.'s (W, Y) consider $\mathbb{E}(W \mid Y=y)$. This is a number depending on y - in other words it's a function of y. Giving this function a name h we have

$$
(*) \quad \mathbb{E}(W \mid Y=y)=h(y) \text { for all possible values } y \text { of } Y
$$

We now make a notational convention, to rewrite the assertion (*) as

$$
(* *) \quad \mathbb{E}(W \mid Y)=h(Y)
$$

The right side is a r.v., so we must regard $\mathbb{E}(W \mid Y)$ as a r.v.
[PK] page 60 lists properties of $\left({ }^{* *}\right)$, but rather hard to understand at first sight. One important property is that the "law of total probability" becomes

$$
\mathbb{E}[\mathbb{E}(W \mid Y)]=\mathbb{E} W
$$

Next class will give three examples to illustrate this notation.

