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This “size-bias” effect occurs in other contexts, such as class size.

If a small Department offers two courses, with enrollments 90 and 10,
then

average class (faculty viewpoint) = (90 + 10)/2 = 50
average class (student viewpoint) = (90× 90 + 10× 10)/100 = 82.

David Aldous Lecture 3



The specific examples I’m discussing are not so important; the point of
these first lectures is to illustrate a few of the 100 ideas from STAT134.

Ideas used in Lecture 2.

Eg(X ) =
∫
g(x) fX (x) dx .

exploit symmetry.

if X ,Y independent then var (aX + bY ) = a2var (X ) + b2var (Y )

inventing extra structure

size-biasing
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Different authors use slightly different notation:

P(A) = P(A) = Pr(A)

P(X ≤ 4) = P{X ≤ 4}

EX = E[X ] = EX

1A = 11A = 11(A) = I (A)
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Chapter 1 of textbook [PK] provides a review of STAT134 level
material.

It’s rather boring, but helpful for you to read. Here is material from
section 1.5.2: some properties of the Exponential distribution, which
plays a prominent role in Poisson processes later.

The Exponential(λ) distribution for a r.v. X > 0 is defined to have
density function

f (x) = λe−λx , 0 < x <∞

and has EX = 1/λ = s.d.(X ). Also P(X > x) = e−λx . Note the
parametrization convention; λ is called the rate.

There are special properties of independent Exponential r.v.’s – say X1

with rate λ1 and X2 with rate λ2. Consider

U = min(X1,X2) = XM for M = arg min(X1,X2)

V = max(X1,X2) = XN for N = arg max(X1,X2).

Let’s calculate P(M = 1,U > t), which is the same as P(t < X1 < X2).
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independent Exponentials: X1 with rate λ1 and X2 with rate λ2.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P(t < X1 < X2|X1 = x1) = 0 if x1 < t

= e−λ2x1 if x1 > t.

Use general formula

P(A) =

∫
P(A|X = x) fX (x)dx

to get

P(t < X1 < X2) =

∫ ∞
t

e−λ2x1 λ1e
−λ1x1 dx1

= λ1

λ1+λ2
exp(−(λ1 + λ2)t).

David Aldous Lecture 3



U = min(X1,X2) = XM for M = arg min(X1,X2)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We showed

P(M = 1,U > t) = λ1

λ1+λ2
exp(−(λ1 + λ2)t).

⇒ P(M = 1) = λ1

λ1+λ2
(set t = 0).

So similarly

P(M = 2,U > t) = λ2

λ1+λ2
exp(−(λ1 + λ2)t).

P(M = 2) = λ2

λ1+λ2

and by summing
P(U > t) = exp(−(λ1 + λ2)t).

These formulas imply that U = min(X1,X2) has Exponential(λ1 + λ2)
distribution and is independent of M = arg min(X1,X2).
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At the end we used a conceptual fact. Given two random variables Y ,Z
– say Y discrete and Z continuous, we know and often use the product
formula:

if Y and Z independent then

(∗) P(Z < z ,Y = y) = P(Z < z)× P(Y = y).

The converse is also true: if (*) holds for all z , y then Y and Z are
independent.

David Aldous Lecture 3



Recall how we find the distributions of minima/maxima. The event
{min(X1,X2) > x} is the event {X1 > x ,X2 > x}, so in this example

P(min(X1,X2) > x) = P(X1 > x)× P(X2 > x) = exp(−(λ1 + λ2)x)

which repeats the fact that min(X1,X2) has Exponential(λ1 + λ2)
distribution. The same argument for maxima tells us

P(max(X1,X2) ≤ x) = P(X1 ≤ x)×P(X2 ≤ x) = (1− e−λ1x) (1− e−λ2x)

and so max(X1,X2) has density function

λ1e
−λ1x + λ1e

−λ2x − (λ1 + λ2)e−(λ1+λ2)x .
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Review of conditioning.

P(A|B) = P(A and B)/P(B); P(A and B) = P(A|B)× P(B).

In this course we also use conditional expectation, only studied briefly in
STAT134. We know

EX =
∑
x

x P(X = x) or

∫
x f (x)dx .

For an event B we calculate conditional expectation given B by using the
same formula with the conditional distribution:

E(X |B) =
∑
x

x P(X = x |B) or

∫
x fX |B(x)dx .

If (Bi , 1 ≤ i ≤ k) is a partition of events then (“law of total probability”)

P(A) =
∑
i

P(A|Bi )× P(Bi ).

EX =
∑
i

E(X |Bi )× P(Bi ).
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If (Bi , 1 ≤ i ≤ k) is a partition of events then (“law of total probability”)

P(A) =
∑
i

P(A|Bi )× P(Bi ).

EX =
∑
i

E(X |Bi )× P(Bi ).

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
So for a discrete r.v. Y

P(A) =
∑
y

P(A|Y = y)× P(Y = y).

EX =
∑
y

E(X |Y = y)× P(Y = y).

And analogously for a continuous r.v. Y with density function fY

P(A) =

∫
P(A|Y = y)fY (y)dy .

EX =

∫
E(X |Y = y)fY (y)dy .
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Let’s do two
Elementary examples. (a) X1,X2 fair die throws. Calculate
E(X1|X1 > X2).
(b) X1,X2 independent Exponential, rates λ1 and λ2. Calculate
E(X1|X1 > X2).
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(a) X1,X2 fair die throws. Calculate E(X1|X1 > X2).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

P(X1 > X2) = 5
12

P(X1 = x |X1 > X2) =
x−1
36
5
12

= x−1
15 , 2 ≤ x ≤ 6

E(X1|X1 > X2) =
6∑

x=2

x(x−1)
15 = 14

3 .
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(b) X1,X2 independent Exponential, rates λ1 and λ2. Calculate
E(X1|X1 > X2).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We know

P(X1 > X2) = λ2

λ1+λ2

P(x ≤ X1 ≤ x + dx) = λ1e
−λ1xdx

and so

P(x ≤ X1 ≤ x + dx |X1 > X2) =
λ1e
−λ1xdx × (1− e−λ2x)

λ2

λ1+λ2

which says that the conditional density of X1 given {X1 > X2} is

fX1|X1>X2
(x) =

λ1(λ1 + λ2)

λ2
(e−λ1x − e−(λ1+λ2)x).

Then

E(X1|X1 > X2) =

∫ ∞
0

xfX1|X1>X2
(x) dx =

λ1 + λ2
λ1λ2

− λ1
λ2(λ1 + λ2)

.
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Conditional expectation as a random variable.

Given r.v.’s (W ,Y ) consider E(W |Y = y). This is a number depending
on y – in other words it’s a function of y . Giving this function a name h
we have

(∗) E(W |Y = y) = h(y) for all possible values y of Y .

We now make a notational convention, to rewrite the assertion (*) as

(∗∗) E(W |Y ) = h(Y ).

The right side is a r.v., so we must regard E(W |Y ) as a r.v.

[PK] page 60 lists properties of (**), but rather hard to understand at
first sight. One important property is that the “law of total probability”
becomes

E[ E(W |Y ) ] = EW .

Next class will give three examples to illustrate this notation.

David Aldous Lecture 3


